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Abstract: Accurate automated segmentation of remote sensing data could benefit applications from
land cover mapping and agricultural monitoring to urban development surveyal and disaster damage
assessment. While convolutional neural networks (CNNs) achieve state-of-the-art accuracy when
segmenting natural images with huge labeled datasets, their successful translation to remote sensing
tasks has been limited by low quantities of ground truth labels, especially fully segmented ones, in the
remote sensing domain. In this work, we perform cropland segmentation using two types of labels
commonly found in remote sensing datasets that can be considered sources of “weak supervision”:
(1) labels comprised of single geotagged points and (2) image-level labels. We demonstrate that
(1) a U-Net trained on a single labeled pixel per image and (2) a U-Net image classifier transferred
to segmentation can outperform pixel-level algorithms such as logistic regression, support vector
machine, and random forest. While the high performance of neural networks is well-established
for large datasets, our experiments indicate that U-Nets trained on weak labels outperform baseline
methods with as few as 100 labels. Neural networks, therefore, can combine superior classification
performance with efficient label usage, and allow pixel-level labels to be obtained from image labels.

Keywords: deep learning; image segmentation; weak supervision; agriculture; Landsat; land
cover classification

1. Introduction

Automatic pixel-wise classification of remote sensing imagery enables large-scale study of
land cover and land use on the Earth’s surface, and is relevant to applications ranging from
deforestation mapping [1] and development surveyal [2] to ice sheet monitoring [3] and disaster
damage assessment [4]. In computer vision, pixel-wise classification is a classic task known as semantic
segmentation, and has been tackled with increasing success in recent years due to the development of
deep convolutional neural networks (CNNs) [5–9] and large labeled benchmark datasets on which
to test architectures [10–13]. The advantage of CNNs over machine learning methods that take
the features of a single pixel as input—such as random forests, support vector machines (SVMs),
and logistic regression—is their ability to consider a pixel’s context (that is, the pixels near that pixel)
in addition to the pixel’s own features when performing classification [14]. This context may be
helpful when, for example, a pixel of grassland and a pixel of cropland share similar phenological and
spectral features, but a wider view of cropland reveals that it is divided into rectangular parcels while
grassland is not.

Traditional training of CNNs for segmentation, including the latest methods developed for remote
sensing imagery (Section 2), provides the model with an image as input, and computes the loss
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between the network’s pixel-wise output and a segmented ground truth [15]. Here “segmented”
means that every (or nearly every) pixel in the image has its own label. Segmented labels are dense
in information but time-consuming and expensive to generate. In amassing 200,000 segmented
labels, the creators of the Microsoft COCO (Common Objects in Context) dataset wrote that each
image took on average 10 min to segment and only one-third of crowdsourced workers passed their
accuracy criterion [11]. For some applications of remote sensing, there is the added challenge of
labels requiring expert knowledge (e.g., identifying cropland in Sub-Saharan Africa) or on-the-ground
surveys (e.g., measuring household wealth) to obtain [16]. This can be especially true in areas of the
world where we know little about land cover and land use, and can benefit a great deal from additional
knowledge. These challenges place many applications in a “small data” regime, with labels that do not
resemble the typical fully segmented ground truth.

We explore in this work whether segmentation of remote sensing imagery can be achieved with
high accuracy using (1) sparse pixel-level labels or (2) image-level labels, which we will call sources of
weak supervision. We use the term weak supervision to refer to leveraging high-level or noisy input from
subject matter experts or crowdsourced workers to perform supervised learning [17]. These ways of
labeling data have a number of advantages: they already exist in abundance, are faster and cheaper
to obtain per label de novo, may be easier to obtain from non-experts, and may be the only type of
data obtainable on the ground. We study how segmentation performance varies with dataset size and
how methods trained via weak supervision compare with those trained directly on segmented labels
across both deep neural networks and other machine learning methods (random forest, SVM, logistic
regression). Note that we will use the term segmentation to refer to pixel-level classification, and reserve
classification for image-level tasks, following the lexicon of computer vision.

Our task of interest is cropland segmentation, though the methods developed are general enough
to be applied to any segmentation task. We are motivated to assess weakly supervised methods in
this domain because the ability to accurately locate and characterize cropland enables agricultural
monitoring and food security assessment [18,19], but the ground truth labels available or easiest to
collect in food-insecure regions are often suitable only for weak supervision of segmentation.

Given the lack of segmented labels in food-insecure regions for validation, we began our
methodological development in the United States, where ample crop segmentation ground truth is
available via the USGS’s Cropland Data Layer (CDL) [20]. We simulated the weakly supervised setting
(Figure 1) by training a CNN on either (1) a sparsely labeled segmentation problem or (2) an image
classification problem. Inputs to the model are Landsat 8 annual median composite images with
7 optical bands. Our contributions can be summarized as follows.

1. With sparse pixel labels, we trained a CNN to perform cropland segmentation by masking out all
but one pixel in each image on which to compute the loss. We show that randomization of this
pixel’s location is important for segmentation accuracy across the entire image and ability to use
single-pixel classification as a proxy task for segmentation.

2. With image-level labels, we used class activation maps (CAMs) developed by Zhou et al. [21] to
extract segmentation predictions from an intermediate CNN layer. The CAMs were converted to
predictions via a thresholding algorithm that takes into account the distribution of image-level
labels in the dataset.

3. We demonstrate that, while CNNs are already known to outperform other machine learning
methods when trained on large datasets with high quality labels, they can also outperform
random forest, SVM, and logistic regression models when trained on small numbers of weak
labels. It is therefore possible to combine the high performance of deep neural networks with
ground truth labels that are easy to obtain. The transfer of image labels to pixel labels also
demonstrates a new possibility obtained by moving from established machine learning methods
to deep learning.
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Figure 1. Examples of (a) Landsat images, (b) their corresponding full segmented labels, and (c,d) two
types of weakly supervising labels. (c) Single pixel labels are available from datasets of geotagged
points. Gray pixels’ labels are not known. (d) Image-level labels provide high-level information about
the image but labels of individual pixels are not known. We demonstrate methods to predict the full
segmented label, given only one of the weakly supervising labels.

