
remote sensing  

Letter

Monitoring Harvesting by Time Series of Sentinel-1
SAR Data

Olena Kavats , Dmitriy Khramov , Kateryna Sergieieva * and Volodymyr Vasyliev

Earth Observing System, 1906 El Camino Real, Suite 201, Menlo Park, CA 94027, USA;
alyona.kavats@eosda.com (O.K.); dmitriy.hramov@eosda.com (D.K.); vladimir.vasiliev@eosda.com (V.V.)
* Correspondence: ekaterina.sergeeva@eosda.com; Tel.: +1-38-097-872-4944

Received: 19 September 2019; Accepted: 23 October 2019; Published: 25 October 2019
����������
�������

Abstract: Algorithm for determining crop harvesting dates based on time series of coherence and
backscattering coefficient (σ0) derived from Sentinel-1 single look complex (SLC) synthetic-aperture radar
(SAR) images is proposed. The algorithm allows the ability to monitor harvesting over large areas without
having to install additional sensors on agricultural machinery. Coherence between SAR images allows the
ability to track changes in field-scatterers configuration resulting from agricultural work. The proposed
algorithm finds a step-like increase in coherence that occurs after the harvesting and is related to the
conversion of a field into a bare soil area. An additional check of potential harvest dates is carried out
by threshold values of σ0 depending on vegetation height. The algorithm is adapted for the monitoring
of non-homogeneous fields with traces of erosion and insertions of fallow land. The algorithm was
tested on agricultural fields located in the north of Kazakhstan. The obtained accuracy (mean absolute
error = 6.5 days) of determining the dates of harvesting can be deemed satisfactory. This accuracy can be
increased by shortening the interval between observations from 12 to 6 days when using data from both
Sentinel-1 satellites.
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1. Introduction

Ground, unmanned aerial vehicle (UAV) and global positioning system (GPS) satellite observations
over the agricultural machinery are widely used for monitoring of harvesting [1,2]. Installation of various
sensors allows to monitor position, velocity and other meaningful parameters of harvesters in real time.
A necessary component of such monitoring systems is geoinformation system (GIS) enabling tracking
of harvesters’ operation within the boundaries of fields. A limitation of this approach is the high cost of
sensors installation, reception and processing of their readings as well as development and maintenance
of a special GIS.

An irreplaceable instrument in monitoring large areas of crops is satellite remote sensing data.
Freely available satellite data are attractive to farmers with low budgets in particular. For implementation
of the monitoring, it is necessary to cover the investigated area with the satellite data enabling reliable
detection of the fact of harvesting.

Analysis of the possibility of monitoring harvesting using optic sensor data showed that after
harvesting a striped texture appears with spatial dimensions corresponding to the swath of the harvester
(usually, 6 to 9 m) [3]. Such textures are reliably registered in high spatial resolution images (up to 10 m).
Raking of straw forms another texture related to a pattern of stacks or traces of their collection and removal
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from the field. The spatial scale of this texture is determined by the distance between rows of straw
stacks. Textures formed by the raking of straw are well discerned in medium-resolution images (30 m).
In low-resolution images, such as moderate resolution imaging spectroradiometer (MODIS) data, neither
of these textures are discernible.

Low-resolution satellite data can register a change in averaged values of reflection coefficients of the
field or vegetation indexes. Harvesting may either increase or decrease these values [3]. According to
Muratova et al. [3], quantitative characteristics of changes depend on the volume of plant biomass before
harvesting, the method of harvesting and the make of the harvester. As a result, time series of data from
low-resolution optic sensors are not suitable for determining dates of harvesting.

A number of works [4–7] are devoted to the determination of dates of phenological phases change
with the use of a time series of optic sensors data. By determining the moment of the end of the vegetation
season (EOS, the end of the growing season) related to the ripening of plants, it is possible to forecast the
time of harvesting. However, it is impossible to detect harvesting using this approach.

Thus, for detection of harvested fields, it is preferable to use optical data of medium and high
resolution (5 to 10 m). The monitoring of harvesting with such images is concerned with the problem
that is inevitably linked to limitations of cloud cover. A possibility of observation irrespective of clouds is
provided by radar data.

