
remote sensing  

Article

Evaluation of UAV LiDAR for Mapping
Coastal Environments

Yi-Chun Lin 1 , Yi-Ting Cheng 1, Tian Zhou 1, Radhika Ravi 1 ,
Seyyed Meghdad Hasheminasab 1 , John Evan Flatt 1 , Cary Troy 1 and Ayman Habib 1,2,*

1 Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA;
lin934@purdue.edu (Y.-C.L.); cheng331@purdue.edu (Y.-T.C.); zhou732@purdue.edu (T.Z.);
ravi22@purdue.edu (R.R.); hashemin@purdue.edu (S.M.H.); flatt@purdue.edu (J.E.F.);
troy@purdue.edu (C.T.)

2 Civil Engineering Center for Applications of UAS for a Sustainable Environment (CE-CAUSE), Lyles School
of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

* Correspondence: ahabib@purdue.edu; Tel.: +1-765-496-0173

Received: 8 November 2019; Accepted: 2 December 2019; Published: 4 December 2019
����������
�������

Abstract: Unmanned Aerial Vehicle (UAV)-based remote sensing techniques have demonstrated great
potential for monitoring rapid shoreline changes. With image-based approaches utilizing Structure
from Motion (SfM), high-resolution Digital Surface Models (DSM), and orthophotos can be generated
efficiently using UAV imagery. However, image-based mapping yields relatively poor results in
low textured areas as compared to those from LiDAR. This study demonstrates the applicability
of UAV LiDAR for mapping coastal environments. A custom-built UAV-based mobile mapping
system is used to simultaneously collect LiDAR and imagery data. The quality of LiDAR, as well as
image-based point clouds, are investigated and compared over different geomorphic environments in
terms of their point density, relative and absolute accuracy, and area coverage. The results suggest that
both UAV LiDAR and image-based techniques provide high-resolution and high-quality topographic
data, and the point clouds generated by both techniques are compatible within a 5 to 10 cm range.
UAV LiDAR has a clear advantage in terms of large and uniform ground coverage over different
geomorphic environments, higher point density, and ability to penetrate through vegetation to
capture points below the canopy. Furthermore, UAV LiDAR-based data acquisitions are assessed for
their applicability in monitoring shoreline changes over two actively eroding sandy beaches along
southern Lake Michigan, Dune Acres, and Beverly Shores, through repeated field surveys. The results
indicate a considerable volume loss and ridge point retreat over an extended period of one year
(May 2018 to May 2019) as well as a short storm-induced period of one month (November 2018 to
December 2018). The foredune ridge recession ranges from 0 m to 9 m. The average volume loss
at Dune Acres is 18.2 cubic meters per meter and 12.2 cubic meters per meter within the one-year
period and storm-induced period, respectively, highlighting the importance of episodic events in
coastline changes. The average volume loss at Beverly Shores is 2.8 cubic meters per meter and 2.6
cubic meters per meter within the survey period and storm-induced period, respectively.

Keywords: shoreline; erosion; unmanned aerial vehicles; LiDAR; point clouds; structure from motion

1. Introduction

Coastal erosion can cause significant damages to buildings, infrastructure, utilities, and ecosystems,
and mitigating its effect has become increasingly important, especially considering recent climate
change manifestations. A well-developed understanding of complex shoreline movement, i.e., their
spatial distribution at local, regional, and national scale, as well as their temporal distribution at
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event-, seasonal-, and decadal-scale, serves as the foundation for effective coastal management. To
meet the increasing demand for accurate and recurrent monitoring of coastal change, remote sensing
techniques are showing superior performance compared to the conventional time and labor-intensive
field survey. A wide range of remote sensing techniques have been used to monitor coastal changes,
including satellite imagery, aerial photography, Synthetic Aperture Radar (SAR), ground-penetrating
radar, airborne and terrestrial LiDAR, and most recently, Unmanned Aerial Vehicles (UAV) imagery.
In particular, terrestrial LiDAR and UAV photogrammetry can rapidly acquire topographic data with a
spatial and temporal resolution that was previously unachievable, which has led to significant advances
in understanding complex erosion processes [1–4]. While UAV surveys have a clear advantage in
terms of low-cost equipment, rapid survey time, and ease of deployment, terrestrial LiDAR has been
proven to produce more reliable surface representation in complex geomorphic environments [2,4].

In this paper, we describe the development, evaluation, and application of a UAV-based mobile
mapping system equipped with high-resolution topographic LiDAR, Red-Green-Blue (RGB) imaging
system, and an integrated Global Navigation Satellite System/Inertial Navigation System (GNSS/INS).
The system went through a rigorous system calibration, which is crucial for direct georeferencing,
reconstructing accurate LiDAR point clouds, and integrating 3D point clouds with 2D imagery. Field
surveys were conducted on Dana Island, Turkey, and along the Indiana beaches of southern Lake Michigan,
USA. The former contains a range of topographies and vegetation types, while the latter is an actively
eroding beach. This study first demonstrates the ability of UAV LiDAR for mapping coastal environments
by evaluating the quality of UAV LiDAR point clouds and comparing it with UAV image-based point
clouds using the Dana Island datasets. The capability of UAV LiDAR for quantifying rapid coastal
changes at seasonal- and event-scale is further investigated using the Lake Michigan datasets. This paper
starts with a review of the remote sensing techniques used for coastal monitoring. We then describe
the UAV-based mobile mapping system, along with an introduction of the study sites and field surveys.
Further, we discuss the methodology adopted for assessing the quality of UAV LiDAR point clouds,
followed by comparison against UAV photogrammetry, and quantitative estimation of shoreline change.
Finally, we present the conclusions of this study and recommendations for future work.

2. Related Work

Remote sensing has been the dominant source of geospatial information for detecting and
monitoring coastline changes over time, of which the most common techniques include satellite
imagery, aerial photography, airborne LiDAR, terrestrial LiDAR, and UAV photogrammetry. These
techniques can be categorized into those which provide 2D planimetric data (i.e., ortho-rectified
imagery), and those which reconstruct 3D topographic data (i.e., LiDAR and photogrammetric point
clouds). Table 1 summarizes these techniques while listing their merits and shortcomings, as well as
reporting their spatial resolution and accuracy. This section reviews the remote sensing techniques that
have been used for mapping coastal environments. The discussion begins with satellite imagery and
aerial photography, followed by LiDAR technology and photogrammetry, and ultimately, emphasizes
the recent development of ground-based and UAV-based LiDAR and photogrammetry.

Ortho-rectified satellite imagery and aerial photography provide planimetric data, which uses a 2D
simplification to represent a 3D erosion process. Most data providers deliver georeferenced and rectified
images that are ready for end-users to perform spatial analyses. Such datasets typically have large spatial
coverage and relatively long time-lapse, and therefore are ideal for regional, long-term analyses. Deis
et al. [5] used aerial images of northern Barataria Bay, Louisiana, from 1998 to 2013 to determine marsh
shoreline retreat during the period between Hurricane Katrina and the Deepwater Horizon oil spill.
Eulie et al. [6] used heads-up-digitized aerial photos to quantify sediment accumulation and shoreline
change over one decade (1998–2007) in the Tar-Pamlico estuary, North Carolina. In addition to planimetric
positional information, satellite images and aerial photos also provide multispectral or hyperspectral data,
which allows users to further identify or classify ground features. Rangel-Buitrago et al. [7] incorporated
multiple sources of satellite images and aerial photos to quantify coastal erosion along the Caribbean
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coast of Colombia. In their research, the water line, which serves as an indicator of the shoreline position,
was differentiated and digitized using the infrared band of each image. Despite being the most common
data source for shoreline monitoring, imagery data suffers from lack of vertical information and has a
relatively coarse spatial resolution; thus resulting in a crude and potentially inaccurate indication of the
erosion process that restricts its applications at a local scale.

