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Abstract: Fixed video camera systems are consistently prone to importune motions over time due
to either thermal effects or mechanical factors. Even subtle displacements are mostly overlooked
or ignored, although they can lead to large geo-rectification errors. This paper describes a simple
and efficient method to stabilize an either continuous or sub-sampled image sequence based on
feature matching and sub-pixel cross-correlation techniques. The method requires the presence
and identification of different land-sub-image regions containing static recognizable features, such
as corners or salient points, referred to as keypoints. A Canny edge detector (CED) is used to
locate and extract the boundaries of the features. Keypoints are matched against themselves after
computing their two-dimensional displacement with respect to a reference frame. Pairs of keypoints
are subsequently used as control points to fit a geometric transformation in order to align the whole
frame with the reference image. The stabilization method is applied to five years of daily images
collected from a three-camera permanent video system located at Anglet Beach in southwestern
France. Azimuth, tilt, and roll deviations are computed for each camera. The three cameras showed
motions on a wide range of time scales, with a prominent annual signal in azimuth and tilt deviation.
Camera movement amplitude reached up to 10 pixels in azimuth, 30 pixels in tilt, and 0.4° in roll,
together with a quasi-steady counter-clockwise trend over the five-year time series. Moreover, camera
viewing angle deviations were found to induce large rectification errors of up to 400 m at a distance of
2.5 km from the camera. The mean shoreline apparent position was also affected by an approximately
10–20 m bias during the 2013/2014 outstanding winter period. The stabilization semi-automatic
method successfully corrects camera geometry for fixed video monitoring systems and is able to
process at least 90% of the frames without user assistance. The use of the CED greatly improves
the performance of the cross-correlation algorithm by making it more robust against contrast and
brightness variations between frames. The method appears as a promising tool for other coastal
imaging applications such as removal of undesired high-frequency movements of cameras equipped
in unmanned aerial vehicles (UAVs).
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1. Introduction

Over the past decades, the use of shore-based video systems has become a very popular
and accessible low-cost tool for coastal monitoring, given their capability to deliver continuous,
high-frequency (e.g., daily) data over large enough spatial scales [1,2]. Among the many applications
using video-based remote sensing are shoreline and sandbar position tracking [3–5], nearshore
bathymetry estimation [6–8], determination of intertidal beach slopes [9,10], rip channel formation and
evolution, [11–14], estimation of longshore currents [15,16], wave celerity, period and direction [6,17,18],
and breaking wave height [19].
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Nevertheless, successful and reliable video-based products can only be produced if accurate image
transformation into real-world coordinates is achieved. This is performed through photogrammetry
techniques which provides relationships between the 2-D image geometry and the 3-D real-world
coordinates. A common approach consists of using projective transformation [20,21] that usually
takes into account two types of calibration: An intrinsic calibration, which accounts for the physical
characteristics of the camera lens and can be obtained directly in the lab prior to field installation
(in order to remove distortion effects), and an extrinsic calibration, which depends on the camera
location and orientation after installation, as well as a set of surveyed ground control points (GCPs),
correspondingly manually digitized from the image. Both calibrations are often done just once,
assuming that the physical properties of the lens remain unchanged over time and that the video
cameras and their mounting structures do not move. Hence, the real-world coordinates of the fixed
GCPs are supposed to systematically coincide with the digitized GCPs’ image coordinates for all
video frames. However, the latter assumption is challenged by many observations, showing that even
fixed-mounted video cameras are never perfectly static [1,22–24].

Common non-anthropogenic causes that may produce camera movement or vibration are
attributed to thermal expansion and insulation effects, as well as rain and wind forcing [1,24]. This is
particularly evident in outdoor installations where cameras are directly exposed to the elements.
One possible but tedious solution to address this issue is to digitize all of the GCPs for each presumably
displaced image in order to obtain separately geometric solutions [24]. Another potentially more
efficient alternative is to use (semi-)automatic image stabilization.

Image stabilization refers to any technique used to create a video sequence in which any unwanted
camera motion is removed from the original sequence. In coastal imagery, Holman and Stanley [1]
were the first to address the problem of camera viewing angle variations due to thermal and wind
effects. In order to compensate for the camera movement after acquisition, they used a template
matching method that consisted of selecting small high-contrast regions of an image (including fixed
objects and salient points) and match them with a reference image (from a survey date with a known
geometry solution) to compute their displacement (deviations of tilt and azimuth) in terms of pixel shift.
Using this technique, they found an almost daily diurnal signal with an amplitude of approximately
2 pixels in tilt as a result of the thermal response of the tower on which the cameras were mounted.
After geo-rectification, this shift was equivalent to an error of approximately 30 m in the longshore
direction 1000 m away from the camera. With the further increased use of Unmanned Aerial Vehicles
(UAVs), this method has been refined and automatized to create and recognize features (virtual GCPss)
within a user specified window and a brightness intensity threshold [25,26].

Similar automated feature-matching image stabilization methods have been developed using the
same principle of image comparison. Pearre and Puleo [22] used correlation techniques, a procedure
similar to particle image velocimetry (PIV; [27]) to correct camera azimuthal and tilt movement.
They showed that geo-rectified image errors owing to camera movement grows nonlinearly with the
distance between the camera and the object of interest. Therefore, even small pixel variations can lead
to large errors in real-world coordinates (500 m error 2300 m away from the camera at Rehoboth Beach,
Delaware; [22]). Moreover, they found that despite the fact that all of the cameras experienced slight
movements, the motion effect after geo-rectification was more evident on the camera with the longest
focal length, as this camera was more sensitive to small changes in tilt. Another semi-automatic image
stabilization procedure is described by Vousdoukas et al. [23], Vousdoukas et al. [28] for UAVs and
fixed cameras. Their method consists first of defining a mask to remove the sea from the land for
all frames. The next step is to extract and match pairs of features (keypoints) between consecutive
frames. This can be done by using either a Scale-Invariant Feature Transform (SIFT; [29,30]) or a
Speeded-Up Robust Features (SURF) algorithm [31]. Both algorithms are capable of detecting and
extracting distinctive features such as corners and salient points, under some variations of illumination,
scale, and orientation between frames. In order to identify the correct matches, a random sample
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consensus (RANSAC) algorithm [32] is implemented to filter the outliers, followed by a least squares
fit approach, as well as a sub-sampling of keypoint pairs to reduce computation time.