2. Related Work

The growing body of research that adapts deep neural networks created for natural image
segmentation to remotely sensed imagery has largely focused on two areas. The first is creating
architectures that allow CNNs and recurrent neural networks (RNNs) to adapt to the unique
characteristics of satellite and aerial imagery. These works have successfully demonstrated the use
of CNNs and RNNs for land cover classification [22,23], cloud masking [24,25], building footprint
segmentation [26–29], ship segmentation [30], and road segmentation [31,32]. In each case, the ground
truth used is densely segmented labels. A second group of pursuits has been to create large datasets,
usually of very high resolution imagery, annotated with segmentation ground truth labels [33–36].
The most recent and largest of these include DeepGlobe 2018 [37] and BigEarthNet [38]. These datasets,
especially when paired with competitions on platforms such as Kaggle and CrowdAnalytix, provide
much-needed benchmarks and are catalysts for method development.

While these methods show us what is achievable on large, well-labeled datasets, there remains
a mismatch between the datasets that are available or easy to collect in many applications and the
tools built so far to perform segmentation. First, many deep neural networks contain vast numbers
of trainable parameters and require large datasets to achieve high performance, and there are often
only small quantities of ground labels available for training. To address the small data regime, some
recent works have explored the use of transfer learning and semi-supervised learning techniques.
Transfer learning makes use of labeled data in a setting similar to the problem of interest, which
lacks labels. Kaiser et al. showed that accurate segmentation of a city’s buildings and streets could
be produced by training a CNN on large-scale, highly noisy labels from OpenStreetMap in other
cities [39] , while Kemker et al. trained their CNN on synthetic aerial imagery before fine-tuning on
real data [40]. Semi-supervised learning boosts performance when large quantities of unlabeled data
can be leveraged to augment labeled data. For example, Kang et al. created pseudo-labeled samples
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using non-deep learning methods to improve deep learning-based segmentation on small labeled
datasets [41].

A second source of mismatch, and the one addressed in this work, is that segmentation predictions are
often desired in settings where ground truth labels that are available or feasible to collect are at the point or
image level. Methods to address this for natural images include work by Hong et al. that used “bridging
layers” to share information between separate classification and segmentation networks [42], and
work by Pinheiro and Collobert where a CNN trained on image classification contained intermediate
input-sized layers that were aggregated to obtain a segmentation prediction [43]. Our approach for
coupling image classification and segmentation is similar to the latter in concept, but we combine a
U-Net architecture with class activation mapping developed by Zhou et al. [21]. U-Nets were designed
for image segmentation on small- to moderate-sized biomedical datasets [7], and class activation maps
(CAMs) allow models that are trained for classification tasks to localize class-specific image regions
from the target image. To use single-pixel labels for segmentation, we masked out all other pixels of
an image when computing the loss, similar to how pixels with the “void” class label are masked out
when training on the Pascal VOC segmentation dataset [10].

In cropland mapping, most work to date has performed segmentation using features at an
individual pixel level [18–20,44,45]. These methods, which include random forests and SVM, have
become easy to implement at large scale due to the development of platforms such as Google Earth
Engine. However, unlike CNNs, they do not automatically take into account the spatial context of each
pixel, which can lend a great deal of information about whether that pixel is cropland or not. Methods
have been created to fuse “object-based” features at larger spatial scales with pixel features to improve
random forest- and SVM-based cropland maps [45,46], but an advantage of CNNs is that the network
learns how to use spatial context to aid segmentation and is not limited by hand-engineering.

3. Dataset

We describe our study area in the Midwestern United States, the remote sensing dataset used for
classification and segmentation, and how we obtained image-level and pixel-level labels.

3.1. Study Area

The study area is shown in Figure 2a, spanning from 37◦ N to 41◦30′ N and from 94◦ W to 86◦ W.
It covers an area of over 450,000 km2 in the United States Midwest, intersecting the states of Illinois,
Iowa, Indiana, Missouri, and Kentucky. We chose this region because the United States Department of
Agriculture (USDA) maintains high quality pixel-by-pixel land cover labels across the US, allowing
us to evaluate the quality of our segmentation. Furthermore, we applied our methods to a large area
to show that they can scale spatially. Land cover-wise, the study region is 44% cropland and 56%
non-crop (mostly temperate forest).

3.2. Remote Sensing Data

The Landsat Program is a series of Earth-observing satellites jointly managed by the USGS
and NASA. Landsat 8 provides moderate-resolution (30 m) satellite imagery in seven surface
reflectance bands—ultra blue, blue, green, red, near infrared, shortwave infrared 1, and shortwave
infrared 2 [47]—designed to serve a wide range of scientific applications. Images are collected on a
16-day cycle.

Using Google Earth Engine, we found all the Landsat 8 Surface Reflectance Tier 1 images that
intersect the study area and were taken between 1 January 2017 and 31 December 2017. We then
computed a single composite image from this image collection by taking the median value at each
pixel and band. Since Landsat imagery, and satellite imagery more broadly, is affected by different
types of contamination, such as clouds, snow, and shadows [48], we used the quality assessment band
delivered with the Landsat 8 images to mask out clouds and shadows prior to computing the median
composite. The resulting seven-band image spans 4.5 degrees latitude and 8.0 degrees longitude and
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contains just over 500 million 30-by-30 meter pixels. To prepare the imagery to be input to a CNN,
we divided the composite into approximately 200,000 tiles each of dimension 50× 50 pixels.

(a)

(b)

Figure 2. (a) Landsat 8 median composite showing our study area in the Midwestern United States
for the year 2017. (b) Spatial split of the dataset into training, validation, and test sets for method
evaluation. The geographic split reduces spatial correlations that may lead to inflated validation and
test set accuracies. The non-test set is split into 10 folds for cross-validation; only one fold (darker blue)
is visualized here.

3.3. Pixel-Level Labels

The Cropland Data Layer (CDL) is a raster geo-referenced land cover map collected by the USDA
for the entire continental United States [20]. It is offered at 30 m resolution, so that each Landsat 8 pixel
has a corresponding CDL label. CDL includes 132 detailed classes spanning field crops, tree crops,
developed areas, forest, and water. In our dataset across the corn belt, we observe 78 CDL classes.
The four most common classes—deciduous forest, corn, soybean, and grassland/pasture—account for
85% of the dataset. The remaining classes are each less than 5% of the dataset. For our classification
task, we aggregated all crop classes into a single “cropland” class, and non-crop classes into a single
“non-cropland” class.