Spaceborne radar imaging provides valuable information about the condition of the earth’s surface,
in particular, vegetation cover. The main advantage of radar data in comparison with the data from optical
sensors is independence from cloudiness and solar illumination of the surface area under consideration.
Independency from cloud cover allows for reliable image acquisitions at regular intervals which is decisive
for agricultural applications.

Synthetic-aperture radar (SAR) image is based on peculiarities of backscattering of the emitted radar
signal by surfaces of different kinds [8]. The radar backscattering coefficient σ0 (“sigma nought”) is
a fraction which describes the amount of average backscattered power compared to the power of the
incident field [9]. The value of σ0 is a function of the radar observation parameters: frequency, polarization,
incidence angle of the emitted electromagnetic waves; physical (roughness and the area relief) and dielectric
properties of the investigated surface [9,10].

When treated in terms of agricultural problems, plantations of agricultural crops and open ploughed
soil function as a surface [8,11,12]. The resulting intensity of the radar signal reflection is influenced
by biophysical characteristics of the vegetation, such as sowing density, stalks height, and the size and
position of leaves. Since observation is conducted with a significant angle of deviation from nadir, σ0 value
is affected even by the direction of ploughing. Thus, a complex character of interaction between the radar
signal and the surface is a challenge for a modern researcher in terms of interpretation of the investigated
field state.

A simple “cloud” model that provides a clue for understanding the relationships between σ0 and the
state of soil and vegetation was developed in the late 1970s [13]. The possibilities of using SAR data for
agricultural applications were actively studied in the late 1980s.

Considering the related literature review [8,10,11], most published works devoted to the monitoring
of vegetation with the use of radar, characterize the interaction of the signal with the surface by
the backscattering coefficient σ0. Recent publications [14–16] also use σ0 as the main indicator of plants
state. Interpretation of the σ0 time series from the point of view of events occurring in the field yields
ambiguous results: An increase in σ0 can be caused by growth of plants, precipitation or cultivation of
soil [15,16]. For eliminating this ambiguity, additional data should be involved, for instance, information
on precipitation.

Valuable information about the vegetation state can be obtained from coherence [17]. Coherence is
the modulus of the complex coefficient related to correlation between two single look complex (SLC)
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images containing information on the amplitude and phase of the radar signal. Coherence will be high
when two interfering images reveal the same or almost the same interaction with the scattering surface.
Change of σ0 at high coherence of images indicates change of dielectric permittivity of the surface at
unchanged layout of scatterers in the field [18,19] (for instance, because of increased moisture in the soil
due to precipitation). On the other hand, stable values of σ0 accompanied by low coherence indicate a
change in configuration of scatterers. This can result from the field tillage or harvesting—agricultural
operations which change the state of the soil upper layer or the vegetation cover but produce little influence
on dielectric properties of the soil.

Combined use of σ0 and coherence for monitoring of vegetation is analyzed in a relatively small
number of works [18–23]. Snapir et al. [21] describes detection of harvested tea fields with the use of
coherence. According to Khabbazan et al. [23], the sudden increase in coherence is a useful indicator of
harvest. Kavats et al. [22] considers a possibility to detect sowing and harvesting dates with the use of
time series of σ0 and coherence.

The present paper aims to develop results of the [22] research by proposing the method for detection
of the harvesting end date. The idea of the proposed method is based on the property of radar images
coherence. The periods when fields are covered with thick vegetation or when agricultural works are
performed on them, are characterized by low coherence. On the contrary, a harvested field can be
considered as an area of bare land or rarefied vegetation, for which high coherence is typical. Thus, the
end of harvesting on a field is accompanied by an abrupt increase in coherence. This moment is proposed
for detection.

2. Materials and Methods

2.1. Study Area

Study area is located in northern Kazakhstan in the Aqmola and Qostanay Oblasts (Figure 1).
Kazakhstan is one of the world’s largest exporters of wheat (the 10th place in 2018, 2.3% of world
exports) [24]. The main wheat sown areas are located in the northern part of the country, in Aqmola
and Qostanay Oblasts. In 2018, 74% of sown areas in Aqmola Oblast and 67% in Qostanay Oblast
were cultivated with wheat [25]. The climate of northern Kazakhstan is harsh continental with an
average temperature from −19 ◦C to −4 ◦C in January and from +19 ◦C to +26 ◦C in July. In winter,
the temperature may fall to −45 ◦C, and in summer it is up to +30 ◦C. Due to harsh winters, spring
crops dominate in northern Kazakhstan [26]. The main crops are spring cereals, among which wheat
predominates. According to the crop calendar, sowing in study areas occurs in the second half of May, and
harvesting is in August–September [26].