All of the above techniques rely upon the presence of land-based features or any fixed region
that includes objects with high contrast in the camera field of view. However, in some cases, cameras
just look at the ocean covering only a small beach portion, offering few or no fixed salient features.
Some studies have overcome this limitation by tracking the horizon and using it as a geometric
constraint in order to estimate the camera position and stabilize the images [33,34]. On the other
hand, anticipating or predicting the movement of a camera can also be considered as an alternative
approximation to reduce image deviation after acquisition when no features are available in the
camera view field. Bouvier et al. [24] identified the primary environmental parameters controlling
the shift of the cameras (air temperature, wind conditions, nebulosity, and solar position) and used
them to develop an empirical model to simulate camera movement. Their model showed a good
agreement against the observed camera viewing angle deviations (R2 = 0.71, RMSE = 0.12° for tilt
and roll anomaly) confirming that, at their site, camera motion was primarily controlled by thermal
expansion of the poles where the cameras were mounted, which is modulated in magnitude by the
solar azimuth angle and cloud coverage. Bouvier et al. [24] indicated that the rectification error is up
to 200 and 20 m in the longshore and cross-shore direction, respectively, which can be decreased by
80% with their automated stabilization method.

Image stabilization is a fundamental topic in the research field of Computer Vision [35] with
many applications in object recognition [36], motion analysis [37], and image restoration [38], among
others [39]. Similar stabilization methods have been developed with other purposes outside the
field of coastal imagery [40–43]. One primary problem with existing stabilization methods is that
they are sensitive to changes in illumination, making them prone to failure [44]. Brightness and
contrast variations due to illumination changes are typical for image sequences and can often change
within a few frames [45]. Moreover, if the image sequence is sub-sampled, these parameters can
substantially change between consecutive frames. The purpose of the present work is to develop a
new straightforward method for image stabilization to overcome this limitation. This method provides
a robust solution to stabilize an image sequence under varying illumination with the ability to process
large databases. It builds on state-of-the-art techniques and available routines, with valuable input
for the coastal imaging research community. The following sections will describe the basic steps to
stabilizing an image sequence, compensating for camera motion to avoid positioning errors in the
image. Furthermore, the image stabilization method will be applied to five years of continuous video
data collected from a three-camera video system located at Anglet Beach in southwestern France.

2. Study Site and Video Data

Anglet Beach is a structurally-engineered embayed sandy beach located on the Basque Coast in
southwestern France (Figure 1). The beach is delimited by a prominent headland in the South and
extends over 4 km up to a 1 km long jetty protecting the entrance of the river mouth. According to the
classification of Wright and Short [46], Anglet Beach is an intermediate-reflective beach composed of
medium to coarse sand, with a steep beach-face slope (tan β ≈ 0.1) characterized by a mostly double
bar system [5,47]. Given the west-northwest (WNW) beach orientation, the coast is predominantly
exposed to North Atlantic high-energy swells coming from the WNW direction with an average annual
significant offshore wave height Hs = 1.57 m (occasional wave heights >10 m during winter storms)
and average peak period Tp = 10 s [47,48]. Tides in the area are semi-diurnal with average ranges of
3.94 m for spring tides and 1.69 m for neap tides (i.e., meso-macro tidal range).
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Figure 1. Map of Anglet Beach (Basque Coast, southwestern France) showing the location and field of
view of the three-camera video system installed inside the Biarritz lighthouse (photo by M. Bourbon).

A permanent video-monitoring station has been operating since September 2013 at the southern
end of Anglet Beach. It is installed inside the Biarritz lighthouse, 70 m above mean sea level. The station
consists of three cameras: Camera 1 (12 mm lens), camera 2 (25 mm lens) and camera 3 (8 mm lens) that
together cover approximately 2.5 km of the southern beach shoreline, including four groins that extend
about 100 m seaward (Figure 1). Each camera provides different image products in the daylight. From
September 2013 to February 2017, single snapshot images, 10 min averaged time-exposure images
(timex), 10 min variance images, and 10 min timestack images (e.g., [1]) were collected every 20 min at
1 Hz. In March 2017, the configuration of the video station changed. From April 2017 to the present,
image products were collected every 15 min at 1 Hz during an averaged period of sampling of 14-min.
According to Castelle et al. [49], the best shoreline proxy for meso-macrotidal multiple-barred beaches
was obtained at mean high water level (MHW), since the inner-bar and berm dynamics have little
influence on the shoreline cross-shore displacement for this elevation contour. In order to have at least
one image per day, the lowest high tide level was preferred. For this study, time-exposure images
were selected at mean high water neap level time (MHWN = 0.86 m) with a mean accuracy of ±0.08 m
and a maximum error of ±0.28 m. This resulted in a five-year daily time-exposure image time series
consisting of approximately 1500 frames per camera, spanning from 1 October, 2013 to 9 September,
2018. The timex time series was treated as a continuous image sequence and was further used to
compute the long-term image displacement for each camera.