For the remainder of our study, we treat CDL labels as ground truth and use them to evaluate
the performance of our methods. The quality of our evaluation therefore depends on the quality of
the CDL labels. CDL is created yearly using imagery from Landsat 8 and the Disaster Monitoring
Constellation (DMC) satellites, and a decision tree algorithm is trained and validated on ground
samples. The accuracy of CDL labels varies by class; for the top classes in our dataset, accuracies
detailed in the CDL metadata generally exceed 90% [20]. Since we simplify the CDL labels into
{0, 1} for non-crop and cropland, and non-crop and cropland discrimination is easier than crop type
discrimination, the binary labels used to supervise our image classification are likely even more
accurate than CDL is for individual crop classes.

3.4. Image-Level Labels

Since our goal is to evaluate the possibility of generating segmentation labels from a CNN trained
on image-level labels, image-level labels are needed for our dataset. For each 50× 50-pixel tile (each
covering 2.25 km2), we computed a binary label ∈ {0, 1} based on whether the majority of pixel-level
CDL labels in that tile are crop pixels or not. The label 1 indicates that the tile is “more than 50%
cropland” and the label 0 indicates that the tile is “less than 50% cropland”. The class balance of the
dataset is shown in Table 1. This labeling scheme was chosen because it is quick for humans to assess,
and is therefore a realistic label to crowdsource or ask domain experts to generate de novo. We leave
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for future work the exploration of other labeling thresholds or schemes, such as mere presence of a
class of interest.

Table 1. Summary statistics for the US Midwest dataset.

Dataset # Tiles # Pixels % Tiles Majority % Pixels
Split Cropland Cropland

Training ≤100,000 ≤250,000,000 40%± 2% 41%± 2%
Validation 15,170 37,925,000 40%± 17% 41%± 14%
Test 42,476 106,190,000 54% 53%

Total 194,176 485,440,000 43% 44%

3.5. Training, Validation, and Test Splits

Since land cover type and characteristics vary smoothly across space, adjacent tiles may contain
parts of the same crop field, forest, city, etc. A random split of the 200,000 tiles into training, validation,
and test sets will therefore result in a test set performance that overestimates how well the model
generalizes to new areas within the study region.

To reduce the performance-inflating effect of spatial auto-correlation, we split the study region
into 64 rectangles geographically, and randomly assigned 50 rectangles to a training and validation
set and 14 rectangles to a test set. Within the training and validation set, the 50 rectangles were split
into 10 folds of 5 rectangles each. One such split is shown in Figure 2b; the other nine are shown in
Figure A1 (Appendix A.1). With this geographic train-validation-test split, the test set metrics are an
estimate of model performance when applied to a new area within the study region (but not a measure
of model generalization to other regions in the US or the world).

To tune machine learning hyperparameters, we trained the model on 9 folds (45 rectangles) and
validated on 1 fold (5 rectangles). Using k-fold cross-validation (k = 10) allows us to obtain error
estimates when tuning hyperparameters and evaluating the performance of different methods. Note
that all splits remained the same across experiments done with different training set sizes; a training
set size of 1000 is a sub-sample of the tiles in the corresponding full training set.

4. Methods

In this section, we describe the methods used to (1) train a CNN on dense segmentation labels,
(2) train a CNN on single-pixel labels for segmentation, and (3) transfer a CNN trained on image
classification to the task of segmentation. We also describe data augmentation techniques used to
expand our effective dataset size and baseline models such as random forests.

An overview of the CNN architectures trained with single-pixel labels and image labels are
depicted in Figures 3 and 4, respectively.

4.1. Data Augmentation

At training time, we employed random rotations and flips to increase our effective dataset size,
with the assumption that image-level and segmentation labels are invariant to rotations and flips.
We do not employ stretching or rotations that are not a multiple of 90◦, since doing so may alter the
image-level label of a tile.

4.2. Convolutional Neural Network Architecture

The deep learning models discussed in this paper share the same core U-Net architecture,
illustrated in Figures 3 and 4. The U-Net is a convolutional neural network designed originally
for segmenting biomedical imagery [7], intended to perform well with a relatively small number of
training images and to yield segmentation at the same resolution as the input image. An input image
with C channels, height H, and width W (denoted as dimension C× H ×W) is “encoded” by layers in
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the first half of the network to yield a low dimensional representation. This representation contains
high-level information on the image being segmented. The second half of the network then “decodes”
the representation back to the original image height and width, with K− 1 channels parameterizing
the categorical probability distribution over K classes at each pixel.

Figure 3. A U-Net (a type of CNN) with two down-convolutional blocks and two up-convolutional
blocks is shown here. A block is comprised of two convolutional-batch norm layers followed by a max
pool or up-convolutional layer. We used masking at the loss computation step to train a U-Net on
single pixel labels. The pre-masking output is the network’s segmentation prediction.

For our binary cropland versus non-cropland classification task, K is 2, so the U-Net output is of
dimension H ×W. Since spatial information is lost during encoding, features from the first half of the
network are concatenated to those of the second half to re-introduce spatial information and allow for
precise segmentation. In our U-Net, the input image is of dimension 7× 50× 50, and the output is
48× 48 due to max-pooling and up-convolutional layers operating in multiples of 2 (Figures 3 and 4).
We compared the innermost 48× 48 pixels in y to the output when computing segmentation accuracy.

Since neural network performance depends on a number of tunable hyperparameters, we used
cross-validation with grid search to select the U-Net network depth, number of filters, L2 regularization
strength, learning rate, and batch size. The details of hyperparameter search, deep learning frameworks,
and hardware used are described in Appendix A.3. For the remainder of this paper, we will show
the performance of U-Net and U-CAM models with optimized hyperparameters shown in Table A4.
We found that a U-Net with 4 encoding and 4 decoding blocks, with 64 initial filters, L2 regularization
of strength 10−4 to 10−3, learning rate of 10−3, and batch size of 32 performed the best during
cross-validation.

The U-Nets were trained across 20+ epochs; to calculate test set metrics, we chose the epoch with
the highest task validation accuracy to evaluate on the test set. This was done for each training set fold
to obtain standard errors.
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(a)

(b)
Figure 4. (a) We combined the U-Net and class activation map (CAM) to create a new architecture for
weakly supervised segmentation via image classification. (b) A CAM is obtained via a weighted sum
across the filter dimension of the last convolutional layer output, where the weights come from the
fully connected layer. The CAM is then thresholded to obtain a hard segmentation prediction.

