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Abstract: Debris flow susceptibility mapping is considered to be useful for hazard prevention and
mitigation. As a frequent debris flow area, many hazardous events have occurred annually and
caused a lot of damage in the Sichuan Province, China. Therefore, this study attempted to evaluate
and compare the performance of four state-of-the-art machine-learning methods, namely Logistic
Regression (LR), Support Vector Machines (SVM), Random Forest (RF), and Boosted Regression Trees
(BRT), for debris flow susceptibility mapping in this region. Four models were constructed based on
the debris flow inventory and a range of causal factors. A variety of datasets was obtained through
the combined application of remote sensing (RS) and geographic information system (GIS). The mean
altitude, altitude difference, aridity index, and groove gradient played the most important role in the
assessment. The performance of these modes was evaluated using predictive accuracy (ACC) and the
area under the receiver operating characteristic curve (AUC). The results of this study showed that all
four models were capable of producing accurate and robust debris flow susceptibility maps (ACC and
AUC values were well above 0.75 and 0.80 separately). With an excellent spatial prediction capability
and strong robustness, the BRT model (ACC = 0.781, AUC = 0.852) outperformed other models and
was the ideal choice. Our results also exhibited the importance of selecting suitable mapping units
and optimal predictors. Furthermore, the debris flow susceptibility maps of the Sichuan Province
were produced, which can provide helpful data for assessing and mitigating debris flow hazards.

Keywords: debris flow; susceptibility mapping; machine learning; remote sensing; geographical
information system

1. Introduction

Debris flow, a serious geological hazard, is defined as a mixture of water and a large number of
loose materials like sediments, detritus, and muds, that cause great casualties and economic losses
in mountainous areas all over the world [1–3]. Due to the complex natural conditions, South-West
China is a typical area with active debris flow. About half of these debris flows took place in the high
mountain zone of South-West China [4]. Geomorphological variations, heavy rainfalls, frequent seismic
activities, and unreasonable land uses are responsible for triggering such a large number of debris flow
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in this region. Especially in the Sichuan Province, dense residential areas scattered in mountainous
areas are exposed to severe risks during the flood season. For example, large-scale debris flows have
caused enormous harm to the human settlements, infrastructures, and ecological security in the Danba
County (2003), Dechang County (2004), and Qingping Township (2010) [5,6]. However, there is little
understanding of the detection of the potentially prone areas. Thus, appropriate disaster mitigation
and prevention solutions should be determined based on the debris flow susceptibility zoning.

Susceptibility maps are useful tools that show the likelihood of occurrence of an event in a specific
area based on the local environmental conditions [7]. Field survey and dynamic monitoring in remote
mountains are very challenging, therefore, susceptibility zoning is a prominent alternative. Plenty
of susceptibility analyses have been performed and published during the last several decades [8].
Multifarious classification methods have been applied, from qualitative assessment to quantitative
assessment, such as heuristic methods [9], physical methods [10–12], and data-driven methods [13,14].
Heuristic methods determine the impact of causal factors on debris flow by relying on subjective
experience, and then zone susceptibility, descriptively, so that the accuracy of heuristic studies is
instable due to their high subjectivity. In the physical methods, debris flow models are formulated based
on mechanical principles, physical laws, and simplified physical assumptions. However, constructing
physical models on a medium or large scale is quite complex. Physical models are more suitable for
understanding such hazards in an individual gully rather than a whole region. In recent years, with
the innovation of algorithms and the boom of data, data-driven methods, especially machine learning
methods, are more popular.

Machine learning methods aim to analyze the spatial relationship between past events and causal
factors by studying data characteristics and predicting the spatial probability of debris flow occurrence.
Most of these methods, including Back Propagation Neural Network (BPNN), Logistic Regression (LR),
Decision Tree (DT), Random Forest (RF), Boosted Regression Trees (BRT), Bayesian network (BN), and
Support Vector Machines (SVM), were developed one after another. In many regions, these methods
have been applied to the susceptibility mapping of landslides [15–17], gully erosion [18,19], debris
flow [13,14,20], and ground subsidence [21] by integrating environmental remote sensing (RS) data
under the Geographic Information System (GIS). These studies indicate that several machine-learning
methods provide a good predictive performance. Unlike other algorithms, multilayer BPNN has a
distinctive structure and ability to implement deep mining of data. It should be studied separately and
carefully due to training difficulties. Whereas, DT and BN have been rarely used for the mapping of
debris flow susceptibility, in previous investigations. Therefore, in this study, we ignored the three
algorithms mentioned above.