3. Image Stabilization Method

The image stabilization method developed below is based on feature matching, and necessarily
requires the presence of at least a few recognizable static features distributed in both dimensions
in the field of view. Features should not be collinear, so that the geometric transformation can be
correctly applied to the whole image. The concept of the method is to compute the two-dimensional
displacement (azimuth and tilt) of the features between frames and use them as matching control
points to estimate a 2-D geometric transformation that incorporates translation, rotation, and scaling to
align the whole image with a reference image. The following subsections will describe the basic steps
to stabilize an image sequence through a semi-automatic procedure using state-of-the-art techniques.

3.1. Reference Image and Sub-Image Region Selection

The first step consists of defining a reference image. All of the frame motions are estimated
relative to this reference image. The selection of the reference image should correspond to the time
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when the GCPs were surveyed. The next step is to identify static recognizable features within the
reference frame. The features should be easily visible fixed objects such as buildings or any inland hard
structure containing corners or salient points. The features should not only appear in the reference
image, but also in every frame of the whole time series. Around each feature, a sub-image region
(hereinafter referred to as zone) should be manually defined. This user-defined zone surrounding the
feature must also contain a single reference point, referred to as keypoint, specified by the user. Every
zone acts as a search region to identify the keypoint, representing the feature that would drifting with
time. This implies that the user needs to estimate a possible range of camera pixel shift to design the
zone within which the feature and keypoint is always visible. This can be done easily through a visual
inspection of the entire image sequence. To test if the zone size is adequate, the zone from the reference
frame can be compared with the last frame of the image sequence (assuming that the last frame is
shifted) or any other random frame to verify if the zone still isolates the feature containing the keypoint.
It must also bear in mind that the user must not design too large of a zone to keep computation time
reasonable, since every zone is treated as an individual sub-image sequence. The number of keypoints
depends on the geometric transformation that will further be used (at least two keypoints are necessary;
more is better) and should be distributed as much as possible throughout the reference image to avoid
collinearity. The keypoint pixel positions will be defined as (κz,c

u , κz,c
v ), where z is the sub-image zone

index and c is the camera number index.
Figure 2 shows an example of the selection of four different sub-image zones for camera 2 of

the Anglet video station. The sizes of the zones vary, but are kept to roughly 250× 90 pixels. It is
worthy of mention that it is not advised to choose groins as keypoints, since the corresponding zone
will include non-stationary features from the water (such as foam patches) that can be mistakenly
identified as keypoints, and can introduce significant errors during the image stabilization method [28].
For the present study, four zones were defined for cameras 1 and 2, and five zones for camera 3.
The reference image for each camera was defined as the first frame of each image sequence (1 October,
2013—09:40:00 GMT).

Figure 2. Selection of different fixed land regions (zones) with their respective keypoints for camera 2.

3.2. Canny Edge Detector

Many popular algorithms automatically recognize, extract, and match keypoints between frames
without any a priori knowledge, using corner and blob recognition under similar illumination
conditions [50]. Examples of widely used feature detection algorithms are: SIFT (Scale-Invariant
Feature Transform; [29,30]), FAST (Features from Accelerated Segment Test; [51]), and SURF (Speeded-Up
Robust Features; [31]). Although these algorithms have proven to be very efficient in object recognition
applications, their performance is only robust against small brightness changes between frames. This
does not represent an inconvenience if the image sequence to be stabilized is sampled at a high-frequency
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frame rate over a small period of time (e.g., UAV survey at 2 Hz over 17 min) since the contrast and
brightness between frames barely change. However, in long-term coastal monitoring, it is common to
work with sub-sampled image sequences (e.g., daily images, as in this study) where consecutive frames
usually change substantially in terms of brightness and contrast, owing to different weather and daylight
conditions leading the feature detector algorithms to degrade and fail.

The present stabilization method makes use of a Canny edge detector (CED; [52]) to enhance and
extract the edges that define the boundaries of the primary features within a sub-image zone. Although the
CED is not insensitive to changes in illumination, it is quite robust at recognizing the same edges between
frames even under luminosity variations. The CED works in five steps: (a) Smooth the image using a
Gaussian filter in order to remove the noise, (b) determine the image intensity gradient in both vertical and
horizontal directions, (c) apply a non-maximum suppression to discard all of the points that do not occur
at the gradient local maximum, (d) apply a double threshold to preserve certain edges, and (e) track and
keep weak edges that are connected to strong edges via an edge threshold (referred to as hysteresis).

3.3. Image Sub-Pixel Cross-Correlation and Translation

Before registering and aligning images, a mathematical relationship should be established so
that pixel coordinates can be mapped from one image to another. In this sense, a displaced image
g(u′, v′) can be expressed as a coordinate transformation (T) of a reference image f (u, v). A 2-D affine
transformation that considers only translation is valid to apply if the size, shape, and orientation of the
displaced image remain the same as those of the reference image. This mapping can be represented as
a matrix multiplication (g = Tf) using homogeneous coordinates [21]: u′

v′

1

 =

 1 0 ∆u
0 1 ∆v
0 0 1


 u

v
1

 =

 u + ∆u
v + ∆v

1

 , (1)

where ∆u and ∆v denote the two-dimensional displacement (i.e., pixel shift) of g(u′, v′) with respect
to f (u, v).