4.3. End-to-End Segmentation Using Dense Labels

To get an upper bound on how well U-Nets can perform on cropland segmentation, we performed
end-to-end training using dense labels. Training minimized the binary cross entropy loss, defined as a
function of each sample as

`(y, ŷ) = − 1
WH

H

∑
j=1

W

∑
k=1

[
yjk · log ŷjk + (1− yjk) · log(1− ŷjk)

]
, (1)

for model predictions ŷ of dimension H ×W and segmentation label y of dimension H ×W.
The notation yjk denotes the pixel at the (j, k) spatial location of y. Note that ŷ is a function of
the input image x and model parameters θ, and each pixel’s prediction is a real number in the range
(0, 1) representing the probability of that pixel being cropland. For applications with more than
2 classes, the U-Net can easily be adapted to output more prediction classes per pixel, and training
would minimize a categorical cross entropy loss.

4.4. End-to-End Segmentation Using Sparse Labels

Though our dataset has cropland labels at all pixels, we simulated the sparse label setting by
sampling one pixel per input image to be the labeled one; all other pixel labels were masked out and
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not seen by the U-Net. More formally, for each input image, we sampled uniformly at random one of
the 2500 pixels in y, whose spatial location we denote (j∗, k∗), to be the only label in the image whose
binary cross entropy is computed in the loss.

For an input sample, the masked U-Net loss can be written

`(y, ŷ) = −
[
yj∗k∗ · log ŷj∗k∗ + (1− yj∗k∗) · log(1− ŷj∗k∗)

]
(2)

We emphasize that, although the position of the labeled pixel is different across tiles, it is fixed
for the same tile during every epoch of training and evaluation. On a dataset actually comprised of
single-pixel labels, there is no need for random sampling of the label position. Rather, one would
sample a satellite image tile that contains the labeled point at a random position.

To obtain dense segmentation predictions from the trained U-Net, we simply skipped the masking
step. The unmasked output ŷ from the network was compared against the dense segmentation label y
to obtain full segmentation accuracies.

4.5. Obtaining Segmentation from Image Classification

4.5.1. Image Classification

We modified the U-Net to perform image classification by replacing the last 1× 1 convolution
with a global average pooling layer followed by a fully connected layer that outputs a single number
∈ (0, 1). The global average pooling layer computes the mean value across all spatial dimensions of
the input and is used to recover a class activation map (Section 4.5.2). A diagram of a 2-layer U-Net
modified for image classification is shown in Figure 4a.

The classification task is to detect whether the majority (≥50%) of pixels in an image are in the
“cropland” category. Recall that, for our US Midwest dataset, segmentation labels from CDL were
converted into binary labels (Section 3.4). To train the model, we used an image-level binary cross
entropy loss, which is defined for each input as

`(y, ŷ) = − [y log ŷ + (1− y) log(1− ŷ)] , (3)

where ŷ is the image-level model prediction and y is the image-level binary label.

4.5.2. Class Activation Maps

To derive segmentation from a network trained for image classification, we used class activation
maps (CAMs) following the work of Zhou et al. [21]. CAMs arose from the discovery that intermediate
layers of CNNs detect objects despite no supervision on the location of objects at the time of training.

A diagram of how to compute a CAM is shown in Figure 4b; it is the weighted sum of the last
convolutional layer’s outputs, where the weights are from the fully connected layer. Mathematically,
the CAM is defined as

CAM = ∑
c
(wc fc + bc) (4)

for the last convolutional layer output f , fully connected layer weights w, and fully connected layer
biases b. The sum is over the filter dimension c.

Notice that if f is of dimension C × H ×W, then the CAM has dimension H ×W. Intuitively,
the CAM shows how much each pixel of the last convolutional output was “activated” for cropland.
We discuss how this activation is converted to a valid probability in the next section.
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4.5.3. Segmentation Threshold

The values of a CAM can in theory take on any real value, with a higher value indicating a higher
activation for cropland in the corresponding pixel. In practice, we observed CAM values falling in the
interval [−10, 10]. To convert the CAM to a segmentation prediction that is 0 or 1 at each pixel, we set
a single threshold activation value, above which we will predict a value of 1 and below which we will
predict a value of 0.

Notice that the threshold value cannot simply be assumed to be 0. Although a value of 0 evaluates
to a cropland probability of 0.5 when passed through the last layer of the U-CAM network (sigmoid
layer), the sigmoid layer’s input is obtained via a weighted sum over filter dimensions and average
over spatial dimensions. Since the sigmoid of a sum does not equal the sum of sigmoids, the threshold
of 0 does not correspond to a probability of 0.5 at each CAM pixel. In practice, we observed optimal
thresholds that deviated from 0, generally within the range [−1, 1].

To determine the optimal threshold, we found the threshold that maximizes image-level prediction
accuracy on tiles in the training set. This algorithm proceeds as follows. At epoch t,

1. Compute the CAM for each training tile as described in Section 4.5.2.
2. Enumerate a possible set of threshold values V.
3. For each training tile and possible threshold value v ∈ V,

(a) Let the prediction at pixel (j, k) be sv(j, k) = 1{CAM(j, k) ≥ v}. That is, if the CAM value
is equal to or exceeds the threshold, predict that the pixel is cropland.

(b) Compute the image-level prediction ŷv from the segmentation prediction sv in the
same way that image-level labels were determined from the segmented ground truth
(or human labeling):

ŷv = 1

 1
WH ∑

(j,k)
sv(j, k) ≥ 0.5


In other words, an image whose segmented prediction has a majority of pixels (≥50%)
predicted to be cropland would be labeled 1; otherwise 0.

4. Find the threshold that maximizes the accuracy of image-level predictions across all training
tiles, i.e.,

v∗ = arg max
v∈V

m

∑
i=1

1

{
ŷ(i)v = y(i)

}
5. Return the segmentation prediction sv∗ for each training and validation image.

We point out that this way of determining a threshold and creating segmented predictions
required another loop through the training set, which increased training time. If segmentation labels
are available for some tiles in the training set, they can be used to find the threshold instead.

4.6. Baseline Models

We compared the masked U-Net and U-CAM methods against a few commonly used machine
learning baselines: logistic regression, support vector machines (SVM), and random forests. All have
been used in the field of remote sensing to classify land cover. For each method, we optimized over
its hyperparameters across dataset sizes to provide the highest performing baseline possible; the best
hyperparameters are shown in Tables A1–A3. Descriptions of the three baselines and the hardware we
used to run them can be found in Appendix A.2.