LiDAR technology is an active remote sensing technique capable of mapping 3D topography of the
landscape. Point clouds captured by laser scanners provide a detailed description of the terrain. However,
due to its uneven distribution, a re-gridding and interpolation process is usually carried out to generate a
Digital Surface Model (DSM). The information loss resulting from such rasterization has a major impact on
the achieved accuracy of DSM [8,9]. Over the years, airborne LiDAR data has been a standard topographic
product for coastal mapping and has been widely used by the community of geoscientists. Obu et al. [10]
used airborne LiDAR datasets captured repetitively over a period of one year to study coastal erosion and
volumetric change, together with the accompanying geomorphic process. Tamura et al. [11] integrated
topographic data obtained by airborne LiDAR and Real-Time Kinematic Global Navigation Satellite
Systems (RTK-GNSS) survey along with stratigraphy data collected by ground-penetrating radar to
conduct a high-precision morphostratigraphic analysis of beach ridge evolution. Other studies integrated
LiDAR-based DSM with satellite images or aerial photos. The elevation information from DSM facilitated
the extraction of urban features (like buildings) and thus, improved the accuracy of coastal mapping [12,13].
In addition to 3D topography, airborne LiDAR is also currently the best technique to obtain bathymetric
data, which is crucial to coastal science but challenging to acquire through conventional terrestrial field
surveys or boat-based acoustic hydrographic surveys. Launeau et al. [14] used full-waveform LiDAR
data to map the bathymetry of the sea bottom in moderately turbid bays. In the United States, the Army
Corps of Engineers (USACE) utilizes Coastal Zone Mapping and Imaging LiDAR System (CZMIL) to map
coastal zone bathymetry, topography, and other properties [15,16]. The U.S. Geological Survey (USGS) has
taken advantage of these new techniques to conduct shoreline change assessment with success [17–19].
Current studies concluded that the most restricting factor of LiDAR bathymetry is water clarity [14,16]
and thus, it is important to conduct the flight during tidal and current conditions that minimize the
water turbidity. Considering weather conditions, as well as budget restrictions, manned aircraft-based
coastal surveys cannot be carried out frequently, thus preventing the quantification of coastal response to
individual storms and rapid water level fluctuations. As the technology evolves, satellite-borne LiDAR is
now a new option for mapping underwater bathymetry. In September 2018, NASA’s Ice, Cloud, and
Land Elevation Satellite-2 (ICESat-2) was launched. The instrument carried on the satellite—Advanced
Topographic Laser Altimeter System (ATLAS)—shows the potential to map bathymetry. Early on-orbit
validation of ICESat-2 bathymetry and quantification of the bathymetric mapping performance can be
found in Parrish et al. [20].

Increasing deployment of terrestrial LiDAR for coastal erosion monitoring has been seen in the
past decade. Terrestrial LiDAR offers a significant improvement in the spatial resolution and accuracy
of topographic data over airborne platforms. Smith et al. [21] presented measurements of blowout
topography obtained with annual terrestrial LiDAR surveys carried out over a three-year period. With
a 10 mm total propagated positional error, they were able to measure rim displacements smaller than 1
meter. Attributed to the nature of laser scanning, LiDAR has the ability to penetrate vegetation and
report elevation below the canopy. Several studies suggested that terrestrial LiDAR provides a suitable
representation of the ground surface in vegetated coastal dunes [21,22]. Although the spatial resolution
of terrestrial LiDAR data is much higher than airborne data, the point density decreases considerably as
the scanner-to-object distance increases. Obtaining a dense point cloud over the entire area of interest
often requires multiple stations for the terrestrial LiDAR to be placed for scanning. A registration
process is required to align the individual scans to a common mapping frame, which involves surveying
several Ground Control Points (GCPs) or manually selecting tie points from overlapping point clouds.
Considering the increased time of field survey and data processing, terrestrial LiDAR surveys are
typically focused on a specific area of concern as wider-scale analyses are not practical.
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Table 1. Merits, shortcomings, spatial resolution, and accuracy of currently existing remote sensing techniques used for coastal monitoring.

Technique Pros Cons Spatial Resolution Accuracy Example References

Satellite imagery

• Large spatial coverage
• High revisit frequency
• Long-term data available
• Multispectral/hyperspectral

data available

• Publicly available data is of
lower resolution

• High-resolution imagery is
often costly

0.46 m 2 2 m 2 [7,20]

Aerial photography

• Large spatial coverage
• Long-term data available
• Multispectral/hyperspectral

data available

• Expensive to
conduct surveys 1 m 3 6 m 3 [5,6,12,13]

Airborne LiDAR

• Direct topographic and
bathymetric reconstruction

• Large spatial coverage

• Survey interval limited by
cost and weather condition 1 m 4 Horizontal 0.50 m

Vertical 0.15 m 4 [10–19]

Terrestrial LiDAR

• High-resolution, precise 3D
topographic data

• Realistic surface model over
• vegetated areas

• High purchase cost
• Poor portability/scalability
• Survey GCPs 1 necessary for

registering several scans

Higher than 0.1 m 5 Centimeter-level
0.02–0.05 m [21,22]

UAV photogrammetry

• High-resolution, precise 3D
topographic data

• Low-cost equipment
• Minimal survey time and

ease of deployment

• Survey GCPs necessary for
georeferencing if no
GNSS/INS onboard

• Relatively poor accuracy of
the derived 3D models over
texture-less surface

Higher than 0.1 m 5 Centimeter-level
0.02–0.05 m [23–32]

1 Ground control points; 2 WorldView-2 [33,34]; 3 National Agriculture Imagery Program (NAIP) imagery [35]; 4 USACE airborne LiDAR [15,16]; 5 Based on point density.
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Photogrammetry is another well-established technique for 3D topographic mapping. The recent
developments in photogrammetric mapping and computer vision led to the emergence of Structure
from Motion (SfM). SfM allows fine-resolution 3D reconstruction using overlapping images from
consumer-grade cameras, and thus opens the gate to an affordable image-based 3D topographic
mapping. UAV imagery is of particular interest for its low-cost, maneuverability, and efficient field
surveys. A wide range of commercial and open-source tools (e.g., Pix4D, PhotoScan, DroneDeploy,
OpenDroneMap, Regard3D, Meshroom, and COLMAP) enable end-users, without requiring a high
level of expertise, to generate high-resolution, high-quality DSMs and orthophotos. These advantages
have stimulated a wide range of geoscientists to use image-based techniques as a key tool in generating
3D models [1]. With the help of several GCPs, DSMs and orthophotos generated from UAV imagery can
be geo-referenced to a global mapping frame. This workflow has been adopted by several studies for
quantifying shoreline movement [23–27]. Moreover, UAV photogrammetry produces both 3D DSMs
and 2D orthophotos, which can be easily integrated with other 3D or 2D topographic data. For instance,
Mateos et al. [28] combined aerial imagery, UAV imagery, and Persistent Scatterer Interferometric
Synthetic Aperture Radar (PSInSAR) for monitoring coastal landslide. Nahon et al. [29] operated a
UAV and a terrestrial mobile laser scanning vehicle simultaneously, and used UAV images to observe
an optical target, which serves as a kinematic ground control point on the vehicle. By doing this, the
number of GCPs can be reduced and it is possible to carry out a single pass survey.

Several studies have compared close-range photogrammetry and UAV-based SfM products with
LiDAR, RTK-GNSS, and total station surveys [2–4,30–32]. Compared to terrestrial LiDAR, UAV
surveys have a clear advantage in terms of low-cost equipment, rapid survey time, ease of deployment,
and fewer limitations for field survey [2,30]. The resolution and accuracy of SfM are comparable to
terrestrial LiDAR in general, and both techniques exhibit a good degree of agreement with GNSS
ground truths [2,3]. However, UAV photogrammetry is more sensitive to environmental conditions
due to the difficulty in reconstructing 3D surfaces using image-based methods in areas with low
texture. Studies have pointed out the lack of quality assessment for UAV photogrammetry in different
geomorphic environments [2,3]. Guisado-Pintado et al. [4] assessed the applicability, limitations, and
effectiveness of terrestrial LiDAR and UAV SfM techniques when used over a complex beach-dune
system. Their results showed that in complex vegetated areas, differences among terrestrial LiDAR and
UAV SfM derived surfaces can vary considerably, indicating that both environmental and technical
factors are responsible. Studies utilizing wheel-based or UAV-based mobile LiDAR are relatively rare.
Elsner et al. [31] compared UAV SfM with wheel-based mobile LiDAR and airborne LiDAR over six
different surface types. Their results suggested that UAV point clouds were consistently higher than
those obtained by mobile LiDAR and airborne LiDAR. A consistent vertical offset of 6 to 9 cm was
observed and the variation of elevation differences was observed to be related to surface properties.
Similar findings were reported in Shaw et al. [32], where UAV photogrammetry was compared against
UAV LiDAR. The results showed that image-based surfaces had a significant positive bias of 4 to
9 cm when compared to the GNSS ground truth, while LiDAR surfaces were consistent with the
ground truth. To conclude, LiDAR provides more realistic surface models in general. The surface
models derived from UAV SfM are often of poorer quality when dealing with flat, sandy, and low
textured surfaces.