A characteristic peculiarity of the observed areas is their heterogeneity caused by erosion of soil,
presence of fragments of lea and fallow and the presence of weed vegetation and inaccuracies of
delimitation (Figure 2).
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Figure 1. Location of the study area.

Figure 2. Example of a heterogeneous field (Sentinel-2 satellite image, date of acquisition
26 September 2018).

2.2. Harvesting Dates

Harvesting dates in the areas were initially determined by visual decoding of Sentinel-2 and Landsat-8
images obtained from the EOS land viewer service [27]. Observation periodicity by Sentinel-2 satellites in
the area under consideration was about 3 days. For testing, we selected the fields whose images present
the complete process of harvesting––from beginning to end. The date of the last image was deemed to
mark the end of harvesting (Figure 3). Thus, the error of harvesting date detection does not exceed 3 days,
and sometimes even less—due to Landsat-8 images. As a result, the algorithm quality was tested on a
sample of 77 fields located in Aqmola and Qostanay Oblasts.
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Figure 3. Example of a harvested field (Sentinel-2 satellite image).

2.3. Satellite Data

Time series of Sentinel-1B SLC Interferometric Wide (IW) images (relative orbit 20, slice 4, swath IW2)
were used to detect harvesting over the study area. Images were sensed every 12 days from 1 May 2018 to
28 October 2018 (image of 5 August 2018 is absent) and were taken from Copernicus Open AccessHub [28].

Harvesting is performed in the generative period of a plants development. This period can be detected
by the reduction of the normalized difference vegetation index (NDVI) in the field to a particular level
of the maximum seasonal values achieved at the peak of plants vegetation. NDVI time series were built
based on the 8 day MOD09Q1 composites [29]. Images for the period 7 April 2018–1 November 2018
were used.

For estimating the changes of σ0 due to precipitation, global precipitation measurement (GPM)
data were used, namely integrated multi-satellite retrievals for GPM (IMERG) with a 30 min period of
precipitation accumulation [30]. The interval of observations were 27 April 2018–November 2018. Data on
precipitation in liquid and mixed phases were used. A structural diagram presenting all data sources and
work flows of this approach is presented in Section 3 (Figure 5).

2.4. Processing

The backscattering coefficient σ0 and coherence were computed with European Space Agency (ESA)
Sentinel Application Platform (SNAP) software v. 6.0 [31]. Computing was automated with Graph
Processing Tool (GPT) and bash scripts (Figure 4).

The MOD09Q1 images were downloaded and processed with instruments of the MODIStsp
library [32] in the R package [33]. Time series of NDVI averaged over the area were built and smoothened
with spline interpolation (smooth.spline function).

If, according to GPM IMERG Late data, precipitation of over 2 mm occurred up to 12 h before
imaging, σ0 values of the respective date were considered unusable and were replaced by means of
linear interpolation.
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Figure 4. Data processing chain of Sentinel-1 radar images.

2.5. Control Points

To reduce the influence of row-spacing and inaccuracies of delimitation, a 15 m wide internal buffer
zone was built around each field. For obtaining homogeneous fragments, control points were chosen
randomly (spsample function of the sp package, option “stratified” [34]) inside the field and buffers of
100 m in radius were built around them. At least 30 such points were chosen for each field.

2.6. Monitoring Period

Spring cereal crops—mainly, wheat—prevail in the considered areas. For determining the time
of the monitoring commencement, the date of NDVI maximum was registered, which approximately
corresponds to the period of earing/flowering of the plants. This phase lasts for 7–10 days [35], then the
ripening of the grains begins. Basing on the estimations of the ripening period beginning obtained with
the use of NDVI, the gathering of radar data began on 1 August for the purpose of obtaining at least two
coherence maps by the beginning of harvesting. The 2018 harvesting campaign in the considered region
started at the beginning of September.