The same training, validation, and test set splits were used for the baseline models as for the deep
neural networks. For comparison against the masked U-Net, the center pixel of each image and its
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label were provided to the baseline models for training and validation. For comparison against the
U-CAM model, the same image-level label (“more than 50% cropland” or “less than 50% cropland”)
was used to label all pixels in the image (50× 50 = 2500 pixels) in the training set fed to baselines.
In other words, all pixels in an image labeled “more than 50% cropland” are labeled as “cropland”
and all pixels in a “less than 50% cropland” image are labeled as “non-cropland”. Evaluation on the
validation and test sets in this setting was, however, still performed using pixel-level labels.

5. Results

Here we summarize the results of the (1) U-Net trained on dense segmentation labels, (2) masked
U-Net trained on single-pixel labels, and (3) U-CAM transferring image classification to segmentation.
For a description of baseline model results, see Appendix A.5.

5.1. U-Net Oracle Trained on Dense Segmentation Labels

Figure 5a shows fully supervised U-Net loss and segmentation accuracy across 20 epochs of
training, averaged for the 10 training folds. Early in training, cross-entropy loss decreases rapidly
and segmentation accuracy increases steeply. The model begins to perform well on the training set
after only one epoch of training, while performance on the validation set slowly improves after more
epochs (around 10 for n = 200). We viewed the fully supervised U-Net as an oracle that provides an
upper bound on how well we can expect the U-Net architecture to perform at segmentation given the
best possible labels. Note in Figure 6 that, at 100,000 training samples, U-Net test set accuracy reaches
92%, which is approaching the accuracy of CDL, our ground truth.

5.2. Obtaining Segmentation from Sparse Pixel Labels

When using one labeled pixel per image to supervise a U-Net for segmentation, we first observe
that decreasing cross-entropy loss and increasing task accuracy (single-pixel classification) corresponds
to increasing segmentation accuracy as the model trains (Figure 5b). The closer the correspondence
between task accuracy and segmentation accuracy, the more we can use the task accuracy to select the
best training epoch for segmentation and be confident in the implied segmentation accuracy.

We trained the masked U-Net model on tiles with either randomized or constant label positions,
and found that randomness in the position of the labeled pixel across tiles was important for avoiding
overfitting and achieving high correlation between task accuracy and segmentation accuracy (Figure A2
and Appendix A.4). Because the task-segmentation correlation in the case of randomized label positions
is close to 1.0 on the validation set (Figure 7a), a model with high task validation accuracy is nearly
guaranteed to also yield a high segmentation accuracy.

Figure 6a compares the test set accuracy of the masked U-Net against baseline and oracle methods
across training set sizes from 10 to 100,000. Because our label classes are fairly balanced (Table 1),
we primarily report our findings using the accuracy metric; the findings are similar for precision, recall,
and F1-score metrics, shown in Table 2 for n = 100 and n = 1000. At training sizes below n = 100,
the masked U-Net has lower accuracies for cropland classification than all three baselines. This suggests
that it is difficult to learn the large number of parameters in the U-Net well with under 100 labeled
pixels. At training sets larger than n = 100, however, the advantage of seeing a pixel’s context—even
without their labels—allows the masked U-Net to outperform the baselines. At n = 1000, the masked
U-Net achieves a segmentation accuracy of 0.88, compared to SVM at 0.85, random forest at 0.84,
and logistic regression at 0.81. The masked U-Net accuracy continues to increase with training size and
approaches the performance of the U-Net upper bound; even at n = 100,000 the model still benefits
from more training samples.
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(a)

(b)

(c)
Figure 5. Training and validation set loss, task accuracy, and segmentation accuracy averaged across
10 runs of 20 epochs at n = 200 for the (a) U-Net, (b) masked U-Net, and (c) U-CAM models. The “task”
refers to single pixel classification for the masked U-Net and image classification for the U-CAM model.
The U-Net does not perform a proxy task, so it has no middle panel. One standard deviation error bars
are shown in the shaded area.
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(a) (b)
Figure 6. Test set cropland segmentation accuracy versus training set size given (a) single pixel labels
and (b) image labels. Baseline methods include logistic regression (LR), support vector machine (SVM),
and random forest (RF). Upper bound for the performance of a U-Net architecture is given by the
U-Net with fully segmented labels. Deep learning methods shown are (a) U-Net trained on masked
loss and (b) U-Net with class activation map (U-CAM) to transfer image classification to segmentation.
Standard errors result from runs on 10 training folds. SVM is not present and RF/LR are not shown for
large sample sizes in panel (b) due to prohibitively large computational runtimes.

Examples of the masked U-Net’s segmentation predictions on the test set are shown in Figure 8,
along with the random forest predictions on the same images. Across all samples, the masked U-Net
produces predictions that are more spatially coherent—i.e., neighboring pixels are more correlated in
label—than the random forest predictions. The U-Net also notably does not classify urban vegetation
as cropland where the random forest does, illustrating the utility of seeing a pixel in its context.

(a) (b)
Figure 7. (a) Segmentation accuracy and task accuracy under the Masked U-Net model are correlated
with an R2 of 0.999. (b) Segmentation accuracy and task accuracy under the U-CAM model are
correlated with an R2 of 0.917. Validation set task accuracy and segmentation accuracy pairs are plotted
across all dataset sizes, runs, and epochs, for a total of 7600 points for each method.
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Table 2. Test set accuracy, precision, recall, and F1 scores for the masked U-Net and baselines trained
on pixel labels at training set size n = 100 and n = 1000. Bolded numbers display the highest value in
each column.

n = 100

Method Overall Accuracy Precision Recall F1 Score

Masked U-Net 0.833± 0.029 0.855± 0.032 0.826± 0.067 0.839± 0.034
Random Forest 0.817± 0.011 0.758± 0.036 0.814± 0.047 0.783± 0.012
SVM 0.826± 0.006 0.784± 0.027 0.789± 0.027 0.785± 0.008
Logistic Regression 0.807± 0.007 0.771± 0.029 0.750± 0.044 0.759± 0.012

n = 1000

Method Overall Accuracy Precision Recall F1 Score

Masked U-Net 0.875± 0.003 0.886± 0.014 0.876± 0.015 0.881± 0.003
Random Forest 0.840± 0.002 0.809± 0.013 0.795± 0.022 0.801± 0.006
SVM 0.854± 0.002 0.834± 0.015 0.799± 0.015 0.816± 0.006
Logistic Regression 0.810± 0.002 0.800± 0.010 0.710± 0.017 0.752± 0.006

5.3. Obtaining Segmentation from Image Classification

Figure 5c shows the training and validation set performance of the U-CAM model across epochs.
As loss on the image classification task decreases and accuracy increases, segmentation accuracy
increases as well, despite the model never seeing any pixel labels. The correlation between image
classification accuracy and segmentation accuracy is 0.91 on the validation set (Figure 7b), indicating
that models that perform well on image classification generally perform well on segmentation as well,
but there are outliers. This strong but incomplete correspondence between the two tasks suggests that
locating the cropland pixels in an image is one way the model can tell whether an image is majority
cropland, but it is not the only way. The presence of certain features—for example, a few densely
clustered buildings—may be a strong enough signal for the model to classify an image as non-cropland
or cropland without looking at the other parts of the image.