With recent developments in UAV and LiDAR technologies and the reduction of the expense
in integrating these technologies, UAV LiDAR has been increasingly used for applications including
forestry, archaeology, and infrastructure monitoring [36–40]. Sankey et al. [36] showed that UAV
LiDAR is capable of mapping the top of vegetation as well as the bare-earth ground surface. Sankey et
al. also proved the reliability of UAV LiDAR by showing that DSMs generated from UAV LiDAR are
comparable with those from terrestrial LiDAR. In this study, we present UAV LiDAR for monitoring
coastline changes. The strength of UAV LiDAR is demonstrated by comparing the quality of LiDAR
point clouds against point clouds generated by image-based techniques. Shoreline change over an
actively eroding beach is investigated through repeated surveys within a one-year period.
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3. UAV-Based Mobile Mapping System Integration and System Calibration

A custom-built UAV-based mobile mapping system is used in this study for simultaneously
collecting both LiDAR and imagery data. The system consists of a DJI M600 Pro hexacopter, which
carries a laser scanner (Velodyne VLP-32C), a camera (Sony Alpha ILCE-7R), and an integrated
GNSS/INS unit (APX-15 UAV V2) for direct georeferencing, as shown in Figure 1. The Velodyne
VLP-32C consists of 32 radially oriented laser rangefinders that are aligned vertically from +15◦ to
−25◦, thus resulting in a total vertical field of view (FOV) of 40◦. Additionally, the whole laser unit
rotates internally to achieve a 360◦ horizontal FOV. The minimum vertical angular resolution is 0.33◦

and the horizontal angular resolution ranges from 0.1◦ to 0.4◦. The point capture rate in a single return
mode is around 600,000 points per second. The range accuracy is typically ±3 cm, with a maximum
measurement range of 200 m [41]. A Raspberry Pi single-board computer is used to store the LiDAR
data in the form of *.pcap files. The Sony Alpha ILCE-7R camera is a 36.4 MP off-the-shelf camera
with an image size of 7360 x 4912 pixels. The pixel size is 4.86 µm and the nominal focal length is 35
mm. An Arduino Micro microcontroller board is used to trigger the camera via the Sony multiport at a
frame period of 1.5 seconds. Each image event is recorded in the GNSS/INS trajectory via the Alpha 7R
hot shoe. For the APX-15 unit, the post-processing positional accuracy is 2 to 5 cm and the accuracy for
the roll/pitch and heading is 0.025◦ and 0.08◦, respectively.

System calibration includes the individual sensor calibration and the estimation of the relative
position and orientation between each sensor. In this study, the internal characteristics, i.e., the interior
orientation parameters (IOPs), of the camera are estimated through a camera calibration procedure
similar to the one proposed by He and Habib [42]. The USGS Simultaneous Multi-frame Analytical
Calibration (SMAC) distortion model is adopted, which determines the principal distance c, principal
point coordinates (xp, yp), and radial and de-centering lens distortion coefficients (K1, K2, P1, P2). The
relative position and orientation parameters (hereafter, denoted as mounting parameters) between
the onboard sensors (LiDAR and camera) and the GNSS/INS unit are determined through a rigorous
system calibration [43,44]. The system calibration simultaneously estimates the mounting parameters
by minimizing the discrepancies among conjugate points, linear features, and planar features obtained
from LiDAR point clouds and images from different flight lines. The standard deviations of the
estimated lever arm components from the system calibration are ±0.9 cm and ±0.6 cm along the x and
y directions, respectively, and those of boresight angles are 0.008◦, 0.013◦, and 0.014◦ for roll, pitch,
and heading, respectively. The lever arm component along the z direction was determined based on
manual measurement and fixed during the system calibration as it would only result in a vertical
shift of the point cloud as a whole [43]. Once the mounting parameters are estimated accurately, the
captured images and derived LiDAR points by each of the sensors can be directly georeferenced to a
common reference frame. More specifically, using the estimated mounting parameters, together with
the GNSS/INS trajectory, one can i) reconstruct a georeferenced LiDAR point cloud, and ii) obtain the
position and orientation of the camera in a global mapping frame whenever an image is captured.
Consequently, both LiDAR point clouds and images are georeferenced to a common reference frame
(the UTM coordinate system with the WGS84 as the datum is adopted in this study). It is worth
mentioning that no ground control is required in this process.
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Figure 1. The Unmanned Aerial Vehicle (UAV)-based mobile mapping system used in this study:
(a) the sensors mounted on the UAV, and (b) the orientation of the vehicle frame (yellow), Global
Navigation Satellite System/Inertial Navigation System (GNSS/INS) body frame (cyan), laser unit frame
(green), and camera frame (red) coordinate systems.

4. Study Sites and Data Acquisition

Field surveys for this study were carried out on Dana Island, Turkey, and along the Indiana
beaches of southern Lake Michigan, USA. The former contains a range of topographies and vegetation
types, and thus is selected for assessing the quality of UAV LiDAR point clouds and evaluating the
difference between UAV LiDAR and UAV photogrammetry. The latter is an actively eroding beach
where we investigate the ability of UAV LiDAR for quantifying rapid coastal changes over one year.

4.1. Dana Island, Turkey

Dana Island is an archaeological site that lies parallel to the south coast of Turkey at 36◦11′N33◦46′E.
The shape of the island is roughly rectangular with dimensions of 2.7 km x 0.8 km. The maximum
elevation is 250 m above sea level. The island is covered by limestone and vegetation. Recent research
revealed a lower settlement along the northwestern shore and an upper settlement associated with a
fortress on the south summit [45]. These settlements can be traced back to the Early Roman period.
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Ruins of structures with simple rectangular plans and a large number of bell-shaped cisterns are found
along the coastline. The field surveys were conducted over the west coast of the island, which is
covered by limestone, backed by a densely vegetated hill with an average slope of 20% (as shown in
Figure 2).

Figure 2. Study site at Dana Island: (a) site map and surveyed area of each flight mission, and (b)
photograph of the study site showing the beach, UAV, and GNSS base station.

A total of 1.7 km of coastline was surveyed by five flight missions conducted on July 26th, 27th,
28th, and 29th in 2019. Figure 2 illustrates the surveyed area of each flight mission. In each mission,
the UAV-based mobile mapping system collected LiDAR measurements, RGB imagery, and GNSS/INS
trajectory. Due to the lack of first-person view, obstacle avoidance concerns, and steep terrain causing
difficulties in depth perception, some areas were flown manually to ensure the safety of the aircraft.
The mission planning software DJI GS Pro was used for the autonomous flight path programming.
Table 2 summarizes the flight configurations of the five flight missions.

Table 2. Flight configurations for field surveys in Dana Island.

Mission 1 Mission 2 Mission 3 Mission 4 Mission 5

Date 28 July 2019 26 July 2019 27 July 2019 29 July 2019 29 July 2019
Number of images 590 514 597 663 587
Flying height (m) 45–50 45–65 45 22/40 50–90

Average speed (m/s) 5.5 6.0 5.0 3.0 5.0
Overlap (%) 73 80 75 70 78–88
Sidelap (%) 67 73 75 74 75–86
GSD 1 (cm) 0.63 0.77 0.63 0.30 0.70–1.20

Flight time (min) 15 13 15 17 15
1 Ground sample distance.

4.2. Indiana Shoreline of Southern Lake Michigan, USA

The Great Lakes are experiencing high water levels after a 15-year period of low water levels. With
the persistently high water level, storms have much more potential to erode shorelines. Communities
have reported erosion that threatens beaches, buildings, and coastal infrastructures. The field surveys
took place at two sandy beaches along the Indiana shoreline of Lake Michigan, USA. Both the beaches
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are small, private residential communities located in the towns of Dune Acres and Beverly Shores.
Figure 3 shows the locations and the survey area within the two sites. The length of the beach surveyed
is 450 m and 340 m for Dune Acres and Beverly Shores, respectively. Calumet Harbor water level
gauge data provided by NOAA (station ID 9087044) [46] was used in this study for determining the
water level at the time of the UAV surveys. This is the nearest station to the study sites, and its location
is also shown in Figure 3.

Figure 3. The location and survey area at Dune Acres and Beverly Shores, and the location of Calumet
Harbor gauge (aerial photos adapted from 2016 Google Earth images).

A total of seven shoreline surveys were conducted with the UAV-based mobile mapping system.
Dune Acres was surveyed on 17 May 2018, 7 November 2018, 5 December 2018, and 10 May 2019.
Beverly Shores was surveyed on 19 November 2018, 5 December 2018, and 10 May 2019. Between the
November and December surveys, two storms struck the Indiana coastline. Hence, our analysis and
discussion focus on the ability of UAV LiDAR for quantifying the annual coastal change, as well as the
coastal response to individual storms.

