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Abstract: From global monitoring to regional forest management there is an increasing demand for
information about forest ecosystems. For border regions that are closely connected ecologically and
economically, a key factor is the cross-border availability and consistency of up-to-date information
such as the forest type. The combination of existing forest information with Earth observation data is
a rational method and can provide valuable contribution to serve the increased information demand
on a transnational level. We present an approach for the remote sensing-based generation of a
transnational and temporally consistent forest type information layer for the German federal states of
Rhineland-Palatinate and Saarland, and the Grand Duchy of Luxembourg. Existing forest information
data from different countries were merged and combined with suitable vegetation indices derived
from Landsat 8 and Sentinel-2 imagery acquired in early spring. An automated bootstrap-based
approximation of the optimum threshold for the distinction of “broadleaved” and “coniferous” forest
was applied. The spatially explicit forest type information layer is updated annually depending on
image availability. Overall accuracies between 79 and 96 percent were obtained. Every spot in the
region will be updated successively within a period of expectably three years. The presented approach
can be integrated in fully automated processing chains to generate basic forest type information
layers on a regular basis.

Keywords: forest management; transnational information layer; remote sensing; Landsat 8; Sentinel-2;
automatable approach; bootstrapping; forest type layer; regular update

1. Introduction

Forests are one of the most important ecosystems containing the largest reserve of carbon biomass
on earth with an annual uptake of about one-third of the global fossil fuel emissions [1]. Furthermore,
forests provide important basic provisional, ecosystem and social-economic services, which are essential
for global life [2–4]. National laws such as the federal and federal state forest laws [5,6] as well as
many international agreements on forest protection, such as the Kyoto protocol [7], the United Nations
Forum on Forests [8], the New York Declaration on Forests [9] or European Forests 2020 [10] lead to an
increased request on up-to-date forest information.

The German federal states of Rhineland-Palatinate (RLP), the Saarland and the Grand Duchy
of Luxembourg are part of the so-called Greater Region. Substantial parts of the landscape are
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forests, which are closely connected economically and ecologically. Report duties, sustainable
forest management and the challenges of emerging climate change imply the need for up-to-date
information on a transnational level. The international EU funded research project Regiowood II (http:
//www.regiowood2.info), which comprises forest authorities, political decision makers, environmental
scientists, local communities and private forest owners, aims to improve forest information in a
transnational frame. New requirements on forest information have been defined: forest resources need
to be projected in a spatially extensive and explicit manner. Information must be regularly available,
up-to-date and temporally consistent on a transnational level. One key information layer is detailed
information on the distribution of forest types. So far, forest information is managed in individual
structures, depending on local presets and guidelines. The information differs regarding spatial and
temporal coverage. Regarding the aforementioned needs, terrestrial data alone are not capable of
fulfilling the information demands.

For the mapping of forest resources the application of remote sensing data has already proven as
a helpful tool on global [2,4], continental [11,12], national [13–16], regional [17–20] and on local [21–24]
scale. Pan European forest type maps based on remote sensing imagery already exist. They are provided
by the Joint Research Centre (JRC) [11] and the Copernicus Land Monitoring Service [12] at a spatial
resolution of 25 m and 20 m, respectively, and can be downloaded free of charge from the Copernicus
Land Monitoring service website (https://land.copernicus.eu/pan-european/high-resolution-layers/
forests/forest-type-1/status-maps) and the JRC website (https://forest.jrc.ec.europa.eu/en/past-activities/
forest-mapping).

The ground resolution is sufficient for large homogeneous forest stands, but the spatial variability
of small partitioned forests cannot be depicted well enough at a minimum mapping unit (MMU)
of 0.5 ha. Moreover, the cycle of providing updates does not meet the local requirements of forest
authorities. Therefore, the project agreed to evaluate new methods for the regional forest type mapping
with following requirements:

• Incorporation of existing forest information data (FID);
• Provision of spatially explicit Forest Type Layers with an MMU of 0.1 ha;
• Efficient processing chain: small expenses regarding data costs and data treatment;
• Regular updates in annual intervals;
• Use of satellite systems meeting the requirements of cost-efficiency and adequate

spatio-temporal resolution.

The remote sensing-based mapping of forest types relies on structure and chlorophyll content
leading to different spectral signals. Several studies focusing on forest type mapping have been
published, including classification methods such as maximum likelihood [25,26], decision tree [27],
machine learning algorithms [11,28], or the k-NN method [29,30]. Most available studies make
use of the original spectral information, only a few studies focus on the use of Vegetation Index
(VI) based methods using supervised classification [31], machine learning algorithms [28] or genetic
algorithms [32]. Conventional classification methods usually demand considerable user interaction
with specifically designed software. Forest type classification is often based on multi-temporal imagery,
because spectral signal differences are not equal over the vegetation period.

For the mapping of forest types in a temperate region with seasonal variability, the most appropriate
temporal frame is the time of broadleaved forests under leaf-off conditions. The differences can be
clearly captured by a VI based separation. The following objectives have been defined:

• Joining of multiple existing forest information sources to establish transnational forest type
information databases;

• Automated thresholding of VI values as a method that can be integrated into
pre-processing workflows;

• Comparison of suitable early-spring derived VIs for the mapping of forest types in heterogeneous
low mountain ranges;

http://www.regiowood2.info
http://www.regiowood2.info
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps
https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping
https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping


Remote Sens. 2019, 11, 2337 3 of 23

• Regular generation of consistent and transnational forest type layers as a spatially explicit
complementary layer to existing national forest information sources.