Overall, advanced machine learning algorithms have been used for solving problems of all sorts,
but only a few of these research objects were debris flows, therefore, more investigations are needed.
Additionally, it is highly important to compare different machine learning methods for susceptibility
mapping as each method has its own characteristics and finding an optimal method might have a large
impact on real applications. Which method is most suitable for the spatial prediction of debris flows is
still debated upon. Therefore, the objective of this study was to compare and analyze four machine
learning methods, including LR, RF, SVM, and BRT, for debris flow susceptibility mapping. The
Sichuan Province, which is well-known in China as the region with the most frequent and severe debris
flow, was therefore selected as a case study. The study was implemented with the help of GIS tools and
multifarious remote sensing datasets of the study area, such as environmental and sociometric factors.
The results of our study can provide support and help assess and mitigate debris flow hazards.

2. Study Area

Southwest China’s Sichuan Province is located in the upper reaches of the Yangtze River, between
the latitudes of 26◦03′N to 34◦19′N and longitudes of 97◦21′E to 108◦33′E, which covers an area of
486,000 square kilometers, at altitudes ranging from 212 m to 6904 m above sea level (Figure 1). The
topography of the whole province includes mountainous areas, basins, and plateaus. Terrains are
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complex and various. Three active faults run through the study area, namely the Longmenshan
fault, the Xianshuihe fault, and the Anninghe fault. Complex geological and geomorphological
characteristics play an important role to trigger heavy geological hazards in this region, because of
complex interactions between the Qinghai–Tibet Plateau and the Sichuan Basin [22]. The study area
belongs to the subtropical monsoon zone with an annual average rainfall of 1000 mm; over 80% of
precipitation usually takes place in the monsoon season (between April and October) [5]. The average
temperature in January ranges from 3 ◦C to 8 ◦C and the average temperature in July is 25 ◦C~29 ◦C [5].
Landslides, debris flow, and mountain torrents are widespread here. In particular, debris flows
triggered by heavy rains pose the greatest threat in the study area.
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Figure 1. Study area and debris flow location map. Each dot represents the geographic coordinate of a
debris flow.

The Sichuan Province is an important node of the “One Belt and One Road” where many important
projects such as the Sichuan–Tibet Railway and the Baihetan Hydropower Station exist in the region.
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To promote sustainable development of society and economy, it is always important to conduct debris
flow susceptibility analyses to understand the surface dynamics and climatic variability.

3. Materials and Methods

To achieve debris flow susceptibility mapping, four main stages were adopted; illustrated in
Figure 2. First, the debris flow inventory was prepared and the causal factors were selected. Then, they
were separated into two independent groups, namely the training set and the validation set, using
the validation set approach. Second, four debris flow susceptibility models were set up based on the
LR, RF, SVM, and BRT algorithms. Third, we applied the constructed models to develop debris flow
susceptibility maps of the study area. Finally, these models were evaluated and compared using two
widely used criteria, including predictive accuracy (ACC) and the area under the receiver operating
characteristic curve (AUC).

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 20 

 

3. Materials and Methods 

To achieve debris flow susceptibility mapping, four main stages were adopted; illustrated in 
Figure 2. First, the debris flow inventory was prepared and the causal factors were selected. Then, 
they were separated into two independent groups, namely the training set and the validation set, 
using the validation set approach. Second, four debris flow susceptibility models were set up based 
on the LR, RF, SVM, and BRT algorithms. Third, we applied the constructed models to develop debris 
flow susceptibility maps of the study area. Finally, these models were evaluated and compared using 
two widely used criteria, including predictive accuracy (ACC) and the area under the receiver 
operating characteristic curve (AUC). 

 
Figure 2. Methodological flowchart of this study. 

3.1. Preparation of Data Sets 

3.1.1. Compilation of Debris Flow Inventory 

Debris flow inventory is an important prerequisite for the analyses of debris flow susceptibility 
because there is an assumption that past events have a great influence on the future [2]. In this study, 
detailed information of 3839 rainfall-triggered debris flow events in the Sichuan Province, from 1949 
to 2017 was collected, based on historical records collection, aerial photographs, satellite remote 
sensing images interpretation, and field verification. Some of the information was obtained from 
government departments in Sichuan. Therefore, the inventory is reliable in both quality and 
completeness. The locations of debris flows are shown as points (Figure 1). As can be seen in the 
diagram, these events were concentrated in the mountainous and hilly areas of the mid-Sichuan 
region. 