The 2-D pixel rigid translation (∆u, ∆v) is obtained using the optimized cross-correlation
algorithm of Guizar-Sicairos et al. [53] (also referred to as single-step discrete Fourier transform
algorithm). This algorithm allows registering the image displacement within a user-specified fraction
of a pixel. The algorithm starts by up-sampling two times the resolution of the image dimensions
(M and N) and applying a discrete fast Fourier transform (DFT) over all image points (u, v) to get an
initial estimate of the location of the cross-correlation peak. The cross-correlation (CC f g) of f (u, v) and
g(u′, v′) can be expressed as follows:

CC f g(∆u, ∆v) = ∑
u,v

f (u, v)g∗(u′ − ∆u, v′ − ∆v)

= ∑
m,n

F(m, n)G∗(m, n) exp
[

i2π

(
m∆u

M
+

n∆v
N

)]
,

(2)

where (∗) denotes complex conjugation and uppercase letters represent the DFT of the images, as
given by:

F(m, n) = ∑
u,v

f (u, v)√
MN

exp
[
−i2π

(mu
M

+
nv
N

)]
. (3)

For a higher up-sampling factor, instead of computing all of the up-sampled points of the array,
only a small neighborhood around the initial peak estimate is up-sampled using a matrix-multiply
discrete Fourier transform to refine the peak location. This dramatically reduces computation cost
without losing accuracy. A detailed description of the algorithm is beyond the scope of the present
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contribution and can be found in [53,54]. In addition, a MATLAB code version of the algorithm is
freely available and can be found in the MATLAB MathWorks File Exchange [55].

Once the ∆u and ∆v corresponding to the cross-correlation peak are found, the displaced image
can be relocated to the reference image position through an inverse transformation by mapping the
pixel coordinates back to the reference image (f = T−1g): u

v
1

 =

 1 0 −∆u
0 1 −∆v
0 0 1


 u′

v′

1

 =

 u′ − ∆u
v′ − ∆v

1

 . (4)

As the image shift has sub-pixel accuracy, pixel values at fractional coordinates need to be
retrieved. This is achieved by interpolating the surrounding pixels onto the reference image grid in
order to compute the new intensities.

2-D rigid image translation is properly valid only for a perpendicularly oriented camera. For an
oblique view, the 2-D pixel rigid translation between frames can be interpreted as projections of the
camera movement in the azimuth and tilt direction (∆u = ∆Azimuth, ∆v = ∆Tilt; [1,22,23]). Given
the changes in perspective, the 2-D shifts between frames will also vary depending on the sub-region
of the image. For the present method, 2-D shifts are computed only with the purpose of matching
keypoints distributed in different zones of the image. The stabilization of the whole image, on the
other hand, will be performed using these keypoints with another type of geometric transformation
with more degrees of freedom to account for the image deformation produced by the relative angle
variation of the camera.

At this stage, the keypoints and their corresponding surrounding zones have been defined and
filtered through the CED in order to extract the edges of the features and improve the performance
of the cross-correlation algorithm. The next step consists of using these features along consecutive
frames to estimate, via sub-pixel cross-correlation, the two-dimensional displacement of each zone
and camera (∆uz,c

j,r , ∆vz,c
j,r ), where j is the frame number index and r is the reference frame used for the

computation of the 2-D sub-pixel shift. Figure 3 shows an example of keypoint matching between a
pair of sub-images from zone 1 (z = 1) of camera 2 (c = 2). First, the CED is applied to both sub-images:
The reference sub-image (r = 1; 1 October, 2013—09:40:00 GMT) and the displaced sub-image (j = 1301;
6 Feburary, 2018—09:15:00 GMT). The sub-pixel shift between frames is subsequently computed using
an up-sampling factor of 20: ∆u1,2

1301,1 = −2 pixels, ∆v1,2
1301,1 = −29.2 pixels. Finally, the shift is used to

translate the displaced sub-image to match with the keypoint of the reference sub-image represented
by the green cross (κ1,2

u = κ1,2
u′ − ∆u1,2

1301,1, κ1,2
v = κ1,2

v′ − ∆v1,2
1301,1) in Figure 3.

A semi-automatic method was developed to perform the same steps as shown in Figure 3 for a
given image sequence. Figure 4 illustrates a single iteration of this procedure. The goal is to compute
the pixel shift of every frame with respect to the reference image (∆uz,c

j,r , ∆vz,c
j,r ) in order to retrieve the

keypoints’ displaced positions (κz,c
u′j

, κz,c
v′j

). The routine works under a loop that iterates over all the

frames of a given zone and camera. At each iteration, the algorithm automatically applies a CED to
the sub-image zone and computes the pixel shift of the current frame with respect to the reference
frame (case 1). An additional condition is used to assess the congruence of the estimated pixel shift.
The condition assumes that the pixel shift between consecutive frames is small. A typical diurnal signal
due to thermal expansion has a range of approximately two pixels [1], so even if the image sequence is
sub-sampled, it is reasonable to stipulate that the pixel shift of a frame with respect to the previous one
should not be larger than 10 pixels, in either the u or v direction. In the case that the condition is not
fulfilled, there is no certain way to discern if the estimated pixel shift is anomalously large because the
cross-correlation algorithm has been fooled or if the displacement is actually true and resulted from
other factors (e.g., human intervention, strong wind, etc.). The CED plays a critical role in decreasing
the effects of brightness and contrast changes between frames by just retrieving the edges; however,
the cross-correlation algorithm is still likely to fail if some edge patterns of the same keypoint do not
match, or even worse, if patterns resemble each other mistakenly while corresponding to different
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real-world patterns. To verify that the two frames are as similar as possible, a second option (case 2)
is proposed to estimate ∆uz,c

j,r and ∆vz,c
j,r without directly computing the pixel shift with respect to the

reference frame. Instead, the pixel shift is computed with respect to the previous stabilized frame:
f (uz,c

j−1, vz,c
j−1) = g(u′z,c

j−1 −∆uz,c
j−1,r, v′z,c

j−1 −∆vz,c
j−1,r), which in turn is also relative to the reference frame.