2. Study Area

The study area comprises the German federal states of RLP, the Saarland and Luxembourg
(Figure 1). The elevation ranges between 52 m and 818 m above sea level. The average temperature is
9 ◦C [33]. The landscape is characterized by partially steep river valleys, which were formed during
the quarterly genesis of the Rhenish Massif. Forest covers more than 41% of the area (Table 1); it is
concentrated in the higher elevated ranges and at the valley sides. European beech (Fagus sylvatica)
is the potential natural tree species and has the largest proportion. Norway spruce (Picea abies)
is the economically most important tree species. Further important tree species are common oak
(Quercus robur), sessile oak (Quercus petraea), Douglas fir (Pseudotsuga menziesii) and Scots pine (Pinus
sylvestris) [34].
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Figure 1. Map of the study area. Forest areas based on cadastral data are depicted in light green.

Table 1. Overview of the forest cover and proportional forest cover considering the forest type.

Area [km2] Forest [km2] Forest [%] Broadleaved [%] Coniferous [%]

RLP 19,847 8388 42.26 62.03 37.97
Saarland 2570 946 36.81 73.49 26.51

Luxembourg 2586 940 36.21 67.64 32.36

Total 25003 10274 41.07 63.39 36.61
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3. Data

3.1. Forest Information Data

Forest boundaries from cadastral data of each country and federal state exist. This data includes
information on land use, such as forests. Shrubs or small clusters of trees, which are often orientated
in a linear manner, e.g., as road or stream accompanying lines, were not selected for the mask. The
location uncertainty of cadastral data is less than ± 3 m.

For public forests, which are managed by local forest authorities, extensive official forest
management information databases exist, including numerous ecologic and economic attributes
such as tree type, development stage, estimated timber volume and proportional coverage of the
respective tree species [35–37]. This forest management information is area-based and related to
administrative forest units of variable size. It is updated in a five to ten year cycle by terrestrial expert
assessments [35,38,39]. Similar structured data from a non-recurring inventory on private forests are
provided by the forest authorities in the Saarland [40]. All data used have been acquired between 2003
and 2016.

National forest inventories (NFI) or federal state forest inventories (FSFI) provide point-based
information acquired in fixed routines, following specifically designed formalisms (“Bitterlich
Sampling”). The information is related to geocoded inventory plots, which are oriented in a regular
spaced sampling grid [41,42]. The spacing is two by two kilometers in Germany [34] and one by
0.5 kilometers in Luxembourg [43]. Data acquisition is usually carried out in intervals of ten years.
For the Saarland, data from NFI or FSFI were not available. To cover the forest of the Saarland with
comparable and independent point-based information, we projected the German FSFI design on the
Saarland and intersected it with the official forest management information. The available sources of
forest information are shown in Table 2.

Table 2. Overview and characteristics of the available forest information systems.

Name Country/Federal
State Type No. of

References
Acquisition

Time

Forest Management
Information (public forests) Rhineland-Palatinate Area-based 15063 2003–2016

Federal State Forest
Inventory Rhineland-Palatinate Point-based 5334 2010

Forest Management
Information (public forests) Saarland Area-based 1210 2010

Forest Management
Information (private forests) Saarland Area-based 911 2014

projected FSFI Grid 1 Saarland Point-based 349 2010–2014
Forest Management

Information Luxembourg Area-based 697 2016

National Forest Inventory 2 Luxembourg Point-based 311 2010
1 information is related to official forest management information due to local unavailability of NFI/FSFI data. 2

The number of validation points from the NFI was reduced to be comparable to the spatial distribution in the
other subregions.

The area-based forest management information was used as training set for generating the map;
the systematically distributed point-based information was used as validation. The points of the
projected FSFI grid in the Saarland subregion are linked to the existing area-based forest information
system, but they do not intersect geographically with any information used for training purposes and
are therefore independent from training data.
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3.2. Earth Observation Data

Regarding the aforementioned needs for the mapping of coniferous and broadleaved forests,
satellite data must meet certain requirements. For common VIs, a sufficient spectral resolution covering
the visible (0.45–0.74 µm) and near-infrared spectral range (0.75–0.88 µm) is necessary. Passive satellite
sensors cannot record usable data under cloudy conditions, because the radiation in the recorded
spectral range cannot penetrate clouds. Thus, especially for areas with regular cloud coverage,
frequent repetition cycles are very important. For the purpose of the best separation of coniferous and
broadleaved forests, the optimal timeframe of image acquisition is between mid-February, when the
solar altitude angle is already large enough so that illumination effects can be handled by correction
methods, and the time before foliage formation, which is in April. Thereby also potential disturbing
influences owed to ground vegetation are neglectable, as imagery is acquired in early spring [44].

Since February 2013, Landsat 8 provides image data as the only suitable system in the starting
period of the project at a ground resolution of 30 m. Data continuity will be assured by the subsequent
Landsat 9 system with identical properties [45]. Starting in June 2015, Sentinel-2A and since March
2017, Sentinel-2B provide image data at a ground resolution of up to 10 m [46,47]. The Sentinel-2
system is intended to provide continuous data at least for a time span of 20 years. The USGS (Landsat)
and the European Copernicus Program (Sentinel-2) provide their satellite data free of charge to every
user [47,48], which makes both datasets optimal for establishing operational monitoring systems. The
large swath (185 km for Landsat and 290 km for Sentinel-2) allows a spatially and temporally consistent
mapping. The spectral properties of both systems are comparable, covering the common spectral
range of contemporary satellite systems, which are necessary for the calculation of VIs. However,
the acquisition frequency is better for Sentinel-2 (five days vs. 16 days nadir revisit time). Thus, the
Landsat based mapping should successively be replaced with Sentinel-2 based information regarding
an enhanced spatial resolution and the MMU of 0.1 ha.