Nevertheless, using image classification accuracy on the validation set to select the model for
segmentation led us to choose U-CAM models that outperform the baselines and achieve segmentation
accuracies exceeding 85% on the test set (Figure 6b). Our baseline machine learning methods are
not designed to extract pixel-level information from image labels, so we modified their input data
to be individual pixels labeled with the image label. Image labels add significant noise to pixel-level
training, and the accuracies of the random forest and logistic regression baselines are 4–6% lower than
their counterparts trained on pixel labels. The U-CAM model performs better than the image-level
baselines in segmentation accuracy at all dataset sizes, and also performs better than the baselines
trained on pixel labels at n ≥ 100. At n = 1000, the U-CAM method achieves a segmentation accuracy
of 0.86, compared to random forest at 0.79 and logistic regression at 0.77. Results for precision,
recall, and F1-score metrics are shown in Table 3 for n = 100 and n = 1000; we observe that, while
accuracy and precision of the U-CAM model are comparable to those of the masked U-Net, recall is
significantly lower.

Figure 8 shows examples of U-CAM segmentation predictions for the test set and the corresponding
cropland activation maps extracted from the network. Like the masked U-Net predictions, the U-CAM
segmentation is more spatially coherent than the random forest segmentation, which is very noisy due
to the many incorrect training labels.
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Figure 8. Six examples of (a) Landsat composite images, (b) their corresponding CDL labels,
(c) segmentation predictions by models trained on sparse pixel labels, and (d) segmentation predictions
by models trained on image labels. Yellow pixels are predicted to be cropland, and purple pixels are
predicted to be non-cropland. Panel (d) shows the class activation map (CAM) extracted from the
U-CAM model; yellow corresponds to high cropland activation and dark blue corresponds to low
cropland activation. All models were trained on 1000 labels, and predictions are shown for samples in
the test set.

Table 3. Test set accuracy, precision, recall, and F1 scores for the U-CAM and baselines trained on
image labels at training set size n = 100 and n = 1000. Bolded numbers display the highest value in
each column.

n = 100

Method Overall Accuracy Precision Recall F1 Score

U-CAM 0.835± 0.010 0.805± 0.035 0.769± 0.051 0.772± 0.020
Random Forest 0.767± 0.007 0.692± 0.015 0.608± 0.046 0.646± 0.021
Logistic Regression 0.764± 0.012 0.821± 0.018 0.724± 0.050 0.768± 0.021

n = 1000

Method Overall Accuracy Precision Recall F1 Score

U-CAM 0.861± 0.016 0.863± 0.036 0.771± 0.067 0.800± 0.033
Random Forest 0.786± 0.003 0.706± 0.004 0.631± 0.020 0.666± 0.009
Logistic Regression 0.766± 0.006 0.822± 0.006 0.725± 0.020 0.770± 0.009
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6. Discussion

6.1. Weakly Supervised Segmentation

The methods assessed in this paper show that CNNs can be trained for segmentation using
small datasets comprised of pixel or image labels. The masked U-Net and U-CAM models can
achieve segmentation accuracies of over 85% with modest dataset sizes in the hundreds of labels,
outperforming commonly used pixel-based methods like logistic regression, SVM, and random forest.
These simple modifications allow the advantages of CNNs, namely their ability to account for spatial
context and learn nonlinear transformations, to be combined with datasets that are easy and feasible in
quantity for domain experts or crowdsourced workers to generate.

The selection of the best U-Net for segmentation using only weak labels requires high performance
on the weakly supervising task to correspond to high segmentation performance. We showed that
this is true when the position of labeled pixels is random across the training set (R2 ≈ 1.0), while the
relationship is not as strong when the labeled pixel is always in the center of the image (R2 = 0.79).
Under random labeling, the model can perform well on the task either by (1) classifying all pixels in
each image correctly or (2) memorizing the locations of the labels in all training tiles and classifying
those pixels correctly. The near-perfect correlation between task and segmentation accuracy on the
validation set indicates that the U-Net accomplished the former. In contrast, when the center pixel
is always the labeled one, the model does not have to correctly classify the other pixels in the image.
This indicates that, if one is given a dataset of point labels, a random crop of remote sensing imagery
should be extracted around each point, rather than tiles with the label always at a fixed position.

Meanwhile, performance on the image classification task has a correlation with segmentation
performance of R2 = 0.91. We hypothesize that this is because the global average pooling layer
encourages the U-CAM model to perform classification via segmentation. In other words, the model
performs well on image classification if its pixel-level predictions are correct on average. Furthermore,
the skip connections of the U-Net enable spatial information from the input image to be kept and used
to localize pixel labels. Ultimately, this high correlation makes it possible to pick the best model for
segmentation using only image-level labels, an important proxy when there are few or no segmentation
labels available.

6.2. Trade-Offs between Label Types

In light of our findings, researchers obtaining ground truth labels for segmentation de novo
have their choice of dense labels (e.g., geospatially referenced polygons, densely segmented rasters),
point labels (e.g., geospatially referenced points, pixel labels), or image labels. Our results shed some
light on the trade-offs involved in choosing the label type. Figure 6 shows that the fully supervised
U-Net performs segmentation well at extremely small dataset sizes; given only ten segmented training
samples, the U-Net segments cropland at 84% accuracy. In comparison, the masked U-Net achieves a
similar mean accuracy and variance after seeing between 100 to 200 pixel labels. This ratio of 10:1 to
20:1 single pixel labels to densely segmented labels holds across the curves in Figure 6, and suggests
that pixel-labels are preferable to segmented labels if they are less than 10–20 times as costly to obtain.
Here cost should take into account not only compensation for crowdsourced workers or researchers,
but also the difficulty of the labeling task, the complexity of designing the annotation instructions for
training, and the likelihood that labels will meet the quality standard.