If, despite the above two cases, the pixel shift remains greater than 10 pixels, the algorithm enters into
a semi-automatic mode and offers the user four different options:

• Keep the pixel shift computed by using the reference frame (case 1).
• Keep the pixel shift computed by using the previous stabilized frame as the reference (case 2).
• Manually select the keypoint position to compute the pixel shift (case 3).
• Discard the frame (case 4).

An additional visual representation (similar to Figure 3) shows the user how the stabilized frame
would look if the case 1 or case 2 pixel shift were used. If neither option is appropriate, the user has the
possibility to manually select the keypoint position (κz,c

u′j
, κz,c

v′j
) in the current frame in order to compute the

corresponding pixel shift (case 3). Alternatively, the frame can present serious contamination in the form of
sun glint, raindrops, or fog, in which case the frame can be discarded (case 4). Finally, the pixel shift is stored
at each iteration so that all of the keypoints of a given zone and camera can be matched against themselves.

Figure 3. Keypoint matching between a pair of sub-images corresponding to zone 1 of camera 2.
(a) Reference sub-image: 1 October, 2013—09:40:00 GMT; (b) unstabilized sub-image: 6 February,
2018—09:15:00 GMT; (c) reference sub-image after applying the Canny edge detector (CED); (d)
unstabilized sub-image after applying the CED; (e) reference and unstabilized sub-image overlapped;
(f) sub-image translation after computing azimuth and tilt pixel shift; (g) same figure as (a); (h)
stabilized sub-image: 6 February, 2018—09:15:00 GMT. The green cross represents the static keypoint
that should match between frames.
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Figure 4. Automatization steps to stabilize a sub-image zone of an image sequence by estimating the
2-D pixel shift with respect to a reference frame.

3.4. Geometric Transformation

The number of corresponding keypoints identified between images establishes the type of
geometric transformation that can be defined to map and relocate the displaced image points onto a
reference image. A geometric transformation is constrained by the degrees of freedom (DOF). At least
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one corresponding keypoint is necessary to estimate the 2-D rigid translation motion between frames
(two DOF). Two pairs of non-collinear keypoints are enough to solve the four parameters of a similarity
transformation: u′

v′

1

 =

 s cos θ −s sin θ ∆u
s sin θ s cos θ ∆v

0 0 1


 u

v
1

 =

 us cos θ − vs sin θ + ∆u
us sin θ + vs cos θ + ∆v

1

 , (5)

defined as a linear combination of translation (∆u, ∆v), rotation (θ), and a scale factor (s). The rotation
is defined as a counter-clockwise rotating angle with respect to the reference frame and can often
be interpreted as the camera angle movement on its roll axis. The similarity transformation lacks
the ability to represent a true three-dimensional motion model; however, it can adequately estimate
motion between frames if the camera movement or the scene are constrained to certain conditions [56].
Jin et al. [57] stated that if the translations of the camera are zero and the relative angle variation of
the camera between frames is very small (e.g., less than 5°), the effect of the depth of scene points
can be neglected. This means that camera roll is the main factor of image rotation (θ = ∆Roll),
and small camera azimuth and tilt variations can be represented by 2-D translations of the image
(∆u = ∆Azimuth, ∆v = ∆Tilt). On the other hand, if image points are of the same depth, or the depth
difference among image points is much less than the average depth (i.e., the camera is far away from
the object), small camera translation will mainly cause homogeneous scaling and translation of 2-D
images [58]. The latter assumptions are valid for the case of fixed cameras as long as the viewing angles
shift slightly. It is important to note that camera orientation always goes in the opposite direction from
the relative frame displacements with respect to the reference image (Figure 5).

Figure 5. (a) Camera angle movements according to (b) azimuth, tilt, and roll deviations with respect
to a reference image.

Working with a similarity transformation has the advantage of being fast and simple in terms of
computational complexity [59]. The similarity motion parameters can be estimated over an iterative
process using the keypoint correspondences of all sub-images’ zones for every frame of a given camera.
These parameters allow the performing of a global transformation to warp and stabilize the whole
image sequence.

3.5. Image Geo-Rectification

After all the images are correctly stabilized, the coordinates of the 2-D images (u, v) must
be transformed to 3-D real-world coordinates (x, y, z) through a photogrammetric transformation.
The determination of the transformation is called camera calibration and involves two sets of
parameters: Extrinsic and intrinsic parameters. The extrinsic parameters contain the information
related to the position and orientation of the camera (the three coordinates of the camera location and
the three rotation angles) and the intrinsic parameters comprise the physical characteristics of the lens of
the camera (the image center coordinates, the effective focal length, and the scale factors). Direct linear
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transformation (DLT) developed by Abdel-Aziz and Karara [60] is perhaps the most commonly used
camera calibration method because it does not require initial knowledge of the extrinsic and intrinsic
parameters [34]. These parameters are implicit in the 11 transformation parameters; however, nonlinear
effects such as radial distortion are not taken into account and can lead to coupling errors between
parameters, affecting the camera calibration accuracy [61]. The DLT method represents a closed-form
solution requiring non-coplanar real-world surveyed GCPs with corresponding image coordinates.
Each GCP generates two linear equations that can be expressed as the following matrix multiplication:(

x y z 1 0 0 0 0 −ux −uy −uz
0 0 0 0 x y z 1 −vx −vy −vz

)
L =

(
u
v

)
, (6)

where L = (L1, L2, ..., L11)
T are the transformation parameters. At least six GCPs are necessary to

build an overdetermined set of linear equations to estimate the 11 transformation parameters using
a least square method. The limitation of working with one single camera, or many cameras that are
not looking at the same object, is that one coordinate must be constrained to a fixed value to allow
inverse mapping. When studying the nearshore zone, the vertical coordinate (z) is usually assigned
to be equal to the instant sea level. However, if the topography is known and the swash zone is the
subject of study (e.g., wave runup), an iterative rectification method using the beach topography can
be applied to reduce rectification positioning errors, as described by Blenkinsopp et al. [62].