Images from both sensors are available in the FORCE [49] archive, which holds preprocessed
data for the region of interest in Trier University’s local data servers. From this archive, suitable
images were manually selected. Landsat 8 imagery from 27 March 2014 provides the base layer;
consecutive Sentinel-2 images were acquired in March and April 2017 as well as in February and March
2018. Radiometric distortions of the measured signal due to slope-dependent illumination effects are
one of the most important problems in regions with challenging topographic conditions [50]. The
preprocessing framework implemented in the FORCE radiometric correction scheme comprises full
radiative transfer modelling [51], which is based on the 5S model by Tanré et al [52]. Furthermore, a
cloud mask algorithm with an overall accuracy of 0.95 is provided within the framework [53], which
allows using images with scattered cloud cover. The image coverage is presented in Figure 2.

From Landsat, six spectral bands at a geometric resolution of 30 m were used. Sentinel-2 data
were preprocessed to images with ten spectral bands and a geometric resolution of 10 m using band
fusion techniques implemented in the FORCE processing framework [54]. An overview of the used
satellite images is given in Table 3.

Table 3. List of satellite images used in the study.

Sensor Date of
Acquisition

Cloud
Coverage [%]

Forest in
Footprint [ha]

Forest Coverage in
Footprint [%]

Landsat 8 2014-03-27 1.00 9968 95.31
Sentinel-2A 2017-03-11 64.69 5705 21.22
Sentinel-2A 2017-03-14 42.11 7775 45.31
Sentinel-2A 2017-04-20 4.32 1 6931 5.95 1

Sentinel-2B 2018-03-14 75.44 3715 5.81
Sentinel-2B 2018-03-21 35.74 9068 48.59
Sentinel-2B 2018-03-24 89.42 5227 7.47

1 only areas higher than 500 m a.s.l. were used.
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Figure 2. Coverage of satellite data in 2014 (a), 2017 (b) and 2018 (c). White areas represent no data,
light grey areas one, grey areas two and dark grey areas three image acquisitions in the respective year.

4. Methods

4.1. Composition of a Transnational Forest Type Information Database

For the setup of a transnational dataset, several forest information data had to be harmonized and
merged. This comprised a total of 172,125 area-based forest management information units and 10,463
independent point-based plots. The forest management information units and the plots can contain
information of more than one specific tree type or forest type for each forest management information
unit or inventory plot, indicating a ‘mixed’ forest. Regarding the objective of the forest authorities and
taking into account the structure of the forests, where it is uncommon that forest type mixture exists in
an area of 10 m by 10 m, a rigorous distinction of broadleaved and coniferous forest on scale of the
proposed MMU is rational. Therefore, only information units and plots that could be certainly assigned
to one forest type were considered, resulting in 30,959 area-based forest management information units
and 5994 point-based plots. The selected data is distributed spatially consistent in the study area; as
well, the class distribution in the forest information data follows the class distribution in the study area
and the subregions.

4.2. Spectral Data Extraction

The area-based forest management information was intended as training set. To receive valid
reference data during spectral sampling, it is important to avoid border effects, which can occur due
to geolocation errors. The uncertainty for forest vector data is +/− 3 m, the absolute uncertainty of
Sentinel-2 is about 10 m [55]. Therefore, an inverse buffer of 10 m has been applied to all forest units.
From the number of 30959 forest units indicating one certain forest type class, around 40% were so
small, that they disappeared after inverse buffering. The final number of suitable reference forest units
was 17878. The spatial distribution is consistent in the study area; the distribution of forest types in the
reference set accords to the real distribution of forest types in the study area. Spectral information was
extracted and linked to forest information using a sampling point within each buffered polygon.

4.3. Assessment of Suitable Vegetation Indices

The reflected radiation from vegetation is dependent on the plant’s chemical and physiological
characteristics, which is helpful for their distinction in the spectral feature space. For the mapping
of forest types in temperate zones with seasonal variability, a VI based approach can make use of
the spectral differences between evergreen coniferous forests and broadleaved forest under leaf-off

conditions. Overviews of VIs have been published in many review papers, e.g., [56,57]. Most widely
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used are classic VIs such as Simple Ratio (SR) [58], the Difference Vegetation Index (DVI) [54] or the
Normalized Difference Vegetation Index (NDVI) [59].

Illumination differences in satellite imagery are corrected during preprocessing [49,51] nevertheless
residual effects can persist. Depending on the forest density, background effects can influence the VI.
Soil reflectance driven influences should be very small, as forest soil is mostly covered by dry leaves.
However, roughness or moisture can influence the background signal [60] and should at least be
considered. Further background effects originating from photosynthetic active ground vegetation are
mostly minimized by using images acquired before the start of the vegetation period [44]. To account
for the above-mentioned issues, several modifications of VIs have been developed. An overview of the
examined VIs with suitable properties is given in Table 4.

Table 4. Suitable Vegetation Indices and its most important properties used for the mapping of
forest types.