3.1.2. Selection of Debris Flow Causal Factors 

The selection of debris flow causal factors is also an important task for susceptibility modeling 
and mapping. Investigators have been using diverse geo-environmental factors in previous studies 
and have been trying to explore their relationship with debris flows. Based on the general cause of 
debris flows, six clusters of factors were initially determined for modeling in this study, including 
topographical, geological, edaphic, meteorological, land-cover, and sociometric factors (Table 1). All 
factors were prepared with the help of GIS and RS. The topographical factors, including mean slope 
angle, slope aspect, mean altitude, altitude difference, and groove gradient, were derived from the 

Figure 2. Methodological flowchart of this study.

3.1. Preparation of Data Sets

3.1.1. Compilation of Debris Flow Inventory

Debris flow inventory is an important prerequisite for the analyses of debris flow susceptibility
because there is an assumption that past events have a great influence on the future [2]. In this study,
detailed information of 3839 rainfall-triggered debris flow events in the Sichuan Province, from 1949 to
2017 was collected, based on historical records collection, aerial photographs, satellite remote sensing
images interpretation, and field verification. Some of the information was obtained from government
departments in Sichuan. Therefore, the inventory is reliable in both quality and completeness. The
locations of debris flows are shown as points (Figure 1). As can be seen in the diagram, these events
were concentrated in the mountainous and hilly areas of the mid-Sichuan region.

3.1.2. Selection of Debris Flow Causal Factors

The selection of debris flow causal factors is also an important task for susceptibility modeling
and mapping. Investigators have been using diverse geo-environmental factors in previous studies
and have been trying to explore their relationship with debris flows. Based on the general cause of
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debris flows, six clusters of factors were initially determined for modeling in this study, including
topographical, geological, edaphic, meteorological, land-cover, and sociometric factors (Table 1).
All factors were prepared with the help of GIS and RS. The topographical factors, including mean
slope angle, slope aspect, mean altitude, altitude difference, and groove gradient, were derived from
the Digital Elevation Model (DEM). Notably, the groove gradient referred to the ratio of the height
difference of gully to its length and was an elemental parameter for the initiation and motion of debris
flows. Geological factors, namely seismic intensity and lithology, were prepared in a GIS environment
using a seismic information map and lithological composition map, respectively. Similarly, edaphic
factors (soil texture and soil erosion) and meteorological factors (moisture index, aridity index, mean
annual temperature, accumulated temperature of 10 ◦C, and annual precipitation) were acquired from
the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
and were pre-processed by GIS technology [23]. Additionally, sociometric factors (population density
and road density) were obtained from the remote sensing datasets provided by RESDC and the
OpenStreetMap [24]. Land cover factors (Normalized Difference Vegetation Index and land use)
constructed from remote sensing images were also commonly used [25].

Watersheds were selected as mapping units to avoid problems of raster grid-cells, such as lack of
physical relations with debris flows [26]. Watershed units have significant conceptual and operational
advantages [8]. We used the Hydrological Analysis Tool of ArcGIS v.10.2 software to divide the study
area into watersheds. Figure 3 exhibits 2471 mapping units ranging from 8.26 km2 to 1829.68 km2.
We excluded a few regions (e.g., plateau and plain areas) of the Sichuan Province in susceptibility
mapping because of the inadequate conditions to trigger a debris flow.
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Figure 3. Watersheds map of the Sichuan Province, China.

The raw data of the causal factors were resampled based on the mapping units, using the Zonal
Statistics Tool in the ArcGIS v.10.2 software. The following factors took the average value in the
watershed—mean slope angle, mean altitude, moisture index, aridity index, mean annual temperature,
accumulated temperature of 10 ◦C, annual precipitation, and NDVI. Moreover, other factors took the
mode value in the watershed, including slope aspect, seismic intensity, lithology, soil erosion, and
land use. In particular, five factors had sub-factors. (1) The seismic intensity was reclassified into five
groups (<VI, VI, VII, VIII, and ≥IX), and the area of each group was also taken as a factor. (2) The
lithology was constructed with five groups based on hardness (extremely soft, soft, moderate hard,
hard, and extremely hard), and the area of each group was also taken as a factor. (3) The soil texture
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included three factors—clay content, sand content, and silt content. (4) Soil erosion was reclassified
into six groups (micro, mild, moderate, serious, drastic, and very drastic), and the area of each group
was also taken as a factor. (5) Land use was interpreted as six groups (cropland, woodland, grassland,
waterbody, construction land, and unused land), and the area of each type was also taken as a factor.
Therefore, 42 initial causal factors were prepared.