Another popular calibration method is the one proposed by Holland et al. [20]. In their method,
they solve the five intrinsic parameters in the lab and solve the six remaining extrinsic parameters
using at least three GCPs and a standard nonlinear solver [25,26]. The intrinsic parameters can be
estimated using the Caltech camera calibration toolbox for Matlab [63] prior to camera installation,
in order to remove lens distortion. Although there are many well-documented camera calibration
methods [64–67], deciding which one to use is up to the user’s convenience.

For this particular paper, DLT was used to generate the plan-view (geo-rectified) images,
considering 8–10 GCPs per camera. Images were merged and projected onto a horizontal plane with
a grid size of 1× 1 m and elevation equal to mean high water neaps (zMHWN = 0.86 m). In addition,
non-stabilized and stabilized geo-rectified images were compared to estimate the induced real-world
positioning error due to camera movement.

4. Results

4.1. Keypoint Tracking

The stabilization method was applied to five years of daily images collected from the permanent
three-camera video system located at Anglet Beach. Figure 6 illustrates estimates of horizontal
(azimuth) and vertical (tilt) displacements of the four keypoints distributed at different sub-image
regions of camera 2 (see Figure 2). Azimuth and tilt deviations were expressed as pixel differences
from the initial image position (1 October, 2013—09:40:00 GMT). The results show a high variability
in the position of the four keypoints, indicating that the camera moved throughout the study
period. Deviations of azimuth and tilt varied respectively from −10 to 8 pixels and −33 to 2 pixels.
The standard deviation of the detrended pixel displacement, which is a measure of the magnitude
of camera movements, was 2 and 5 pixels in the horizontal and vertical directions, respectively.
The camera oblique view generated an approximately constant offset (0.2 pixels horizontal; 0.4 pixels
vertical) in the displacement between zones. An annual motion signal (≈4 pixels amplitude) together
with a quasi-steady trend (1.6 pixels/year horizontal; −3.4 pixels/year vertical) can be identified,
suggesting that the orientation of camera 2 gradually moved towards the southwestern direction.
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Figure 6. Daily (a) azimuth and (b) tilt displacements of the different sub-image zones in camera 2,
expressed in terms of pixel shift. The deviations are computed with respect to the reference image: 1
October, 2013—09:40:00 GMT.

4.2. Camera Movement Correction

Figure 7 shows the evolution of the transformation parameters (translation, rotation, and
scaling) derived from a Euclidean (i.e., Similarity) transformation for the three-camera video system.
All cameras showed motion throughout the study period on a wide range of time scales. The movement
amplitudes of cameras 1, 2, and 3 reached approximately 5.6, 10.4, and 5.7 pixels in azimuth and 9.5,
30.7, and 15.1 pixels in tilt, respectively. The standard deviations of detrended azimuth for the three
cameras were 1.5, 2.5, and 1.4 pixels with trends of −0.8, 1.6, and −0.4 pixels/year. Respectively, the
standard deviations of detrended tilt were 2.9, 4.7, and 1.8 pixels, with trends of 0.8, −2.9, and −2.1
pixels/year. An annual signal of about 0.6 (camera 1), 2.3 (camera 2), and 0.4 pixels (camera 3) in
azimuth and 1.9 (camera 1), 4.2 (camera 2), and 1.8 pixels (camera 3) in tilt deviation were apparent on
the total record. Moreover, the three cameras presented variations in roll angle up to 0.4°, 0.2°, and 0.1°
with a standard deviation of 0.05°, 0.03°, and 0.03° for cameras 1, 2, and 3, respectively. Cameras 1 and
2 exhibited an increasing counter-clockwise trend in roll angle (0.08°/year and 0.03°/year, respectively)
over the five-year time series. An overall enlargement was notable after 2015, particularly for camera 1.
The scale factor (s) increased the image size of camera 1 by up to 10% and the image size of camera 2
by 3%. Camera 3 presented no significant changes in image scale (maximum of 0.6%).

The transformation parameters were used to warp and align the whole image sequence with the
reference frame. Figure 8 shows the long-term averaged video (spanning the complete time series)
using raw video frames and corrected frames from camera 2. The raw input mean is blurry (Figure 8a),
indicating significant image shifts induced by the camera movement. The mean of the corrected frames
(Figure 8b) shows the efficacy of the stabilization method by preserving the same image sharpness (of
the fixed features) as the reference frame.
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Figure 7. (a) Azimuth, (b) tilt, (c) roll, and (d) scale parameters of the similarity transformation matrix
computed for the three cameras relative to the reference image: 1 October, 2013—09:40:00 GMT.

Figure 8. Time series average (spanning 1 October 2013–9 September 2018) of all of the (a) unstabilized
frames and (b) stabilized frames of camera 2.