Name Equation Properties Reference

Simple Ratio SR = NIR/R Classic [58]

Difference VI DVI = NIR−R Classic [54]

Normalized
Difference VI NDVI = NIR−R

NIR+R Classic, normalized [59]

Renormalized
Difference VI RDVI = NIR−R/(NIR + R)

1
2

Adjusted, compensates
sun view geometry [61]

Infrared Percentage VI IPVI = NIR
NIR+R Simplified NDVI [62]

Soil Adjusted VI SAVI = (NIR−R)
NIR+R+L ∗ (1 + L)

Soil, background adjusted;
L = 0.5 [60]

Atmospherically
Resistant VI ARVI = NIR−(R−y∗(B−R))

NIR+(R−y∗(B−R))

Atmospheric effects
adjusted;

y = 1
[50]

Soil and Atmospherically
Resistant VI SARVI = NIR−(R−y∗(B−R))

NIR+(R−y∗(B−R))+L ∗ (1 + L)
Combines adjustment of

soil, background and
atmospheric effects; L = 0.5

[50]

Enhanced VI EVI = G (NIR−R)
(NIR+C1×R−C2×B+L)

background and
atmospheric effects [63]

4.4. Bootstrapping

The number of reference data is bound to the available properties of terrestrial information, which
again is limited by time and costs. Available reference data are only a sample from the unknown true
distribution. For a valid approximation of the true distribution of a variable using only available
reference data (which are a sample), the Bootstrap method is a straight solution. To make inferences
about the true distribution of the target variable, multiple re-samples from the original sample (reference
dataset) are drawn [64]. Consequently, bootstrapping can also be an efficient approach in a two-class
mapping to approximate the threshold for separating coniferous and broadleaved forest based on the
reference data. Because the computational cost for a complete resampling with all possible sample
compositions is enormous, we applied the Monte Carlo algorithm of resampling with replacement to the
reference data. Each bootstrap sample was treated within an automated defined range of the respective
VI depending on the distribution in this reference sample. Incremental steps for threshold optimization
were defined. According to the bimodal distribution of VIs derived from early spring imagery, the
optimal threshold for differentiation should be found near the intersection of the distribution line of
both forest types and the VI value at the minimum of the VIs frequency distribution, respectively
(Figure 3).
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extracted from the Landsat 8 image. The black line depicts the sum of both classes. The vertical black
line indicates the minimum turning point, the vertical dotted lines the distance of one-half standard
deviation in the dataset, which is used as range for threshold parameterization.

The minimum turning point (MTP) helps to identify the search area of the optimal threshold.

MTP = min( f req(x)); x =
{
xVI.max. f req.broad, . . . , xVI.max. f req.coni f

}
(1)

freq(x) indicates the number of occurrences of reference data at a given VI value, the search range of VI
values is located between the VI value indicating the maximum number of occurrences of broadleaved
(xVI.max.freq.broad) and coniferous forest (xVI.max.freq.conif), respectively. As a search range for the optimal
threshold, a range (T.range) around the MTP of +/− one-half standard deviation of the reference data
(σRef) has been considered sufficient.

T.rangemin/max = MTP±
1
2
σRe f (2)

The incremental step size (T.incr) needs to be chosen according to a meaningful differentiation
of potential thresholds within the defined range. Increasing processing time with more potential
threshold values must be considered. Thus, an increment of 1/100 of the maximum of the VI in the
reference data (xRef) was chosen.

T.incr =
1

100
∗max

(
xRe f

)
(3)

Depending on the respective distribution in each bootstrap sample, the sample was classified into
broadleaved and coniferous forest using every value in the defined range of thresholds.

T =
{
T.rangemin, T.rangemin + T.incr, . . . , T.rangemax

}
(4)

For each classification based on a certain threshold, the result was validated using the area
under the Receiver Operating Characteristic (ROC) curve, which is a measure of separability of two
classes. In each bootstrap sample, the threshold resulting in the largest area under the ROC curve
was the optimal one for the particular bootstrap-sample. To receive a statistically meaningful number
of bootstrap-samples, this procedure was repeated up to 2000 times. The most commonly chosen
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threshold was attested as the optimal threshold and applied to the image data. The complete workflow
is presented in Figure 4.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 

 

𝑇 = {𝑇. 𝑟𝑎𝑛𝑔𝑒𝑚𝑖𝑛, 𝑇. 𝑟𝑎𝑛𝑔𝑒𝑚𝑖𝑛 + 𝑇. 𝑖𝑛𝑐𝑟, … , 𝑇. 𝑟𝑎𝑛𝑔𝑒𝑚𝑎𝑥} (4) 

For each classification based on a certain threshold, the result was validated using the area under 

the Receiver Operating Characteristic (ROC) curve, which is a measure of separability of two classes. 

In each bootstrap sample, the threshold resulting in the largest area under the ROC curve was the 

optimal one for the particular bootstrap-sample. To receive a statistically meaningful number of 

bootstrap-samples, this procedure was repeated up to 2000 times. The most commonly chosen 

threshold was attested as the optimal threshold and applied to the image data. The complete 

workflow is presented in Figure 4. 

 

Figure 4. Processing flowchart including the pre-processing part (a), the parameterization part based 

on the bootstrapping method (b) and the mapping and validation part (c). 

4.5. Validation  

The quality of the mapping was assessed using the systematically sampled point-based forest 

information, which clearly indicate a distinct forest type (Table 2, section 4.1.). Considering the 

impossibility of carrying out an extensive sampling of validation data and the existence of two 

independent sets of forest information, the use of the point-based forest information data for 

validation is rational. Systematic sampling, consistent data acquisition and regular spacing follow the 

rule of probability sampling and well qualifies this complementary set of forest information as 

independent validation data [65]. Regarding different sampling intensities, stratified samples were 

used to validate the map for each of the three subregions (RLP, Saarland, Luxembourg). For the 

subregion of the Saarland, no data from the national forest inventory was available. Therefore, the 

projected German NFI grid (see section 3.1) was used to extract forest management information. 