2.7. Accuracy Assessment

The errors in detecting the harvesting dates were estimated by mean absolute error (MAE) and root
mean square error (RMSE),

MAE =
1
n

n

∑
i=1
|xi − x̂i|, (1)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)2, (2)

where n–number of plots; xi–known date of harvesting the i-th plot; x̂i–date of harvesting the i-th plot
determined by the algorithm.
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3. Proposed Algorithm

For observation of harvesting, σ0 time series in vertical transmit and horizontal receive
(VH) polarization (σ0

VH) were used, because of the known high correlation between scattering in
cross-polarization and indicators of the state of the plants’, such as leaf area index (LAI) [36,37]. Also VH
backscatter is in general more sensitive to vegetation volume scattering [15]. Coherence maps were built for
the vertical transmit and vertical receive (VV) polarization (CVV), because coherence in the VH polarization
proved to be less sensitive to the changes occurring in the field [22].

Time series of averaged values σ0
VH and CVV were built for each control point.

The stages of the algorithm are shown in Figure 5.

Figure 5. Stages of the algorithm for determining the date of a field harvesting.

The key stage of the algorithm is the determination of the date of harvesting completion for a
control point. Strictly speaking, the creation of a control point relates to the specific implementation of
the algorithm for the territory of North Kazakhstan. Estimations carried out previously for Ukraine in
Kavats et al. [22] showed that, in homogeneous areas, the choice of control points is not necessary, and
values of σ0 and coherence averaged over an area suffice. Thus, for homogeneous fields, the control point
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is the entire field. Further, NDVI time series help to more accurately determine the moment of observations
commencement and thus save computing resources, but the use of these series is not compulsory.

Determination of the harvesting date for a control point includes:

1. Registration of harvesting completion dates by changes in coherence;
2. Filtering of false triggering by the threshold values of σ0.

Let us consider how the harvesting end dates are searched for by changes in the coherence time
series (Figures 6 and 7). Soybean and sunflower fields were chosen as a good example of determining the
harvesting end dates.

Observations showed that the coherence time series in the period of ripening behaves in one of the
following ways [22]:

1. Coherence is gradually increasing as the plants are ripening and drying out (Figure 6,
5 August–10 September 2018). Then, coherence drops, typically, during the period of harvesting
(Figure 6, 10–22 September 2018). After that, coherence is growing again (Figure 6,
22 September–4 October 2018). In particular, such behavior is observed in row crops.

2. Coherence remains practically unchanged and low, and then increases abruptly (Figure 7, 20 June–12
September 2016). Subsequent growth of coherence (Figure 7, 12–24 September 2016) is related to the
end of harvesting.

Figure 6. Example of vertical receive (VV) coherence time series and its first differences (dC) for sunflower
fields (Ukraine), harvesting: 10–22 September 2018.
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Figure 7. Examples of VV coherence time series and its first differences (dC) for soybean fields (Ukraine),
harvesting: 31 August–12 September 2016.

Figure 8 illustrates the general pattern of coherence changes during the cereals harvesting period.
The coherence is high before harvesting (Figure 8a,b), then steeply decreases to the minimum values
during the harvesting (Figure 8c) and increases again when agricultural field is harvested (Figure 8d).
The flowchart of harvesting date determining for a control point is shown in Figure 9.

Let Ci be an i-th coherence map and n–the total number of such maps. Let us calculate the differences
of coherence ∆Ci and determine the trend DCi of their change. We will choose such a threshold ε that at
changes of Ci within the range [−ε; ε] the coherence is deemed constant (DCi = 0).

∆Ci = Ci+1 − Ci, i = 1, . . . , n− 1,

DCi =


0, |∆Ci| ≤ ε,
1, ∆Ci > ε,
−1, ∆Ci < −ε.

(3)

Harvesting corresponds to a drop of coherence (DCi = −1) or unchanged coherence (DCi = 0) in
comparison with the previous period. After the harvesting, coherence should grow (DCi = 1). Thus,
harvesting corresponds to transitions DCi → DCi+1: 0→ 1 or −1→ 1. Introducing second differences
D2Ci = DCi+1 −DCi, we will write the condition for the change of coherence corresponding to harvesting

D2Ci = 1 & DCi+1 = 1,

D2Ci = 2.
(4)

Note that transition DCi → DCi+1 from −1 to 0 also yields D2Ci = 1. In some cases, this moment can
correspond to the beginning of harvesting, but not to its end. Therefore, an additional check is introduced:
the second date in the DCi → DCi+1 transition should satisfy the condition of DCi+1 = 1.
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Figure 8. The general pattern of VV coherence changes during the cereals harvesting period (Kazakhstan),
harvesting: 23 Augus–4 September 2019.