At Dune Acres, the UAV survey covered an extent of approximately 270 m coastline in the 17 May
2018 survey, and approximately 450 m coastline in the 7 November 2018, 5 December 2018, and 10
May 2019 surveys. For Beverly Shores, all the surveys covered approximately 340 m of coastline. The
flying altitudes above ground were 10 m to 20 m for Dune Acres and 30 m for Beverly Shores. Flight
time was approximately 15 minutes per mission. The system was mostly flown autonomously but
was flown manually over areas with nearby obstacles (trees, power lines, etc.). The mission planning
software DJI GS Pro was used for the autonomous flight path programming.
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5. Methodology

In this section, we present our LiDAR and image-based 3D point cloud reconstruction
approaches. We then present the strategies for LiDAR point cloud quality assessment and the
qualitative and quantitative comparisons between LiDAR and image-based point clouds. Finally,
we describe the strategies for DSM and orthophoto generation and present the metrics for shoreline
change quantification.

5.1. LiDAR Point Cloud Reconstruction

Raw LiDAR data includes intensity and range measurements along the direction where the laser
beams are pointing to. With the help of the GNSS/INS trajectory, point cloud reconstruction brings
all the LiDAR range measurements into one reference frame. By coupling the range and orientation
of the laser beams, we can obtain the position of the laser beam footprint relative to the laser unit
frame, rlu

I (t). The GNSS/INS integration establishes the position, rm
v (t), and orientation, Rm

v (t), of the
vehicle frame relative to the mapping frame. The laser unit frame and vehicle frame are related using
the mounting parameters, which consist of the lever arm, rv

lu, and the boresight matrix, Rv
lu. Since the

laser and the GNSS/INS units are rigidly fixed with respect to each other, the mounting parameters
would be time-independent. The 3D coordinates of a ground point, I, in the mapping frame can then
be derived as per Equation (1).

rm
I = rm

v (t) + Rm
v (t)r

v
lu + Rm

v (t)R
v
lurlu

I (t) (1)

The UAV-based mobile mapping system is built in such a way that the rotation axis of the Velodyne
laser scanner is approximately parallel to the flying direction, which can be seen in Figure 1b. To
exclude points with large sensor-to-object distances, which are assumed to have a lower precision (as
will be discussed later), and only focus on the object space, i.e., area below the UAV, we reconstruct a
point only when the pointing direction of the laser beam is less than ±70◦ from nadir, which results in a
140◦ FOV across the flying direction. The derived point cloud is georeferenced to the UTM coordinate
system using the GNSS/INS trajectory, and no ground control points are required. Figure 4a presents a
sample of the LiDAR point cloud at Dana Island.

Figure 4. Dense point cloud: (a) reconstructed from LiDAR data, and (b) generated using an
image-based technique.

The above-mentioned reconstruction process reveals that the LiDAR range measurements,
GNSS/INS trajectory, and mounting parameters are the factors that affect the precision of the derived
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point cloud. Based on Equation (1), we observe that the precision decreases as the sensor-to-object
distance increases, which indicates that points at the edge of the swath are expected to have lower
precision. This might lead to a misalignment between point clouds derived from adjacent tracks if
the system is not well-calibrated. As it was previously mentioned in Section 3, a rigorous system
calibration [43] is performed in this study. The precision of the reconstructed point cloud can be
derived using error propagation based on the range accuracy of the LiDAR unit, position and attitude
accuracy of the GNSS/INS unit, and estimated standard deviations of the mounting parameters. The
expected precision of the derived point cloud is estimated using the LiDAR Error Propagation calculator
developed by Habib et al. [47]. At a flying height of 50 m, the calculator suggests that horizontal and
vertical precision values are in the ±5–6 cm range at nadir position. At the edge of the full swath, the
horizontal precision is in the ±8–9 cm range, and the vertical precision is in the ±5–6 cm range.

5.2. Image-Based 3D Reconstruction

For a typical GNSS/INS-assisted camera system, the 3D coordinates of a ground point, I, which is
captured in multiple images as point i, can be derived in the mapping frame using Equation (2). The
point positioning equation includes the coordinates of the image point i in the camera frame, rc

i (t),
GNSS/INS-derived position, rm

v (t), and orientation, Rm
v (t), of the vehicle frame relative to the mapping

frame, lever arm, rv
c , and boresight matrix, Rv

c , that relates the camera frame and vehicle frame, and
a scaling factor of the image point i captured by the camera at time t, λ(i, t). The key to uniquely
determine the 3D coordinates of a ground point is to identify conjugate points in overlapping images.
In this study, the establishment of conjugate point pairs is fully automated based on an SfM workflow.
The following paragraph introduces the adopted image-based 3D reconstruction procedure, which
is a revised version of the automated aerial triangulation for UAV imagery framework proposed by
He et al. [48]. The procedure consists of four steps: i) image matching and relative orientation recovery,
ii) exterior orientation estimation, iii) bundle adjustment with self-calibration, and iv) dense matching.

rm
I = rm

v (t) + Rm
v (t)r

v
c + λ(i, t)Rm

v (t)R
v
c rc

i (t) (2)

The relative orientation parameters (ROPs) describing the relative position and orientation of
stereo-images throughout the entire image block are first estimated using the scale-invariant feature
transform (SIFT) detector and descriptors [49] based on the approach developed by He and Habib [50].
Once the ROPs of the stereo-pairs are obtained, the initial estimates of exterior orientation parameters
(EOPs) in a local reference coordinate system are recovered using an incremental strategy. An initial
image triplet is selected to define a local reference coordinate system, and the remaining images are
then sequentially augmented into the image block through a closed-form solution solving for both the
rotation and position parameters of the EOPs. For more details regarding this procedure, interested
readers can refer to He et al. [48]. To bring the EOPs and generated object points from the local
coordinate system to the global mapping frame, we adopt direct georeferencing using the trajectory
provided by the GNSS/INS unit. A 3D similarity transformation is adopted to map the local reference
frame based EOPs to trajectory-based EOPs. The object points are then transferred from the local
coordinate system to the global mapping frame using the transformation parameters. Subsequently,
a global bundle adjustment with self-calibration simultaneously refines the EOPs, boresight angles,
and object point coordinates. Finally, a dense point cloud is reconstructed using the patch-based
multi-view stereopsis approach [51], which enforces the local photometric consistency and global
visibility constraints. Starting with detecting features in each image to generate a sparse set of patches,
the algorithm matches the patches across multiple images, expands them to obtain a denser set of
patches, and filters false matches using visibility constraints. The output point cloud consists of small
rectangular patches covering the surfaces visible in the images. Figure 4b depicts a sample of the dense
image-based point cloud at Dana Island.
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5.3. Point Cloud Quality Assessment and Comparison

The quality of the UAV-based LiDAR point cloud is evaluated based on a comparison against
UAV photogrammetry. Prior to the comparison, the quality of the LiDAR point cloud is evaluated
qualitatively based on investigating the alignment between different LiDAR strips. The comparative
quality assessment of LiDAR and photogrammetric point clouds is carried out using the following
criteria: i) spatial coverage, ii) point density, iii) horizontal and vertical alignment at selected profiles,
and iv) overall elevation differences between point clouds.

The spatial coverage of the point cloud is estimated by projecting the point cloud to the XY
plane (the X and Y directions are referenced to the mapping frame) and finding the convex hull of
the projected point set. Once the points comprising the convex hull are found, the area of the convex
hull can be calculated using Equation (3), where xi and yi are the coordinates of the ith point in the
convex set.

Area =
1
2
(x1y2 + x2y3 + · · ·+ xny1 − x2y1 − x3y2 − · · · − x1yn) (3)

The point density is defined as the number of points within a given area. Due to the uneven
distribution of the points in the point cloud, the point density can vary greatly across the surveyed
area. To illustrate the point density variation over the surveyed area, the point density is evaluated
based on a uniform grid and is then visualized as a grayscale map. In this study, we used a 0.5 by 0.5
meter grid for both LiDAR and image-based point clouds. One should note that changing the grid size
would not affect the ratio between the point density of image-based and LiDAR point clouds.

To evaluate the horizontal and vertical alignment of two point clouds, we extracted profiles
along the X and Y directions of the mapping frame every 50 meters. The iterative closest point
(ICP) algorithm [52] was performed to estimate the transformation parameters between LiDAR and
image-based profiles. For the profiles along the X direction, we evaluated the X (horizontal) shift, Z
(vertical) shift, and the rotation around the Y axis using a 2D similarity transformation. Similarly, the Y
shift, Z shift, and rotation around the X axis were computed for profiles along the Y direction.