4.3. Geo-Rectification Error

Camera movements result not only in image deformation but also in geo-rectification errors.
Figure 9 provides an example of positioning error due to camera motion. A comparison between
stabilized and unstabilized geo-rectified images for a specific date is presented together with
a spatial description of the error, to highlight the impact of camera viewing angle deviations.
Figure 9a shows the reference frame (1 October, 2013—09:40:00 GMT) plain-view image in real-world
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coordinates obtained after geo-rectification of the time-exposure images collected from the three-camera
video system. Figure 9b,c show geo-rectification of a subsequent image when a large camera
viewing angle deviation was present (6 Feburary, 2018—09:15:00 GMT; same date chosen as for
Figure 3). Figure 9b considers stabilization of the time-exposure images before geo-rectification,
while Figure 9c does not take it into account. Figure 9d presents the associated geo-rectification error

(
√

alongshore error2 + cross-shore error2) of Figure 9c produced by camera movement. This error
depends on the grazing angle and lens properties, and typically increases with increasing distance
from the camera [24]. The comparison between images highlights the differences in position, size, and
shape of fixed objects when stabilization is omitted. For this particular date, horizontal errors exceed
400 m (400 m in the alongshore and 100 m in the cross-shore directions). For instance, a displacement
of the groins is readily apparent, with the alongshore location of the right-hand groin varying from
1750 to 2000 m. Furthermore, the whole beach area appeared to shrink approximately 50 m in contrast
to the stabilized geo-rectified image. The geo-rectified image that considered stabilization kept the
groins well aligned with respect to their original positions, with all of the fixed objects retaining their
initial sizes and shapes.

Figure 9. Anglet Beach geo-rectified time-exposure images highlighting the impact of camera viewing
angle deviation. (a) Reference geo-rectified image: 1 October, 2013—09:40:00 GMT; (b) stabilized
geo-rectified image: 6 February, 2018—09:15:00 GMT; (c) unstabilized geo-rectified image: 6 February,
2018—09:15:00 GMT; (d) positioning error due to camera movement for 6 February, 2018—09:15:00
GMT. White dashed lines indicate groins’ original positions.

5. Discussion

The semi-automatic stabilization method was applied to five years of daily time-exposure
images collected from three synchronized cameras located at Anglet Beach in southwestern France.
For keypoint matching, approximately 1500 frames were processed for each sub-image zone, requiring
an average processing time of between 1 and 4 s per frame on a standard commercial personal computer
(4th generation Core i5-4690, 3.5 GHz, Dell OptiPlex 9020). The distribution of cases used to compute
the 2-D pixel shift displacement for each keypoint (Figure 4) gives an estimation of the performance of
the algorithm in terms of how much user assistance was required. For example, just for sub-image
zone 1 of camera 2, 97% of the pixel shifts were computed using case 1, 0.92% were computed using
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case 2, 0.26% using case 3, and 1.7% using case 4. This means that four frames corresponding to that
zone required manual pixel shift computation and 26 frames were manually discarded. The overall
distribution of cases used for all cameras and all sub-image zones was: 90.42% (case 1), 1.38% (case 2),
4.91% (case 3), and 3.28% (case 4). It is important to note that some matching cases corresponding to
case 1 and case 2 also required user visual control. User confirmation for those cases was necessary
when the automatically computed pixel shift between consecutive frames was larger than the threshold
(10 pixels) but was still correct. Much of the user intervention essentially consisted of discarding
low-quality frames. For future work, a possible improvement could be achieved by pre-selecting frames
or exploring this issue further by developing a separate procedure to automatically keep/discard
frames prior to image stabilization.

The use of the CED is crucial for a robust performance of the cross-correlation algorithm
when differences in contrast, brightness, and illumination conditions between frames are present.
Figure 10 shows the effect of the CED on the stabilization with respect to a reference sub-image
(Figure 10a,e,i) under three representative cases of illumination conditions: Under shiny (overexposed
image; Figure 10b), cloudy (high-contrast image; Figure 10f), and foggy (low-contrast image; Figure 10j)
weather conditions. The cross-correlation between sub-images without CED determines the similarity
between frames based on their color/grayscale pixel intensity. This means that the performance
of the cross-correlation not only depends on the features present in the frame, but also on changes
in light conditions between frames. Large changes can lead to errors, as shown in Figure 10c,g,k.
On the other hand, when using the CED, pixel intensities are converted to only two possible values:
1 if edges that define the boundaries of the features are detected, and 0 if not. The efficiency of the
cross-correlation in combination with the CED relies upon the fact that the amount of data to be
processed is reduced. Moreover, the cross-correlation algorithm, together with the CED, estimates the
similarity between frames based only on the boundaries and edges detected, regardless of contrast and
brightness variations between frames, as long as the features are still visible and easily recognizable by
their shapes and forms (Figure 10d,h,l).

Figure 10. Sub-image stabilization of zone 1 of camera 2 under different illumination conditions. (a,e,i)
Reference sub-image: 1 October, 2013—09:40:00 GMT; (b,f,j) unstabilized sub-images under shiny,
cloudy, and foggy weather conditions; cross-correlation between the reference sub-image and the
unstabilized sub-images with (d,h,l) and without (c,g,k) using the CED. The green cross represents the
static keypoint that should match between frames.
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The performance of the cross-correlation algorithm (together with the CED) depends strongly
on the land-region zone selected; therefore, the sub-image region selection is the most important step
of the method. It is advised to define a large enough window to allow inter-frame movement not
only for the keypoint, but also for the whole feature (e.g., building structure, billboard, road, etc.) to
guarantee better results and reduce user assistance during the pixel shift computation process as much
as possible. The compromise of having a larger zone-size is just related to the computation time that it
will take for the cross-correlation algorithm to work on each frame. However, it is more important
to be careful not to choose a very small zone where the feature (including the keypoint) might drift
out of view; in this case, this would lead the cross-correlation algorithm to fail. A limitation of the
method is that it requires the presence of fixed features in the camera view field. However, for fixed
video systems where cameras’ viewing angles usually shift slightly (e.g., less than 5°) and cameras’
translational movements are small, a similarity transformation (four DOF) can be performed to stabilize
the images with a minimum of two non-collinear pairs of keypoints between frames. The advantage
of this approach, besides requiring fewer keypoints, is that it is computationally efficient and robust
enough to achieve good results. Nevertheless, registration reliability and accuracy can be increased
by selecting more landmarks in the image. Having more spread keypoints in the image reduces
foreground–background bias, and also allows the possibility of implementing other more complex
types of geometric transformations with higher degrees of freedom [21], such as a 2-D affine (six DOF)
or planar nonlinear homography (eight DOF) transformation, to remove perspective deformation
introduced by the camera oblique view (really necessary for UAVs). The method has been tested on
UAV flights (data not shown), showing that the performance largely improves (with 99% matches
for case 1 and case 2) when using higher frequency frame rates (>1 Hz) over smaller periods of time
(<20 min), although other geometric transformations with higher degrees of freedom are necessary,
due to the fact that camera translation movements become significant.