After checking conditions (Equation (4)), one or several possible dates of harvesting are assigned to
each control point. The next step is checking these dates by the threshold values of σ0–the threshold of
dense vegetation (SVH,th1) and the threshold of bare soil (SVH,th2). If, at a given control point on a verified
date, the vegetation remained sufficiently dense (σ0 > SVH,th1), this jump of coherence is not considered
as related to harvesting. Such date is excluded from the list of possible harvesting dates. If, upon a given
date, the field has been harvested to the state of bare soil (σ0 < SVH,th2), then check of subsequent dates
becomes unnecessary.

The earliest of the dates which remained in the list after checking is assumed to be the date of the end
of harvesting at a given control point. Later dates may be related to works after harvesting, for instance,
disk harrowing.

A conclusion about the harvesting date of the whole area is made after achievement of a particular
threshold of the number of harvested control points. For instance, if 70% of points have been harvested by
a given date, the area has been harvested. Thus, the last parameter of the algorithm is f hth—the share of
the control points that obtained harvesting dates, which is sufficient for considering the area harvested.
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Figure 9. Flowchart of harvesting date determining for a control point.

4. Results and Discussion

The algorithm results are demonstrated by the example of grain crops harvesting in Fyodorov District
of Qostanay Oblast. It was found that agricultural fields were harvested from August to October 2018.
The harvesting dates (3 August 2018, 15 August 2018, 21 August 2018, 8 September 2018, 20 September
2018, 2 October 2018, 14 October 2018) correspond to Sentinel-1 sensing dates (Figure 10).

Harvesting monitoring was carried out for 1920 fields with a total area of 471,903 ha. Among them,
221 fields are defined as non-harvestable (vapors, pastures, hayfields, etc.), and 51 fields were not
harvested—class “other” in Figure 10. By mid-October, 1648 fields with a total area of 395,877 ha were
harvested, including by month:

• in August—572 fields.
• in September—1010 fields.
• in October—66 fields.

The harvesting completion dates were computed with the following parameters of the algorithm:
ε = 0.03, SVH,th1 = −21 dB, SVH,th2 = −25 dB, f hth = 70%. Beginning of the monitoring: 1 August 2018,
end of the monitoring: 1 November 2018.

The accuracy assessment gave the following error values: MAE = 6.5 days, RMSE = 8.0 days.
The following particularities of σ0 and coherence time series, typical for grain crops in the north of

Kazakhstan, were taken into account when searching for harvesting end dates:

• CVV is low at least in one of the first sensing dates (sometimes in two or three dates). This allows the
ability to determine the beginning of sowing period and presowing treatment.

• The last of the low CVV values at the beginning of the growing season corresponds to sowing.
After sowing CVV increases abruptly.
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• The maximum σ0
VH values during the growing season are from −16 to −18 dB.

• High CVV values (>0.4) are possible during the growing season, and cannot be explained by incidence
angle effect (the incidence angle would affect the average coherence during the entire season).
Such fields contain sparse vegetation and/or row crops with wide planting distances.

• As a rule, no more than one alternation of low-high CVV with a small amplitude is observed for grain
crops during plant growth. The decrease in CVV down to 0.3 disrupting a smooth U-trend during the
growing season is caused by soil cultivation. Coherence never decreases to an open soil level of 0.25.

Figure 10. The cartogram of harvesting of areas in Fyodorov District of Qostanay Oblast (the Republic
of Kazakhstan), 2018.

The main factor influencing the accuracy of harvesting completion dates computation is the imaging
periodicity of Sentinel-1 satellites. Currently, the revisiting period is 12 days (the study area is fully covered
by Sentinel-1B satellite data). The accuracy can be increased by reducing the interval between imaging
from 12 to 6 days owing to involvement of data from both Sentinel-1 satellites. However, judging by the
archive data and imaging schedules [38], this is an unlikely option in the studied area.