The overall elevation differences between two point clouds are evaluated on a point-by-point
basis. The point correspondence between two point clouds is established by first, selecting a point
cloud as the reference and then, searching for the closest point in the other point cloud, denoted as
the source point cloud, for each point in the reference point cloud. The elevation difference (i.e., Z
coordinate difference) is calculated between each reference point and its corresponding source point.
The result can be illustrated as a map for further investigation of any spatial discrepancy patterns.
Using the closest point to form the correspondence is valid under the assumption that the change
between two point clouds is relatively small. Although the assumption is valid for most areas where
the LiDAR and image-based surfaces are consistent, the elevation difference could vary greatly in
vegetated areas. To deal with this problem, we only used the closest point within a pre-defined
distance threshold (MaxDistThreshold) as a corresponding point. If the closest point has a distance
larger than the MaxDistThreshold, we set the elevation difference to be either maximum, if the reference
point is above the closest source point, or minimum, if the reference point is below the closest source
point. Therefore, these points will display as extreme values on the map but will not affect the overall
statistics. More specifically, differences below the threshold would be related to the precision of point
cloud generation or artifacts associated with image matching; both scenarios should be taken into
account in the comparison. Differences beyond the threshold, in contrast, would have been caused by
the two point clouds representing different surfaces (e.g., ground and top of the vegetation canopy),
and thus should be excluded from the comparison. In this study, the image-based point cloud was
selected as the reference point cloud because its spatial coverage is smaller (as will be shown later in
Section 6.2). The distance threshold was set to be 1 m considering that: i) the precision of the point
cloud is estimated to be ±0.10 m, and ii) the image matching or LiDAR reconstruction artifacts would
not cause more than 1 m difference.
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5.4. DSM, Orthophoto, and Color-Coded Point Cloud Generation

Upon verifying the quality of UAV LiDAR, we proceed to generate DSMs and orthophotos, which
are the main sources used for mapping shoreline environments. In contrast to the spatial irregularity
of the point cloud, the DSM presents a uniform gridded terrain surface from which spatial subtraction
and integration can be performed in a computationally efficient manner. To generate a DSM from
a point cloud, we start by creating 2D grids along the XY plane over the area of interest. All the
points that lie within a grid cell are then sorted by height. To mitigate the influence of noisy points
on the resultant DSM, the 90th percentile (rather than the maximum height) is assigned as the grid
elevation. The nearest neighbor approach is carried out to fill the gaps within a window of user-defined
size. Finally, a median filter is applied to ensure neighborhood consistency in the DSM. Although
rasterization facilitates a quicker spatial analysis, the interpolation process would lead to, no doubt, a
loss of accuracy and can potentially obscure the spatial complexity of the topography. Therefore, the
resolution of DSM should be chosen carefully according to the overall point density in order to retain
the required level of spatial information. Figure 5a presents a LiDAR-based DSM generated at a 4 cm
resolution for mission 1 of the Dana Island survey. In this study, the point density of the LiDAR point
cloud is generally higher than 2000 pt/m2, which implies an average point spacing of approximately
2 cm. A 4 cm resolution ensures that there would be more than 2 points in one grid, eliminating the
need for interpolation to fill empty grids while retaining centimeter-level resolution.

Figure 5. Spatial products from mission 1 of the Dana Island survey: (a) LiDAR-based DSM, (b)
orthophoto, and (c) color-coded DSM.

An orthophoto mosaic is a geometrically corrected image that can be utilized as a map. Orthophoto
generation requires overlapping images, IOPs, EOPs, and a DSM, where the DSM can be either
LiDAR-based or image-based. In this study, the EOPs are established through the previously discussed
SfM strategy while considering the GNSS/INS trajectory and refined mounting parameters. The
orthophoto generation is based on object-to image backward and forward projection using collinearity
equations [53]. For each pixel in the orthophoto, we find the corresponding object point in the DSM, and
then backproject the object point to the image to acquire the RGB information. The backprojection is a
3D to 2D mapping process. In other words, given an object point, rm

I , one can derive the corresponding
image point, rc

i (t), using Equation (2). If a pixel is visible in multiple images, we use the RGB value
from the image that is the closest to the object point. Combining the RGB information from the
orthophoto mosaic with the elevation information in the LiDAR-based DSM produces a color-coded
DSM. The color-coded DSM provides a large scale overview of the ground surface (water, bare ground,
vegetation, etc.) from which we can easily identify ground features and determine their locations and
elevations Figure 5b,c display a sample of an orthophoto and corresponding color-coded DSM derived
from data acquired by the UAV-based mobile mapping system over Dana Island.
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5.5. Shoreline Change Quantification

Spatial data provided by UAV-based mobile mapping systems allow for several types of shoreline
change quantification. In this study, we quantify shoreline changes using three metrics: i) elevation
changes, ii) volume integrals, and iii) cross-shore transects.

Elevation differences (∆H) can be obtained by performing spatial subtraction of the DSMs
using Equation (4), where H1

(
xi, y j

)
and H2

(
xi, y j

)
are the elevations at location

(
xi, y j

)
for two

successive surveys.
∆H = H2

(
xi, y j

)
−H1

(
xi, y j

)
(4)

The volumes of eroded sand were calculated as the change in volume under the DSM from one
survey to another via Equation (5), where ∆V is the volume of sand gained or lost, H1

(
xi, y j

)
and

H2
(
xi, y j

)
are the elevations at location

(
xi, y j

)
, ∆x and ∆y are the grid dimensions along the X and Y

directions, respectively.

∆V =
m∑

i=1

n∑
j=1

[
H2

(
xi, y j

)
−H1

(
xi, y j

)]
∆x∆y (5)

Cross-shore transects are a traditional metric of shoreline change in coastal engineering. The
transects resolve the elevations along lines perpendicular to the coast, providing a cross-sectional view
of shoreline change. These transects can be easily extracted from the DSM. In this study, we used
the water level gauge measurement to determine the limit of the transects as our topographic LiDAR
does not provide underwater information. A notable feature in the UAV-derived transects was the
ridge point topping of the actively eroding, steep face of the foredune. This ridge point location was
determined manually.

6. Experimental Results

In this section, we first assess the ability of UAV LiDAR for mapping coastal environments
using Dana Island datasets. The quality of the LiDAR point clouds is evaluated by examining the
alignment between point clouds reconstructed from different flight lines. Qualitative and quantitative
comparisons between LiDAR and image-based point clouds are carried out to show the level of
information acquired by the two techniques. Then, we analyze the shoreline change at Dune Acres
and Beverly Shores using UAV LiDAR data.

6.1. LiDAR Point Cloud Alignment

The quality assessment of the LiDAR point cloud is based on across flight line profiles. Fight
mission 1 in Dana Island is used to investigate the alignment of the point cloud between different
tracks (i.e., flight lines). This flight mission contains eight flight lines, as shown in Figure 6a, with a
flying height of 40–50 m above ground. The lateral distance between flight lines is approximately 15 m,
which results in approximately 85% sidelap between adjacent strips considering the ±70◦ off-nadir
scan angle used for reconstruction.

Three profiles, P1–P3, oriented perpendicular to the flying direction, as shown in Figure 6a, were
extracted from the LiDAR point cloud with a width of 0.2 m. Figure 6b shows a side view of each profile,
which exhibits a good overall alignment between all tracks. For each profile, we selected a two-meter
ground surface segment to further examine the point cloud quality. Three segments, S1–S3, are illustrated
in Figure 6b, where S1 and S2 contain points from tracks 2 to 7, and S3 contains points from tracks 3 to 8.
These segments show that the point clouds from different tracks are in agreement even for such wide
cross-flight angular field of view. This alignment reflects the quality of the laser measurements, GNSS/INS
trajectory, and system calibration parameters. In addition, we can see from Figure 6b that the noise level
(i.e., the spread of the point cloud in the vertical direction) is approximately 0.15 m, which supports our
prediction that the precision of the derived point cloud is ±0.10 m.
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Figure 6. Point cloud alignment using mission 1 at Dana Island as an example: (a) flight lines and
profiles locations, (b) side view of the profiles and two-meter segments.