With the U-CAM model, a similar equivalence of 10:1 to 20:1 between image labels and densely
segmented labels exists, until the performance of the U-CAM model flattens out after 500 image labels
at 0.87. Additional labels beyond 500 do not help the model better localize the precise location of
cropland pixels. Therefore, to achieve the highest segmentation accuracies, image labels may need
to be augmented with pixel labels or densely segmented labels. One can imagine pre-training on a
large number of image labels and fine-tuning on a small number of segmented labels. More research is
needed to improve the localization of segmentation predictions transferred from image classification.
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6.3. Method Limitations and Future Directions

By training U-Nets on an annual, median composite of the first seven Landsat bands, our work
does not leverage the temporal nature of satellite imagery or commonly-used vegetation indices
(VIs) like NDVI. Since the timing of plant growth and senescence helps distinguish different types of
vegetation, features that capture variation in time should be an improvement over the annual median.
Future work can explore segmentation using weakly supervised CNNs or RNNs with temporal
features, especially in ways that are label-efficient. As for the use of vegetation indices, nonlinear
methods like neural networks and random forests should in theory be able to recover them if given
enough data, though adding VIs may still improve performance, especially at small training set sizes.
The goal of this study is not to create the best possible cropland map, but to demonstrate that CNNs
can perform segmentation of remote sensing imagery with weak labels, which have traditionally been
used only to train pixel-based machine learning methods.

While we have shown that deep learning methods can achieve state-of-the-art accuracies on
segmentation using weak labels, the application of CNNs to remote sensing tasks still contains
trade-offs relative to more established machine learning methods (i.e., our baselines). First, training
CNNs on remote sensing datasets and applying them at a large scale currently requires the user to
move large quantities of data between GIS platforms (in our case, Google Earth Engine) and deep
learning frameworks (TensorFlow, PyTorch, etc.). Further integration of these platforms will alleviate
the manual manipulation of geospatial data and go a long way toward enabling the application of
deep neural networks in this domain.

Second, deep learning models still suffer from a shortage of tools that enable users to qualitatively
understand the relationship between inputs and the model’s prediction. In applications where machine
predictions feed into human decision-making, this lack of interpretability decreases trust in neural
networks and may make them less suitable than highly interpretable models like logistic regression.
More visualization tools and theory are needed to improve the transparency of deep learning; in the
meantime, performance and interpretability should continue to be viewed as a trade-off when selecting
between machine learning algorithms.

7. Conclusions

In this paper, we showed that the U-Net model, designed for end-to-end segmentation, can
segment cropland in Landsat composite imagery over the US Midwest using small quantities of
weakly supervising labels. The masked U-Net, trained on pixel labels, and the U-CAM model, trained
on image labels, achieve segmentation accuracies exceeding 85% on training set sizes in the hundreds
of labels. They outperform traditional machine learning baselines trained on the same quantities of
labels (above n = 100), and show greater spatial coherence in their predictions.

Our work demonstrates that CNNs can be trained to perform accurate segmentation with
weak supervision, using ground truth labels that contain less information per label than densely
segmented ones but are easier to obtain in large quantities. This enlarges the possibilities of methods
that can be used with existing point or image labels, plus future such datasets generated from
fieldwork or crowdsourcing. Further work is needed to bridge the gap between the data requirements
of state-of-the-art machine learning methods and the data availability in many remote sensing
applications, as well as integrating GIS data platforms with deep learning frameworks in order
to apply these methods at large scale.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
RNN Recurrent Neural Network
CAM Class Activation Map
SVM Support Vector Machine
CDL Cropland Data Layer

Appendix A

Appendix A.1. Training, Validation, Test Set Splits

Since satellite readings and cropland labels are highly correlated in space, metrics like accuracy
will be inflated if individual samples are split into training, validation, and test sets at random.
We therefore split the study region into 64 rectangles geographically, and randomly assigned
50 rectangles to a training and validation set and 14 rectangles to a test set. Within the training
and validation set, the 50 rectangles were split into 10 folds of 5 rectangles each. Nine of the ten
geographic training, validation, and test set splits are shown in Figure A1.

Figure A1. Nine of the ten folds showing training, validation, and test set splits. Folds are defined
geographically to reduce performance inflation due to spatial autocorrelation. The first fold is shown
in Figure 2b.

Appendix A.2. Baseline Model Descriptions and Implementation Details

• Logistic regression. Logistic regression is a commonly used classification method that uses
a logistic function to model a binary outcome. The predictors are assumed to have a linear
relationship with the logarithm of the outcome odds. Since it can only learn linear decision
boundaries between classes, logistic regression performs poorly when class boundaries are highly
non-linear but well when they are approximately linear, and can outperform non-linear methods
when predictor dimensionality is high relative to number of data points.

• Support-vector machine (SVM). SVMs are a class of models capable of performing non-linear
classification. They do this by constructing hyperplanes that separate the training set into classes
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in high or infinite dimensional space with the largest margins possible. They have been used with
success in remote sensing to perform land cover classification and crop mapping [49].

• Random forest. Random forests are an ensemble machine learning method in which many
decision trees are aggregated to perform classification or regression [50]. They are used frequently
in the field of remote sensing to perform land cover classification and crop mapping [51,52],
and have been shown to yield higher accuracies than maximum likelihood classifiers, support
vector machines, and other methods for crop mapping [49,53,54].

We used Python’s scikit-learn [55] implementation of logistic regression with penalty, support
vector machines, and random forest classifiers. At each dataset size, we performed a 10-fold
cross-validation to find the best hyperparameters. The hyperparameters that yielded the highest
mean validation accuracy for each method and dataset size are shown in Tables A1–A3.

All baseline models were run on a Google Compute Engine virtual machine with 4 Intel Broadwell
vCPUs and 52GB RAM, running Ubuntu 16.04. We used Python 3.7.3 and scikit-learn 0.21.3.

Table A1. Hyperparameters for penalized logistic regression yielding the highest validation accuracy
across dataset sizes.

Dataset Size
Hyperparameter

Penalty λ

10 L1 10−5

20 L2 10−4

50 L2 10−4

100 L2 10−4

200 L2 10−4

500 L1 10−2

1000 L2 10−3

2000 L2 10−2

5000 L2 10−2

10,000 L1 100

20,000 L1 100

50,000 L2 10−1

100,000 L1 101

Table A2. Hyperparameters for SVM yielding the highest validation accuracy across dataset sizes.