These points are placed at geographically different locations than those used for the extraction of 

spectral information for the reference set and thus guarantee independence.  

Confusion matrices report producer’s accuracy (PA), user’s accuracy (UA), overall accuracy 

(OAA) [66]. Further, the standard errors of accuracy and area estimates were presented [65]. To range 

Figure 4. Processing flowchart including the pre-processing part (a), the parameterization part based
on the bootstrapping method (b) and the mapping and validation part (c).

4.5. Validation

The quality of the mapping was assessed using the systematically sampled point-based forest
information, which clearly indicate a distinct forest type (Table 2, Section 4.1). Considering the
impossibility of carrying out an extensive sampling of validation data and the existence of two
independent sets of forest information, the use of the point-based forest information data for validation
is rational. Systematic sampling, consistent data acquisition and regular spacing follow the rule of
probability sampling and well qualifies this complementary set of forest information as independent
validation data [65]. Regarding different sampling intensities, stratified samples were used to validate
the map for each of the three subregions (RLP, Saarland, Luxembourg). For the subregion of the
Saarland, no data from the national forest inventory was available. Therefore, the projected German
NFI grid (see Section 3.1) was used to extract forest management information. These points are placed
at geographically different locations than those used for the extraction of spectral information for the
reference set and thus guarantee independence.

Confusion matrices report producer’s accuracy (PA), user’s accuracy (UA), overall accuracy
(OAA) [66]. Further, the standard errors of accuracy and area estimates were presented [65]. To range
the bootstrap based approach in other existing forest type products, the prediction map was also
compared to the Copernicus high-resolution forest type layer (HR-FTL) [12].
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5. Results

5.1. Automatable Threshold Parameterization

To integrate the mapping of forest types into existing processing chains, an automatable
approximation of the optimal threshold to separate both classes is necessary. For the optimal
threshold approximation, a minimum of 100 iterations is necessary. The optimal threshold did not
change by implementing more iterations (Figure 5).
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on the number of iterations. A stabilization occurs for more than 100 iterations.

5.2. Landsat and Sentinel-2 Based Mapping Using Different VIs

The forest type prediction map was prepared using a new bootstrap-based approach with
automated thresholding. The base prediction map using Landsat 8 imagery from 2014 has a ground
resolution of 30 m and covers 95% of the study area. The northwestern part of Luxembourg could
not be mapped due to the lack of suitable image data. As from 2017, Sentinel-2 data with a ground
resolution of 10 m is used for the mapping. Sixty-three percent of the forest was covered in 2017; in
2018, 54% of the forest was covered. Altogether, in 2017 and 2018 more than 70% of the forest has been
updated with higher resolution mapping (Figure 6).

Visual inspection of the maps revealed meaningful mapping errors for the DVI retrieved map,
where large parts of the area were obviously assigned the wrong class. Less severe inaccuracies were
also found for the RDVI based map. In both cases, the estimated area of broadleaved forest is larger.
All other maps based on suitable VIs are well conforming, which was confirmed by visual inspection
on larger scale. Visual comparison of the maps based on all applied VIs accords to the results presented
in Table 5. The enhanced geometric resolution of Sentinel-2 leads to a more detailed and clearer map
(Figure 7).
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Figure 6. Forest Type map based on Landsat 8 data from 2014, updated with Sentinel-2 imagery from
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Table 5. Parameterization to receive the optimal threshold (area under the ROC curve) and comparison
of the received OAA based on Landsat 8 and Sentinel-2 derived VIs.

Index
Data

Range

Parameterization Validation

AUC Threshold OAA

L8 S-2 L8 S-2
L8 S-2

RLP Saar Lux RLP Saar Lux

SR 0–26 0.92 0.94 5.60 4.5 0.83 0.79 0.95 0.87 0.81 0.93
DVI 142–3290 0.69 0.78 1360 1280 0.64 0.65 0.64 0.74 0.73 0.77

NDVI 0.08–1 0.92 0.93 0.70 0.64 0.83 0.79 0.96 0.87 0.82 0.93
RDVI 4.98–51.5 0.87 0.89 30.00 28.2 0.78 0.75 0.79 0.84 0.81 0.87
IPVI 0.27–1 0.92 0.94 0.43 0.82 0.83 0.74 0.96 0.87 0.82 0.91
SAVI 0.12–1.51 0.93 0.92 1.04 0.96 0.83 0.78 0.94 0.87 0.82 0.92
ARVI 0.04–1.11 0.91 0.94 0.61 0.58 0.83 0.78 0.94 0.87 0.82 0.93
SARVI −0.1–2.3 0.92 0.94 0.91 0.88 0.83 0.78 0.93 0.87 0.82 0.93

EVI −22–74 0.90 0.93 1.80 1.95 0.80 0.76 0.89 0.85 0.79 0.92
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Out of the suitable VIs, the SR and the NDVI based maps showed a good performance with an
OAA between 0.79 in the Saarland and 0.96 in Luxembourg for the Landsat-8 based mapping and an
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OAA between 0.81 in the Saarland and 0.93 in Luxembourg for the Sentinel-2 based mapping (Table 5).
The application of adjusted VIs did not perform with a higher OAA.

The OAA increased similarly in RLP and the Saarland for all applied VIs based on Sentinel-2 data.
For Luxembourg, the OAA decreased slightly. Standard errors for Sentinel-2 based mapping mostly
decreased compared to those based on the Landsat 8 mapping (Table 6).