6.2. Comparative Quality Assessment of LiDAR and Image-Based Point Clouds

In order to evaluate the overall quality of UAV LiDAR, a comparison against image-based point
cloud was performed in terms of spatial coverage, point density, horizontal and vertical alignment at
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selected profiles, and overall elevation differences. Throughout the entire missions, the LiDAR and
imagery data were collected simultaneously. Therefore, the flight configuration and morphological
changes can be eliminated from the potential factors for any discrepancy patterns between these
modalities. Prior research has verified the absolute accuracy of image-based point clouds. More
specifically, the UAV system used in this study is similar to the systems used in He et al. [48], where the
absolute horizontal and vertical accuracies of image-based point clouds were reported to be ±1–3 cm
and ±2–4 cm, respectively. Therefore, the comparison in this study focuses on the relative differences
between the LiDAR and image-based point clouds.

Point cloud reconstruction revealed that the LiDAR point cloud covers a larger area and has a
higher point density when compared to the image-based point cloud. Figure 4 presents the LiDAR and
image-based point cloud over the area of interest. The number of points in LiDAR and image-based
point clouds are 478,313,717 and 131,178,714, respectively. The area covered by the LiDAR point cloud
is 0.23 km2, which is substantially larger than the 0.12 km2 spatial coverage of the image-based point
cloud. The spatial coverage of the LiDAR point cloud depends on the reconstruction parameters. As
we increase the across-scan FOV, the spatial coverage will increase, however, the precision of the point
clouds at the edges of the swath might degrade depending on the accuracy of the system calibration
and will also be impacted by the inherent accuracy of the sensors being used. Therefore, one should
choose the reconstruction parameters based on the application of interest which in turn dictates the
desired accuracy of the data. In this study, a relatively wide across-scan FOV (±70◦) is chosen, and as
discussed in Section 6.1, the alignment between strips is within the noise level of the point cloud even
at the edge of the swath, which again demonstrates the strength of system calibration.

The point density maps for LiDAR and image-based point clouds (displayed in Figure 7) suggest
that in addition to higher point density, LiDAR point cloud distributes more uniformly over the terrain.
Comparing Figure 7a and b, we can see that the LiDAR point cloud has similar coverage on the
ground surface and vegetation, while image-based point cloud mostly covers the ground surface, and
is relatively sparse over the vegetation. The point density of the LiDAR point cloud depends more on
technical factors, including flying speed, sensor-to-object distance, across-scan FOV, sidelap percentage
between adjacent strips, and laser pulse repetition rate. While the laser pulse repetition rate remains
constant throughout the field surveys, the impact of other factors can be seen in Figure 7a. The flying
speed affects the point density along the flight lines. In our field survey, the UAV was mostly flying at
a constant flying speed, which guarantees a relatively uniform point density along the flying direction.
The dark strips across the flying direction, i.e., high point density areas, in mission 2 in particular,
appear to be where the UAV slowed down for turning. The sidelap percentage between adjacent strips,
which has an effect on the point density across the flight lines, depends on i) the lateral distance between
adjacent flight lines, ii) the across-scan FOV, and iii) the sensor-to-object distance which is defined by
the flying height. In Figure 7a, mission 4 has the highest point density because it has two different
flying heights and thus more flight lines within the surveyed area. In mission 5, the flying height is
approximately 50 m on the west side and gradually increases to 90 m on the east side, and therefore
results in a slightly higher point density over the shore on the west side. Figure 7b, in contrast, reveals
that the environmental factors have a crucial impact on the point density of the image-based point
cloud. As can be seen in Figure 7b, image-based 3D reconstruction yields poor results over vegetated
surfaces. In particular, only sparse points can be found near the tops of tree crowns and sizeable
gaps are present near the sides of tree crowns. This finding is consistent with the results obtained in
previous studies [54,55]. According to previous work in this area [54,55], near-nadir-oriented images
can only reconstruct sparse point cloud on top of the tree crowns, whereas oblique and horizontal view
images have to be included in order to generate a realistic representation of trees. Although for coastal
monitoring we focus on the ground surface and thus, oblique images are not necessary, it is evident
that dense vegetation precludes the reconstruction of the occluded ground surface.



Remote Sens. 2019, 11, 2893 17 of 32

Figure 7. Point density maps for: (a) LiDAR point cloud, and (b) image-based point cloud.

Prior to investigating the alignment between LiDAR and image-based profiles, which is essentially
a 3D to 3D comparison, we inspected the point cloud to image geo-referencing as a 2D to 3D
qualitative quality control. As mentioned earlier, the data acquired by the LiDAR unit and camera are
georeferenced to a common mapping frame defined by the GNSS/INS trajectory and the mounting
parameters estimated through the system calibration procedure. The integration of data derived
from different sensors is not only a key strength of the used mobile mapping system but provides a
way for assessing the quality of the GNSS/INS trajectory and system calibration parameters. Given
a point in the point cloud, we can locate it on the orthophoto, and more importantly, backproject it
onto the images that captured the point. The quality of backprojection would indicate the accuracy
level of the system calibration together with the GNSS/INS trajectory. Figure 8 shows the qualitative
quality control result in an area with some ruins in the Dana Island. Here, an intersection of walls
is selected in the LiDAR point cloud, shown in the orthophoto, and backprojected onto the image
which captured the point from the closest position. The correct location of the resultant 2D point on
the orthophoto and from backprojection validates the quality of the GNSS/INS trajectory, as well as the
mounting parameters from system calibration. The registration quality also validates the accuracy of
the estimated IOPs of the camera.

Profiles along the X and Y directions (referenced to the mapping frame) were extracted every
50 meters to evaluate the horizontal and vertical alignment between LiDAR and image-based point
clouds. Figure 9a depicts the profile locations for flight mission 1, where Px1–Px4 are profiles along X
direction, and Py1–Py4 are profiles along the Y direction. Figure 9b displays the side view of profiles
Px2 and Py2. Table 3 lists the shift and rotation between the LiDAR and image-based profiles for all
flight missions (using image-based profiles as reference), where Px1–Px22 are profiles along the X
direction, and Py1–Py22 are profiles along the Y direction. Despite the considerable difference in spatial
coverage and point density, the profiles illustrate good alignment between LiDAR and image-based
point clouds. The overall discrepancy along the X and Y direction are −0.2 cm and 0.1 cm, respectively.
A larger but still acceptable discrepancy is observed along the Z direction, where the shift ranges from
−8.9 cm to 8.6 cm, with an average of 0.2 cm. The rotations around the X and Y axes are −0.0051
degrees and 0.0050 degrees, respectively, which can be transformed to a 0.4 cm shift at a distance of
50 m. Examples of the profiles displayed in Figure 9b further demonstrate the potential of UAV LiDAR
in mapping coastal environments. Compared to the image-based point cloud, the LiDAR point cloud
is significantly denser and captures more details of the terrain. While the image-based approach can
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only reconstruct points on the visible surface, the LiDAR shows an ability to penetrate the vegetation
and capture points below the canopy, which facilitates reliable digital terrain model (DTM) generation.

Figure 8. 3D to 2D backprojection: the point of interest (a) selected in the point cloud, (b) shown in the
orthophoto, and (c) backprojected onto the image.

Figure 9. An example of the selected profiles: (a) profile locations, and (b) side view of Px2 and Py2.

Table 3. The shift and rotation between LiDAR-based profiles and image-based profiles.

Profiles along X Direction Profiles along Y Direction

ID Horizontal
Shift (m)

Vertical
Shift (m)

Rotation
(deg) ID Horizontal

Shift (m)
Vertical

Shift (m)
Rotation

(deg)

Px1 0.0143 0.0590 0.0464 Py1 0.0114 0.0347 0.0623
Px2 –0.0052 0.0353 0.0192 Py2 0.0103 0.0182 0.0112
Px3 –0.0067 0.0472 –0.0101 Py3 0.0080 0.0866 –0.0127
Px4 –0.0055 0.0533 –0.0414 Py4 –0.0130 0.0550 –0.0447
Px5 0.0008 –0.0072 0.0110 Py5 0.0107 0.0054 0.0144
Px6 0.0011 0.0041 0.0050 Py6 –0.0025 0.0133 0.0091
Px7 –0.0048 0.0503 –0.0097 Py7 0.0026 0.0086 –0.0009
Px8 –0.0121 0.0384 –0.0058 Py8 –0.0069 0.0328 –0.0127



Remote Sens. 2019, 11, 2893 19 of 32

Table 3. Cont.