It should be noted that the dates of harvesting for the investigated agricultural fields were obtained
by visual interpreting and, therefore, they can differ from the actual harvesting dates by 1 to 3 days, which
is related to the periodicity of imaging by satellites Sentinel-2A, B and Landsat-8, and to the presence
of cloudiness.

Coherence is usually high after harvesting [23]. However agrotechnical works, which are
accomplished soon after harvesting and cause changes of the soil upper layer, decrease coherence and
are registered by the algorithm as a part of harvesting works. For instance, if, in the 12 day interval after
harvesting, disk harrowing is done, the date of disking is registered as the date of harvesting. Thereby the
harvesting end date determined by the algorithm will be later than the actual harvesting end date. An
increase in frequency of imaging could help to solve this problem.

It can be assumed that MAE is equal to the half interval between sensing dates (6 days). However,
considering the above, the obtained accuracy of the harvesting date determination can be regarded
as satisfactory.

Omissions of individual images and periodic planned omissions of whole relative orbits represent
a problem for monitoring. Omission of a single image in a time series in the period of ripening can
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substantially reduce accuracy of harvesting completion date determination. This brings about a problem
of the omitted images interpolation. Linear interpolation of the coherence results in missing the jumps of
coherence, while step interpolation causes false triggering of the algorithm. In our case, step interpolation
was used for filling-in the omitted coherence values on 5 August 2018. Cases of false triggering were
removed via checking by the SVH,th1 threshold. For filling-in omissions of σ0, a linear interpolation
was used.

The coherence may increase steeply before harvesting. Presumably, they are related to vegetation
water content (VWC) decrease and leafage area reduction [14,15,23]. False triggering of the algorithm in
such cases is prevented by checking σ0 (SVH,th1) values.

Sometimes harvesting end date could not be found because the coherence increases too slightly after
harvesting. Such cases were related to the fields, whose dates of harvesting were supposed to be found
by the algorithm on 22 September 2018. It may have been the result of a heavy rain observed on that
day, according to the GPM IMERG data, shortly before sensing. Presumably, the rain caused decrease
of coherence (a similar effect is reported in [23]), which made it impossible to register its steep increase
expected after the end of harvesting. The effect of rains on the σ0 is well-known [16,39], however, their
influence on the coherence is less pronounced. This case requires additional research.

The algorithm can be improved in several ways. Additional harvesting features can be obtained using
surface texture characteristics [16]. Clustering using NDVI or other features derived from optical data
seems to be a more advanced way to detect homogeneous fragments within an agricultural field.

5. Conclusions

An algorithm of harvesting completion dates determination by time series of σ0 and coherence is
proposed. The algorithm registers a step-like growth of coherence which appears after harvesting and is
related to the field transformation into the area of bare land. Harvesting potential dates are additionally
verified by σ0 value.

The algorithm is adapted for monitoring of non-homogeneous fields (with marks of erosion and
fragments of fallow land). For this purpose, it is proposed to determine the date of harvesting of small
homogenous parts within the field (control points) and to decide upon the date of the field harvesting
by the date of harvesting most of such parts of the field. For homogeneous fields, time series of σ0 and
coherence averaged over the field are used.

Errors in determining the harvesting completion dates are: MAE = 6.5 days, RMSE = 8.0 days.
Omissions in the time series of Sentinel-1 SLC IW data corresponding to the period of ripening reduce

accuracy of determining the date of harvesting completion. Increase in the accuracy can be achieved by
shortening the interval between acquisitions of images from 12 to 6 days by using both Sentinel-1 satellites.

The proposed algorithm is used by the Earth Observing System company.
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Abbreviations

The following abbreviations are used in this manuscript:

ESA European Space Agency
GIS Geoinformation system
GPM Global Precipitation Measurement
GPS Global Positioning System
GPT Graph Processing Tool
IMERG Integrated Multi-satellitE Retrievals for GPM
IW Interferometric Wide
LAI Leaf area index
MAE Mean absolute error
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
RMSE Root Mean Square Error
SLC Single Look Complex
SNAP Sentinel Application Platform
UAV Unmanned aerial vehicle
VH Vertical transmit and horizontal receive
VV Vertical transmit and vertical receive
VWC Vegetation water content
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