Table 6. Comparison of the mappings based on suitable Landsat 8 and Sentinel-2 VIs stratified by
subregion. S(Area) reports the standard error for estimated area in hectares, S(OAA) for overall accuracy,
S(UA) for the user’s and S(PA) for the producer’s accuracy; the subscript b stands for broadleaved and
c for coniferous class.

Landsat 8 (2014) Sentinel-2 (2017/18)

Min Max Min Max

S(Area)
RLP 1083 1835 1248 1851

Saarland 2341 2633 1696 2088
Luxembourg 4478 5697 3410 4746

S(OAA)
RLP 0.0167 0.0284 0.0157 0.0233

Saarland 0.0218 0.0245 0.0329 0.0242
Luxembourg 0.0055 0.0069 0.005 0.0069

S(UAb)
RLP 0.0093 0.0245 0.0118 0.0207

Saarland 0.023 0.0275 0.0208 0.0253
Luxembourg 0.0069 0.0086 0.0066 0.0086

S(UAc)
RLP 0.0564 0.0797 0.0426 0.0529

Saarland 0.0495 0.0573 0.0596 0.0656
Luxembourg 0.0088 0.0116 0.0074 0.0113

S(PAb)
RLP 0.0086 0.0178 0.0111 0.0166

Saarland 0.0201 0.0212 0.0182 0.0216
Luxembourg 0.0062 0.0065 0.0062 0.0069

S(PAc)
RLP 0.0441 0.0780 0.0383 0.0459

Saarland 0.0353 0.0406 0.0433 0.0481
Luxembourg 0.0068 0.0082 0.0061 0.0083

5.3. Prediction Map Update

The base layer from 2014 has been updated in all areas, where Sentinel-2 data was available
in 2017 and 2018. The updated forest type map as of 2018 is based on the NDVI and is depicted
in Figure 6. Visual inspection reveals that the mapping greatly accords to the reality, showing the
dominance of coniferous forest in the mountain ranges and a general dominance of broadleaved forest
in the complete study area. Compared to the 2014 prediction map, the OAA increased from 0.83 to
0.86 in RLP and from 0.79 to 0.82 in the Saarland for the 2018 map, while it decreased from 0.96 to
0.92 in Luxembourg. Error matrices for each subregion including area proportions are presented in
Tables 7–9; accuracies and standard errors are reported and compared to the HR-FTL in the following
section. Forest type proportions differ for the subregions, but differences between the prediction map
and validation proportions do not differ more than five percent points (in RLP). Minor deviations
between mapped forest type area proportion and validation are reported for the other subregions.



Remote Sens. 2019, 11, 2337 14 of 23

Table 7. Error matrix of estimated proportions of area (bootstrap based prediction map using Sentinel-2
derived NDVI in RLP).

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

Map Broadleaved 0.5387 0.0932 0.6320 563,158
Coniferous 0.0435 0.3245 0.3680 328,023

Total 0.5823 0.4177 1 891,182
Area [ha] 518,887 372,295

Table 8. Error matrix of estimated proportions of area (bootstrap based prediction map using Sentinel-2
derived NDVI in the Saarland).

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

Map Broadleaved 0.6803 0.0915 0.7718 88,278
Coniferous 0.0863 0.1419 0.2282 26,104

Total 0.7665 0.2335 1 114,382
Area [ha] 87,679 26,703

Table 9. Error matrix of estimated proportions of area (bootstrap based prediction map using Sentinel-2
derived NDVI in Luxembourg).

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

Map Broadleaved 0.6543 0.0390 0.6933 66,950
Coniferous 0.0472 0.2595 0.3067 29,619

Total 0.7015 0.2985 1 96,569
Area [ha] 67,739 28,830

5.4. Comparison with Copernicus Forest Type Information

To compare the bootstrap-based mapping with existing forest type information from the HR-FTL,
alongside a visual comparison the latter was similarly validated with the same point-based forest
information data, which was used to validate the bootstrap-based mapping. The forest type layer
was mainly mapped based on multispectral time series of Landsat 8 and Sentinel-2A, complemented
by SPOT-5 and ResourceSat-2 imagery, resampled to 20 m spatial resolution. Multiple data sources
from high-resolution ortho-imagery and other ancillary sources such as old forest type maps, the
Global Forest Change map, CORINE Land Cover or other thematic land cover maps were used as
training dataset for the HR-FTL. The MMU is 0.5 ha [12]. Tables 10–12 show the error matrices of the
Copernicus HR-FTL for each subregion. Comparable error matrices of our bootstrap-based mapping
referring to the latest 2018 update, using Landsat 8 and Sentinel-2 based NDVI images, are reported in
Tables 7–9. Accuracies of both maps are reported in Table 13, standard errors are reported in Table 14.

Table 10. Error matrices of estimated proportions of area for the HR-FTL in RLP.

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

HR-
FTL

Broadleaved 0.5522 0.0986 0.6509 613,760
Coniferous 0.0525 0.2966 0.3491 329,252

Total 0.6047 0.3953 1 943,012
Area [ha] 570,271 372,741
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Table 11. Error matrices of estimated proportions of area for the HR-FTL in the Saarland.

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

HR-
FTL

Broadleaved 0.6440 0.1176 0.7617 95,531
Coniferous 0.0756 0.1628 0.2383 29,890

Total 0.7196 0.2804 1 125,420
Area [ha] 90,254 35,166

Table 12. Error matrices of estimated proportions of area for the HR-FTL in Luxembourg.