Profiles along X Direction Profiles along Y Direction

ID Horizontal
Shift (m)

Vertical
Shift (m)

Rotation
(deg) ID Horizontal

Shift (m)
Vertical

Shift (m)
Rotation

(deg)

Px9 –0.0146 0.0590 –0.0394 Py9 –0.0008 0.0092 –0.0141
Px10 0.0280 –0.0894 0.0590 Py10 0.0024 –0.0522 0.0300
Px11 0.0075 –0.0124 0.0302 Py11 0.0059 0.0348 0.0007
Px12 –0.0086 0.0515 0.0020 Py12 0.0121 0.0658 –0.0141
Px13 –0.0023 0.0525 –0.0048 Py13 0.0041 0.0833 –0.0272
Px14 –0.0091 0.0661 –0.0812 Py14 –0.0002 0.0498 –0.0186
Px15 –0.0115 –0.0146 –0.1119 Py15 –0.0114 0.0325 –0.0367
Px16 0.0002 0.0001 0.0059 Py16 –0.0199 0.0173 –0.0588
Px17 0.0019 –0.0107 0.0281 Py17 –0.0015 0.0120 –0.0194
Px18 0.0000 0.0002 –0.0001 Py18 0.0046 0.0012 0.0109
Px19 –0.0024 0.0110 –0.0041 Py19 0.0010 –0.0008 0.0011
Px20 –0.0093 0.0124 –0.0008 Py20 0.0052 –0.0292 0.0175
Px21 –0.0009 0.0102 –0.0017 Py21 0.0015 0.0030 0.0007
Px22 –0.0017 0.0082 –0.0050 Py22 –0.0031 0.0179 –0.0098

Avg. –0.0019 0.0139 –0.0050 Avg. 0.0009 0.0195 –0.0051

The elevation differences between the LiDAR and image-based point clouds were calculated to
evaluate the overall discrepancy between the two point clouds as well as to investigate any spatial
patterns. The area where the comparison is carried out contains full swaths of LiDAR data with
an overlap up to 80% between adjacent LiDAR strips. As mentioned previously, the misalignment
between overlapping LiDAR strips is most likely to happen at the edge of the swath as the precision is
lower. Since the area covered by photogrammetric data contains full swaths and overlapping strips, it
has similar characteristics to the whole area (which is not covered by the corresponding images) from a
LiDAR point of view. Therefore, any problem/disagreement between the LiDAR-based and image-based
point clouds will be reflected in the results obtained by comparing the overlapping areas obtained from
the two modalities, which can be considered representative of all possible problems/misalignments
over the entire area captured by either of the sensors. Figure 10 illustrates the elevation difference
map along with the histogram at Dana Island. Based on the map and the histogram, the majority of
elevation differences are close to zero, with an average of 0.020 m and a standard deviation of ±0.065
m. Looking into any spatial discrepancy patterns, large elevation differences in missions 1, 3, and 5 are
distributed over the entire site rather than being concentrated on specific locations. On the contrary,
large elevation differences in missions 2 and 4 are more concentrated on areas where the UAV slowed
down or stopped for turning, which points to the poor image reconstruction due to narrow baselines
between camera locations. In the field survey, different UAV flight configurations were applied: in
missions 2 and 4, the UAV slowed down for changing direction and came to a full stop in order to
make turns, while the UAV basically maintained a constant speed in missions 1, 3, and 5. Figure 11
shows the camera locations in missions 1 and 2, where we can see the short distances between camera
locations at the turning parts and at the two ends of the flight lines. This narrow baseline would lead
to poor image reconstruction results as reported in a previous study [56]. To investigate the elevation
differences in different geomorphic environments, we used the orthophoto as a reference and manually
divided the study site into zone 1 (intertidal area and dry beach with no vegetation) and zone 2 (steep
slope with dense vegetation). Table 4 lists the mean and standard deviation of the elevation differences
in each zone for each flight mission, where flight mission 2 only captured data in the vegetated area.
Based on Table 4, LiDAR and image-based point clouds in different environments/flight missions
are well-aligned in general. The mean and standard deviation of the elevation differences range
from ±0.6 cm to ±3.1 cm and ±4.5 cm to ±10.1 cm, respectively. While zone 2 has a larger mean of
elevation differences than zone 1 in missions 1 and 3, the mean and standard deviation of elevation
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differences between the two zones are similar in missions 4 and 5. For missions 2 and 4, which suffer
from the narrow baseline problem, larger standard deviations are observed, which suggests that flight
configuration could have a major impact. The analyses of the elevation difference reveal that both
environmental factors and technical factors have an influence on the quality of the image-based point
cloud. Overall, the point clouds generated by both techniques are compatible within a 5 to 10 cm range.

Figure 10. Elevation differences between LiDAR and image-based point clouds: the elevation difference
map where the black line indicates the boundary between zone 1 and zone 2, and the histogram of
elevation differences.

Table 4. Elevation difference in different environments and flight missions.

Mission 1 Mission 2 Mission 3 Mission 4 Mission 5 All Missions

Zone 1
Mean (m) 0.006 n/a 0.006 0.031 0.014 0.014

Std. Dev. (m) 0.055 n/a 0.053 0.072 0.045 0.056

Zone 2
Mean (m) 0.027 0.019 0.026 0.030 0.019 0.021

Std. Dev. (m) 0.055 0.101 0.063 0.069 0.053 0.066

Overall
Mean (m) 0.022 0.019 0.020 0.030 0.019 0.020

Std. Dev. (m) 0.056 0.101 0.061 0.070 0.052 0.065
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Figure 11. Camera locations in mission 1 and mission 2 while showing the impact of UAV-flight setting
while making a turn: (a) smooth turn while maintaining speed, and (b) stop and turn approach (refer
to the red boxes).

6.3. Shoreline Change Estimation

Prior to quantifying shoreline change, we first assess the agreement between the LiDAR datasets
collected at different dates by manually picking and extracting a portion of point cloud capturing a
structure (building, street light, etc.), which presumably remained stationary between subsequent data
collections, and checked the alignment across multiple dates. Figure 12a shows point cloud alignment
over a building at Dune Acres between 17 May 2018, 7 November 2018, 5 December 2018, and 10
May 2019. We performed plane fitting over a planar segment on the roof for the combined dataset.
The root-mean-square error (RMSE) of the normal distances of the roof points from the best-fitting
plane is 0.05 m, indicating that all datasets are in agreement within a 0.05 m range. Figure 12b shows
point cloud alignment over a wooden stair at Beverly Shores as captured on 19 November 2018, 5
December 2018, and 10 May 2019. The plane fitting RMSE over a planar segment on the wooden stair
for the combined dataset is 0.03 m, suggesting that the three datasets are compatible within a 0.03 m
range. These results show that the point clouds collected at different dates are consistent in elevation.
Moreover, these reported RMSE values support our prediction that the precision of the derived point
cloud is ±0.10 m.

The UAV surveys at Dune Acres revealed substantial shoreline erosion both over the one-year
period, as well as from the two storms between the 7 November and 5 December surveys. Figure 13a
shows the DSM of Dune Acres (using the 10 May 2019 dataset as an example) and the 45 cross-shore
transect locations. The foredune can be clearly seen in the DSM as a sudden change in elevation.
Figure 13b depicts the corresponding orthophoto, from which the coastline can be easily identified.
Comparing Figure 13a and b, we can see that the orthophoto has a much smaller spatial coverage as it
is limited by the ground coverage of the images. The elevation change maps over the entire survey
period and the two storm periods are presented in Figure 14. According to the change map, most
of the shoreline erosion was concentrated at the tall face of the foredune, which was marked as the
region of interest (ROI) for volumetric loss calculation. Four sample transects where the erosion was
concentrated are selected and shown in Figure 15, from which the transects and ridge points at different
epochs can be clearly seen and demonstrated. These transects capture the variability in erosion patterns
seen across the beach. The water levels at the time of the field surveys were obtained by averaging the
NOAA gauge measurements within the flight time (there were typically three measurements within
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a 15-minute flight since the gauge takes a measurement every six minutes). These water levels are
depicted in Figure 15 to indicate the ends of the transects. The ridge points (orange diamonds in
Figure 14) were manually identified and their coordinates were recorded. Table 5 lists the foredune
ridge recession amounts, eroded volume per unit length of the shoreline, and the total eroded volume.
Foredune ridge recession amounts are between 2 m and 9 m over the entire survey period, and between
0 m to 6 m within the storm-induced period (November 2018 to December 2018). The total volume of
eroded sand within the one-year period is 3998.6 m3, equating to an average volume loss of 18.2 cubic
meters per meter of beach shoreline (the length of the ROI is 220 m). For the storm-induced period,
the volume change is 2673.9 m3, equating to an average volume loss of 12.2 cubic meters per meter of
beach shoreline.