The time evolution of the transformation parameters shows that camera movements occur on a
wide range of timescales (see Figure 7). The annual signal in azimuth and tilt deviation can potentially
be attributed to the sun’s position and thermal expansion fluctuations [24]. It is important to note
that all cameras were installed inside the lighthouse, mounted in a wooden structure, and isolated by
an acrylic glass from the outside elements, so wind is not expected to be a source of camera motion
for the present study. While movements were likely occurring for all cameras, the effects of azimuth
and tilt motion were most notable for camera 2 (which had the longest focal length; 25 mm lens) and
less evident for camera 3 (wide-angle 8 mm lens). This is in line with Pearre and Puleo [22], who
previously showed that the longer the focal length (e.g., 50 mm), the smaller the angle of view, and
the larger the sensitivity to causing significant changes in image location, even for small changes
in the tilt of the camera. Moreover, small changes in perspective were found to modify the sizes
of the objects (uniform scaling) when objects were far away from the camera, as shown in Figure
7d for camera 1. On the other hand, the quasi-steady counter-clockwise trend observed in roll
angle (Figure 7c) suggests that the wooden structure where the cameras are mounted is gradually
arcing with time, although this cannot be verified. Previous studies have shown that small camera
viewing angle deviations can induce significant changes in image location and, in turn, introduce
large geo-rectification errors [22,24,26]. However, besides camera variation angles, the related error is
also modulated with the pixel footprint, which depends on the distance from the camera and the lens
properties. For example, even though camera 2 presented the largest deviations in azimuth and tilt (see
Figure 6), its associated geo-rectification error was slightly lower with respect to the other cameras for
the same distances (see Figure 9d). This result might be explained by the fact that camera 2 has a higher
pixel resolution and, hence, a lower pixel footprint that counteracts the pixels’ induced real-world
location error. Nevertheless, the evidence still points out that geo-rectification errors induced by
camera movement can become significant and should not be neglected. In an attempt to demonstrate
the impact of this error (in perhaps the most common coastal video application), 2.5 km of shoreline
were manually digitized for the outstanding winter period of 2013/2014 [68–70], using non-stabilized
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and stabilized time-exposure geo-rectified images to estimate the real-world horizontal positioning
error due to camera movement (Figure 11). The mean shoreline position (intersection of wet and dry
parts of the beach [4]) was defined as the alongshore-averaged shoreline position. The alongshore
standard deviation of the shoreline position was also computed to give a measure of the alongshore
variability of the cross-shore position. During the winter period of 2013/2014, high-energy wave
conditions (Hs > 5 m) drove important changes in Anglet Beach shoreline dynamics [5]. Part of the
seasonal erosion cycle is captured in Figure 11, where the shoreline position varied within a range
of 30 m. The mean shoreline apparent position was also affected by an approximately 10–20 m bias,
showing that incorrect tilt may bias positions of features by condensing or stretching the image in the
cross-shore direction. This result highlights that overlooking camera movement can result in strongly
under- or over-estimation of shoreline response to extreme events.

Figure 11. Daily alongshore averaged shoreline position extracted from stabilized (red dots)
and unstabilized (blue dots) geo-rectified images for the outstanding winter period of 2013/2014.
The alongshore standard deviation of the cross-shore position is indicated by the vertical error bars.

6. Conclusions

In this paper, we developed an efficient semi-automatic method to remove unwanted camera
movement after video acquisition. The method consisted of defining and tracking a few fixed feature
points between consecutive frames using the Guizar-Sicairos et al. [54] sub-pixel cross-correlation
algorithm together with a CED [52]. The use of the CED greatly improved the performance
of the cross-correlation algorithm by making it more robust against contrast and luminosity
brightness variations. The tracked features allowed the computation of the parameters of a similarity
transformation (translation, rotation, and scale) in order to estimate the motion between frames and
compensate for it. For the keypoint matching, the method worked under a scheme of four cases.
The algorithm was capable of automatically computing the 2-D sub-pixel shift of a keypoint with
respect to an initial position, as long as the displacements between consecutive frames remained
smaller than 10 pixels. Otherwise, user input was required to discern if the calculated pixel shift
was legitimate or if the frame had to be discarded. The results showed that the semi-automatic
method is able to process at least 90% of the frames without user assistance. However, future work
should examine the possibility to automatically discard low-quality images acquired under adverse
rainy or foggy conditions, in order to reduce user intervention. Image stabilization is a fundamental
post-processing step that should always be performed in coastal imaging applications to increase the
accuracy of video-derived products, such as shoreline/sandbar positions, wave celerity, and depth
estimates. The framework presented here opens new perspectives and appears as a promising tool for
other coastal imaging applications, such as removal of undesired high-frequency jitters from UAVs.
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