Validation Data

Broadleaved Coniferous Total (Wi) Area [ha]

HR-
FTL

Broadleaved 0.7099 0.0355 0.7454 75,404
Coniferous 0.0323 0.2223 0.2546 25,758

Total 0.7422 0.2578 1 101,162
Area [ha] 75,084 26,078

Table 13. Validation of the HR-FTL and the mapping approach (Updated map based on the NDVI)
reporting the OAA, user’s (UA) and producer’s accuracy (PA) for mapped broadleaved (subscript b)
and coniferous forest (subscript c) in the three subregions.

OAA UAb UAc PAb PAc Wb Wc

RLP
FTL 0.85 0.85 0.85 0.91 0.75 0.651 0.349
Map 0.86 0.85 0.88 0.93 0.78 0.631 0.368

Saar
FTL 0.81 0.85 0.68 0.89 0.58 0.762 0.238
Map 0.82 0.88 0.62 0.89 0.61 0.772 0.228

Lux
FTL 0.93 0.95 0.87 0.96 0.86 0.745 0.255
Map 0.92 0.95 0.85 0.93 0.88 0.693 0.307

Table 14. Standard error for the mappings based on Landsat 8 and Sentinel-2 (NDVI) for each subregion.
S(Area) reports the standard error for estimated area in hectares, S(OAA) for overall accuracy, S(UA) for
the user’s and S(PA) for the producer’s accuracy; the subscript b stands for broadleaved, subscript c for
coniferous class.

S(OAA) S(UAb) S(UAc) S(Area)

RLP
FTL 0.005 0.0063 0.0082 4696
Map 0.0048 0.0062 0.0074 4262

Saar
FTL 0.0211 0.0225 0.0517 2647
Map 0.02 0.0204 0.0539 2283

Lux
FTL 0.0150 0.0140 0.0423 1519
Map 0.0170 0.0147 0.0445 1644

The HR-FTL proportional area of classes versus the independent validation data reveals differences
between 0.3 percent points for the subregion of Luxembourg and around five percentage points for the
subregions of RLP and Saarland. Comparing the error matrices of the HR-FTL with the error matrices
of our map (Update as of 2018 using the NDVI), proportional differences for the classes range between
one percentage point (Saarland) and five percentage points (Luxembourg). Regarding the relative
distribution presented in the error matrices (for the mapping approach see Tables 7–9, for the HR-FTL
see Tables 10–12) as well as the retrieved accuracies (Table 13) and the standard errors (Table 14), one
can see that both mapping approaches match with only minor deviations.

Figure 8 shows a visual comparison of the HR-FTL and the bootstrap based prediction map
near the border river between Luxembourg and RLP as well as in the low-mountain range in the
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Hunsrück-Hochwald national park at the border between RLP and Saarland. Both maps generally
accord with the aerial images. Nevertheless, especially for smaller patterns, the bootstrap based
prediction map using Sentinel-2 imagery with its 10 m by 10 m spatial resolution provides a better
reflection of the forest structure.
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6. Discussion

6.1. Automated Threshold Parameterization

The workflow of forest type mapping in temperate regions presented in this study is an appropriate
way to automate the procedure. The number of bootstrapping iterations to assure statistical validity is
relatively small with a minimum of 100 (Figure 5). For the identification of the optimum threshold,
bootstrapping using the Monte Carlo method assures a valid approach to overcome the possible
uncertainties of the reference datasets: Most important, the number of reference units is variable
depending on image coverage in each year. As well, the spectral variables of the reference data can be
potentially subject to slight differences. The phenological cycle is not equal every year; it is generally a
function of the local climate, but owed to weather conditions (temperature, rain) in the last months
before image acquisition. Further, climate change leads to temporal shifts of the beginning of the
vegetation period [67]. The application of bootstrapping minimizes these issues by multiple resampling
and approximating the threshold based on annually adjusted reference datasets. The derivation of
VIs can be integrated into any already existent pre-processing chain for medium resolution satellite
images and can therefore be automatized. As well, the bootstrapping-approach to approximate the
optimal threshold can be integrated in existing pre-processing routines such as FORCE [51]. The single
manual part comprises treatment and deployment of viable forest type databases, which are necessary
for reference and validation.

6.2. Generation of Transnational Forest Type Maps at Regular Intervals

National laws as well as regional structures demand customized information, thus a replacement
of existing forest information systems is not suggestive. Because of that, every country needs to
manage own forest information systems. Nevertheless, satellite-based forest information maps provide
a spatially explicit and temporally more consistent cross-border information layer, where the mapping
can be updated much more frequently. Existing (local or regional) forest information can be kept
up-to-date and refined using the annually updated spatially and temporally explicit forest type layer as
complementary information. Terrestrial inventory and data acquisition can be steered and optimized,
e.g., in case both information sources indicate different information.

Regarding satellite imagery, until 2015 only Landsat was sufficient, regarding factors like spectral
resolution, spatial coverage and data accessibility, as the Landsat archive has been free of charge for
every user since 2008 [48]. Despite these advantages, the temporal coverage is often not sufficient
to provide suitable imagery, because frequent cloud cover hampers image acquisition. In addition,
very small forest stands cannot be mapped sufficiently with a ground resolution of 900 m2. Since June
2015 the European Copernicus program provides Sentinel-2 image data, since March 2017 the system
consists of two identical sensor systems [46,47]. Imagery is also publicly accessible. The postulated
requirements can be better met, as images are potentially available twice a week in the study area at a
ground resolution of 10 m, which is a substantial advantage.