Figure 12. Point cloud compatibility and photo of the corresponding object for (a) Dune Acres and (b)
Beverly Shore.
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Figure 13. Topographic products at Dune Acres generated from 10 May 2019 dataset: (a) the
LiDAR-based DSM and the locations of 45 cross-shore transects, and (b) the corresponding orthophoto.

Figure 14. Elevation change map at Dune Acres for: (a) entire survey period, and (b)
storm-induced period.
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Figure 15. Cross-shore transects at Dune Acres showing transect #24, transect #28, transect #32, and
transect #40 (the IDs are corresponding to those shown in Figure 13).
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Table 5. Shoreline change measurements at Dune Acres.

Foredune Ridge Recession (m) Eroded Volume per m
Shoreline (m3/m)

Total Eroded
Volume (m3)Average Min. Max.

May 2018–November 2018 1.2 −2.5 4.2 10.2 2243.2
November

2018–December 2018 1.2 −0.2 5.6 12.2 2673.9

December 2018–May 2019 1.1 −0.6 6.2 −4.2 −925.7

Total 5.1 1.6 8.9 18.2 3998.6

The surveys at Beverly Shores showed a smaller but still significant magnitude of storm-induced
erosion over the one-month period between the November and December surveys. Figure 16 shows the
DSM (using May 10th, 2019 dataset as an example), along with the locations of 35 cross-shore transects,
and the orthophoto. Similar to Dune Acres, the DSM provides precise information over the beach and
foredune, and the coastline can be identified in the orthophoto. Figure 17 depicts the elevation change
map over the entire survey period and storm-induced period. Figure 18 shows four sample transects,
demonstrating the erosion patterns across the beach. The foredune ridge recession amounts, eroded
volume per meter shoreline, and total eroded volume at Beverly Shores are shown in Table 6. Erosion
at Beverly Shores also concentrated at the steep face of the foredune, causing foredune ridge recession
magnitudes in the range from 0 m to 4 m, and a total volume loss of 938.4 m3 (equating to an average
volume loss of 2.8 cubic meters per meter of beach shoreline as the length of ROI is 340 m) over the
entire survey period (November 2018 to May 2019). Between the November and December surveys,
the total volume of sand eroded from the storms was approximately 883.8 m3 over the 340 m length of
beach surveyed, equating to an average volume loss of 2.6 cubic meters per meter of beach shoreline.

Figure 16. Cont.
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Figure 16. Topographic products at Beverly Shores generated from 10 May 2019 dataset: (a) the
LiDAR-based DSM and the locations of 35 cross-shore transects, and (b) the corresponding orthophoto.

Figure 17. Elevation change map at Beverly Shores for: (a) entire survey period, and (b)
storm-induced period.

Table 6. Shoreline change measurements at Beverly Shores.

Foredune Ridge Recession (m) Eroded Volume per m
Shoreline (m3/m)

Total Eroded
Volume (m3)Average Min. Max.

November
2018–December 2018 0.8 –0.2 3.4 2.6 883.8

December 2018–May 2019 0.7 –0.2 2.5 0.2 80.5

Total 1.6 –0.2 4.0 2.8 938.4
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Figure 18. Cross-shore transects at Beverly Shores showing transect #17, transect #26, transect #30, and
transect #34 (the IDs are corresponding to those shown in Figure 16).
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7. Discussion

7.1. Comparative Performance of UAV LiDAR and UAV Photogrammetry

The capability of UAV LiDAR for mapping shoreline environments is evaluated based on a
comparison against UAV photogrammetry. Throughout the entire missions, the LiDAR and imagery
data were collected simultaneously. The main findings of these analyses are as follows:

• The point cloud alignment between different LiDAR strips is good (within the noise level of the
point cloud) and the overall precision of the derived point cloud is ±0.10 m.

• LiDAR provides a considerable larger spatial coverage when compared to
photogrammetric products.

• LiDAR point density is similar over the entire surveyed area, while image-based point density
varies greatly over different geomorphic environments. This finding is consistent with the results
obtained in previous studies [54,55].

• Profiles along X and Y directions show that the overall discrepancies along the X and Y directions
between LiDAR and image-based point clouds are −0.2 cm and 0.1 cm, respectively. The
discrepancy along Z direction ranges from −8.9 cm to 8.6 cm, with an average of 0.2 cm, suggesting
that the image-based surface is slightly higher than the LiDAR-based surface.

• The elevation difference between LiDAR and image-based point clouds is 0.020 ± 0.065 m. In
this study, technical factors (e.g., the narrow baseline problem for image reconstruction when
UAV slowed down to make turns) has a major impact on the discrepancy between LiDAR and
image-based point clouds, and environmental factors have a minor impact. Overall, the point
clouds generated by both techniques are compatible within a 5 to 10 cm range.

In summary, based on our analyses, UAV LiDAR has a clear advantage in terms of large and
uniform ground coverage over different surface types, higher point density, and the ability to penetrate
through vegetation to capture points over the ground surface. Image-based reconstruction, on the
contrary, is more sensitive to technical factors (e.g., flight configuration) and environmental factors
(e.g., surface characteristics).

7.2. UAV LiDAR for Shoreline Change Quantification

The UAV LiDAR is utilized to quantify the magnitude of shoreline erosion in two beaches along
southern Lake Michigan. The key findings of the analyses are as follows:

• The compatibility of the point clouds collected over the one-year period is evaluated quantitatively
and qualitatively. The result shows that the point clouds are compatible within a 0.05 m range.

• Substantial shoreline erosion is observed both over the one-year period (May 2018 to May 2019)
and from the storm-induced period (November 2018 to December 2018).

• The storm-induced coastal change captured by the UAV system highlights the ability to resolve
coastal changes over episodic timescales, at a low cost.

• Foredune ridge recession at Dune Acres and Beverly Shores ranges from 2 m to 9 m and 0 m to 4
m, respectively.

• Volume loss at Dune Acres is 3998.6 m3 (equating an average volume loss of 18.2 cubic meters per
meter of beach shoreline) within the one-year period and 2673.9 m3 (equating an average volume
loss of 12.2 cubic meters per meter of beach shoreline) within the storm-induced period. Volume
loss at Beverly Shores is 938.4 m3 (equating an average volume loss of 2.8 cubic meters per meter
of beach shoreline) within the survey period and 883.8 m3 (equating an average volume loss of 2.6
cubic meters per meter of beach shoreline) within the storm-induced period.

To conclude, a considerable volume loss and ridge point retreat over an extended period of one
year as well as a short storm-induced period of one month were captured by the UAV LiDAR surveys.
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8. Conclusions and Recommendations for Future Work

This paper presents the evaluation and application of UAV LiDAR for coastal change monitoring.
The aims of the study are: i) evaluating the relative performance of UAV LiDAR in mapping coastal
environment when compared to the widely used UAV photogrammetry, and ii) quantifying the coastal
change along the Indiana shoreline of southern Lake Michigan using UAV LiDAR. The quality of the
UAV LiDAR point cloud was first assessed and compared with the image-based point cloud along
a 1.7 km coastal area, which contains bare ground surface as well as heavily vegetated areas. The
result suggests that both UAV LiDAR and image-based techniques generate point clouds that exhibit a
good degree of agreement with an overall precision of ±5-10 cm. UAV LiDAR has a clear advantage
in terms of large and uniform ground coverage, higher point density, and the ability to penetrate
through vegetation to capture points over the ground surface. In contrast, image-based reconstruction
is more sensitive to technical factors (e.g., flight configuration) and environmental factors (e.g., surface
characteristics). Using UAV LiDAR, we quantified the magnitude of shoreline erosion in two beaches
along southern Lake Michigan. Significant volume loss and ridge point retreat were found over the
entire one-year survey period as well as a short storm-induced period of one month. Foredune ridge
recession amounts at Dune Acres and Beverly Shores range from 2 m to 9 m and 0 m to 4 m, respectively.
The average volume loss at Dune Acres is 18.2 cubic meters per meter and 12.2 cubic meters per meter
within the one-year period and the storm-induced period, respectively, highlighting the importance of
episodic events in coastline changes. The average volume loss at Beverly Shores Acres is 2.8 cubic
meters per meter and 2.6 cubic meters per meter within the survey period and the storm-induced
period, respectively. In the future, we aim to automate the process of detecting the eroding area and
identifying the ridge points. Furthermore, we plan to integrate the UAV LiDAR data with airborne or
satellite-borne LiDAR data to obtain baseline information for quantifying long-term change as well as
additional bathymetric information. This capability will facilitate the development of a high temporal
resolution hydrologic model and support the decision making for coastal management.
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