Dataset Size
Hyperparameter

Kernel Penalty C Kernel Coefficient γ

10 Linear 1000 10−4

20 RBF 1000 1.0
50 RBF 1000 1.0

100 RBF 1000 1.0
200 RBF 100 10.0
500 RBF 1000 10.0
1000 RBF 1000 10.0
2000 RBF 1000 10.0
5000 RBF 1000 10.0

10,000 RBF 1000 10.0
20,000 — — —
50,000 — — —
100,000 — — —
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Table A3. Hyperparameters for random forest yielding the highest validation accuracy across dataset
sizes. Note sqrt is the default number of features used per tree, which for 7 features rounds down to 2.

Dataset Size
Hyperparameter

# Trees
Min Samples Min Samples Max Features

Split Leaf

10 10 2 1 4
20 500 5 1 sqrt
50 100 10 1 7
100 500 10 1 sqrt
200 50 10 1 sqrt
500 500 2 2 4

1000 500 2 2 sqrt
2000 500 2 1 4
5000 500 10 1 4

10,000 500 10 2 4
20,000 500 10 5 4
50,000 500 10 2 4

100,000 500 10 2 4

Appendix A.3. U-Net Implementation and Hyperparameter Search Details

Neural networks were trained on the same Google Compute VM as the baselines, using Nvidia
K80 GPUs. The densely supervised and masked U-Nets were implemented in PyTorch 1.2.0, and the
U-CAM model was implemented in TensorFlow 1.4.1. We used an Adam optimizer with learning rate
10−3, β1 = 0.9, β2 = 0.999 , and batch size of 32. Batch normalization was used after each convolutional
layer with batch norm momentum of 0.9. The U-Nets were trained for 20 epochs to allow convergence
on training set sizes n ≥ 1000, and trained for 200 epochs at n = 10, 100 epochs at n = 20 and n = 50,
and 50 epochs at 100 ≤ n < 1000.

To curb overfitting, we added an L2 regularization term to our cross entropy losses so that our
final training loss was

J(θ, λ) = L(θ) + λ||θ||22 (A1)

Note that only model weights were penalized; biases were not.
Optimal U-Net hyperparameters were found via grid search and are shown in Table A4.

The hyperparameters we searched over are the number of encoding and decoding blocks l, the number
of filters f , and regularization strength λ.

Table A4. Hyperparameters for U-Net yielding the highest validation accuracy across dataset sizes.

Dataset Size
Hyperparameter

Layers Initial Filters L2 Regularization
Learning Rate

10 4 64 10−3 10−3

20 4 64 10−3 10−3

50 4 64 10−3 10−3

100 4 64 10−3 10−3

200 4 64 10−3 10−3

500 4 64 10−3 10−3

1000 4 64 10−3 10−3

2000 4 64 10−3 10−3

5000 4 64 10−4 10−3

10,000 4 64 10−4 10−3

20,000 4 64 10−4 10−3

50,000 4 64 10−4 10−3

100,000 4 64 10−4 10−3
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An `-block U-Net has ` down-convolutional blocks and ` up-convolutional blocks, and an
f -filter U-Net starts with f filters in the first convolutional block and doubles the number of filters
in each subsequent block. We searched exhaustively over ` ∈ {3, 4, 5}, f ∈ {16, 32, 64, 128, 256},
and regularization strength λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100}; we also tried some models with
learning rate ∈ {1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2} and batch size ∈ {8, 16, 32, 64}.
The network weights were initialized using Xavier initialization [56]. For each dataset size, we chose
the hyperparameters that yielded the highest validation set accuracy across the ten folds for the
U-CAM model, as the U-CAM model was more sensitive to hyperparameters while the end-to-end
U-Nets were more robust.

We observed that model depth and width did not significantly affect end-to-end segmentation,
suggesting that the task of mapping cropland using a Landsat composite is simple enough to be
performed well with the smallest of these models (3 blocks, 16 filters in the first block). For transferring
image classification to segmentation, however, deeper 4 or 5 block U-Nets with 32 to 64 starting filters
achieved the highest segmentation accuracy. Optimal L2 regularization strength varied from 10−4 to
10−3 depending on training size.

Appendix A.4. Random vs. Deterministic Masking

Randomness in the position of the labeled pixel was important for achieving high correlation
between validation task accuracy (single pixel classification) and segmentation accuracy.

Figure A2 shows the correlation between validation set task accuracy and segmentation accuracy
for the two types of labels. While random label position achieves an R2 close to 1.0, a label position that
is always in the center of the tile achieves R2 = 0.787. A lower R2 means there is less of a guarantee
that a model that classifies the center pixel correctly also segments an entire tile correctly, making it
more difficult to select a good model during cross-validation.

(a) (b)
Figure A2. Scatter plots and corresponding least squares fit between validation set task accuracy and
segmentation accuracy for (a) randomly located pixel labels and (b) pixel labels always at the center of
the tile for the masked U-Net model. Points are shown for training set sizes of n ∈ {100, 1000, 10,000}
across 10 runs of [50, 20, 20] epochs, respectively.

Appendix A.5. Baseline Model Results

Figure 6 summarizes the performance of baseline and oracle methods across a wide range of
training set sizes. Hyperparameters of the baseline models were tuned for each training set size and
are listed in Tables A1–A3.
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Of the three pixel-based baseline methods (Figure 6a), SVM achieved the highest classification
accuracies consistently across different values of n (85.4% mean accuracy at n = 1000), while random
forest accuracies were close behind (84.0% mean accuracy at n = 1000). Accuracies for both methods
increase with training set size up to the largest size of n = 105, though the increase slows at larger n.
In contrast, logistic regression performs significantly worse than the nonlinear baselines and reaches its
highest accuracy of 81% by n = 2000. The downside of SVM is that its O(n2) computational complexity
makes it prohibitively time-consuming to train, so we do not report SVM accuracies at n > 104.

Due to high SVM runtime, we only evaluated logistic regression and random forest baselines for
image-level labels, where 1 image label corresponds to 2500 pixels. Memory constraints also limited
these two methods to training set sizes of up to 20,000 images (50 million pixels) and 2000 images
(5 million pixels) respectively. Figure 6b shows their performance as the number of image labels
increases. While random forest accuracies are on average worse than logistic regression when the
training size is very small, the forest begins to capture nonlinearities and surpass logistic regression
when shown 100 or more images.
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