Despite the small temporal frame of two months comprising only images acquired between
mid-February and mid-April, image data acquired in 2017 and 2018 already cover more than 70% of
the forest in the study area, while sufficient Landsat imagery was hardly available as from 2016 in the
desired temporal frame. We estimate that three years are sufficient to update every spot in the study
area with Sentinel-2 images. The generated cloud mask within FORCE [53] allows the integration of
the cloud free parts of images with considerable cloud cover which otherwise would be withdrawn.
This is a very important advantage for temperate regions with frequent cloud cover and increases data
availability especially in the desired temporal frame.

The Sentinel-2 based updates increased the quality of the prediction maps in the consecutive years
for most VI based classifications. The fact that the OAA decreased for the subregion of Luxembourg (or
that an unexpected high accuracy for the 2014 mapping was revealed) can be attributed to the differing
number of validation points, which was substantially smaller in 2014. As a result, class proportions of
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map and validation data differed more than 30%. Because of that, the accuracy reports of Luxembourg
in 2014 have to be regarded under reservation.

6.3. Forest Type Mapping Based on Early Spring Derived Vegetation Indices

The essential factor for the VI based mapping of forest types is the phenological asynchrony of
broadleaved and coniferous forests. The bimodal distribution of extracted VI values of forest pixels
before leaf foliation in early spring (Figure 3) allows a straight distinction.

Topographic conditions as well as varying atmospheric and illumination conditions in the image
footprint were corrected in the preprocessing. Nevertheless, due to the low sun illumination angle
at the time of image acquisition, it is possible that residual effects persist in the image data. These
can be handled by the use of atmospherically resistant VIs. The fact that no improvement of the
mapping results was obtained is a good indicator for the effectiveness of the FORCE pre-processing
framework [51,53].

In evergreen coniferous forests, the background (soil, litter, ground vegetation) generally does
not affect the spectral signal because of dense crown cover. For broadleaved forests under leaf-off

condition, soil reflectance is usually not considerable due to leaves on the ground. Regarding the
usage of VIs for the distinction of forest types, different soil properties would very likely not have
any influence on the forest type differentiation, as the VI of uncovered soil is even smaller than for
broadleaved forest before leaf foliation. Not surprisingly, a soil-adjusting VI does not influence the
mapping result.

Effects of ground vegetation are minimal at the time of image acquisition in the very beginning of
the vegetation period [44]. However, blackberry (Rubus sectio) keeps the leaves through the winter,
thus it can have an influence on the spectral signal of broadleaved forests under leaf-off conditions. A
field-validation carried out in the forestry commission office of Bitburg in March 2018 showed widely
conforming maps to terrestrial observations. Wrong mapping due to ground vegetation was obtained
at very isolated places, where blackberries are prevalent in either less dense or poorly managed forests.
This case is mostly related to private forests and emphasizes the necessity to monitor also private forest
to support sustainable forest management.

Concerning the necessity of long-term observation of the forest, which is intended for the Greater
Region, the use of normalized ratio VIs with a fixed data range is better suited to ensure comparability.

6.4. Comparison to Copernicus HR-FTL

The Copernicus HR-FTL and the bootstrap-based mapping approach using early spring acquired
imagery reveal no meaningful difference regarding the proportional coverage of forest. Slightly higher
accuracies were obtained in most cases for the bootstrap-based mapping (Table 13), which is likely
owed to the higher ground resolution. Accuracy is expected to increase with more areas replaced at a
higher spatial resolution.

The absolute area retrieved from both maps, however, reveals differences, which are owed to the
coverage of each dataset: The HR-FTL also includes areas such as forest belts alongside roads and
streams or shrubby areas, which are not labeled as forest according to official survey borders.

A visual comparison of both maps (Figure 8) reveals the suitability and advantage of high spatial
resolution in our prediction maps. Likewise, the successive replacement of the base layer (Landsat
8 based) with a Sentinel-2 based layer is of advantage and increases the accuracy, especially for the
mapping in small structured forests (Figure 7). The HR-FTL is only updated every three years and the
map is available with a delay of at least one year, while the presented approach is able to provide annual
updates depending on data availability. Not less important is the fact that forest authorities would be
depending on Copernicus calls, third parties involved in mapping and missing data sovereignty.
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7. Conclusions

The presented approach is suitable for the regular generation of basic forest type information
layers. Apart from preparing and updating the forest information data, substantial parts of the
workflow can be implemented in automated processing frameworks. This assures operability for a
wider range of potential users, which are less familiar with the treatment of remote sensing data. The
transnational forest type map is a spatially and temporally consistent complementary layer, which
comprises multiple forest information sources. The objective of modern forest management, among
others a spatially explicit and temporal consistent description of attributes like forest type, can be
achieved routinely and timely by the combination of satellite imagery with reference data carrying
forest information.

Concerning the image properties, Sentinel-2 is the favorable option, revealing a considerable
upgrade regarding to the sole use of Landsat data or the Copernicus’ HR-FTL. Owed to that and to
the cloud mask, image data availability was substantially improved. The forest type information
layer is expected to be completely updated by using early spring satellite imagery within a period of
three years.

The application of early spring imagery is crucial for the distinction of forest types in temperate
regions based on VIs. The influence of different factors (atmosphere and topography, soil, ground
vegetation) is either very limited (soil, ground vegetation) or can successfully be eliminated during the
pre-processing chain (atmospheric and topographic effects), so that adjusted VIs are not required.

The provision of spatially explicit forest type maps is an important basis for further analysis,
for example the evaluation of forest type mixture, the more detailed satellite-based mapping of tree
species [20] or the regional stratified estimation of timber volume [68]. In addition, the generated
forest type information layer is a helpful tool for the optimal deployment of terrestrial inventories
and thus to assess and update the terrestrial information. This in turn can improve mapping in the
consecutive years.
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