Table 1. Initial debris flow causal factors and their sources 1.

No. Causal Factors Clusters Sources

1 Mean slope angle

Topographic
ASTER GDEM (Spatial resolution of

30 m × 30 m)
(http://earthexplorer.usgs.gov)

2 Slope aspect

3 Mean altitude

4 Altitude difference

5 Groove gradient

6 Seismic intensity * Geological

China seismic information (Scale of
1:4,000,000)

(http://www.csi.ac.cn)

7 Lithology *
Lithological composition map of

Sichuan Province (Scale of 1:200,000)
(http://www.csi.ac.cn)

8 Soil texture * Edaphic

Spatial distribution datasets of soil
texture in China (Spatial resolution

of 1 km × 1 km)
(http://www.resdc.cn)

9 Soil erosion *

Spatial distribution datasets of soil
erosion in China (Spatial resolution

of 1 km × 1 km)
(http://www.resdc.cn)

10 Moisture index (Calculated by
Thornthwaite method)

Meteorological
Meteorological datasets in China

(Spatial resolution of 500 m × 500 m)
(http://www.resdc.cn)

11 Aridity index

12 Mean annual temperature

13 Accumulated temperature of 10 ◦C

14 Annual precipitation

15 Population density
Sociometric

Spatial distribution datasets of
population in China (Spatial
resolution of 1 km × 1 km)

(http://www.resdc.cn)

16 Road density OpenStreetMap Data
(http://planet.openstreetmap.org)

17 Normalized Difference Vegetation
Index (NDVI) Land cover

MODIS images (Spatial resolution
of 500 m × 500 m)

(https://modis.gsfc.nasa.gov)

18 Land use *

The land use and land cover change
database in China (Spatial
resolution of 1 km × 1 km)

(http://www.resdc.cn)
1 The factors with “*” in the table have the following sub-factors: (1) The seismic intensity was reclassified into five
groups (<VI, VI, VII, VIII, and ≥IX), and the area of each group was also taken as a factor. (2) The lithology was
constructed with five groups based on hardness (extremely soft, soft, moderate hard, hard, and extremely hard),
and the area of each group was also taken as a factor. (3) The soil texture included three factors—clay content, sand
content, and silt content. (4) Soil erosion was reclassified into six groups (micro, mild, moderate, serious, drastic,
and very drastic), and the area of each group was also taken as a factor. (5) Land use was interpreted as six groups
(cropland, woodland, grassland, waterbody, construction land, and unused land), and the area of each type was also
taken as a factor.

http://earthexplorer.usgs.gov
http://www.csi.ac.cn
http://www.csi.ac.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
http://planet.openstreetmap.org
https://modis.gsfc.nasa.gov
http://www.resdc.cn
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An excellent debris flow susceptibility model relies on a set of suitable factors, so the above
factors should be further evaluated and selected [8]. For this study, we adopted the backward variable
selection method based on the RF algorithm to select the optimal factors and improve the predictive
capability [27]. First, we constructed and evaluated an RF model with all factors, where the model
performance and variable importance were recorded. Then, the factor with the lowest importance was
eliminated and a new model was implemented. This procedure was repeated until there was only one
factor left. Finally, a set of factors with the highest performance was chosen for the final prediction,
and the rest were removed. In Figure 4 it can be seen that only 15 factors were selected as the optimal
predictors for assessing the susceptibility of debris flow in this study.
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Figure 4. Optimal causal factors used for final debris flow susceptibility mapping. (a) mean slope angle,
(b) mean altitude, (c) altitude difference, (d) groove gradient, (e) seismic intensity, (f) area of moderately
hard lithology in each watershed, (g) clay content of each watershed, (h) area of moderate soil erosion
in each watershed, (i) area of severe soil erosion in each watershed, (j) NDVI, (k) moisture index, (l)
aridity index, (m) accumulated temperature of 10 ◦C, (n) population density, and (o) road density.

3.1.3. Partition of Data Sets

Of the 2471 watersheds in the study area, 772 watersheds were positive cases (debris flows had
occurred) and the remaining 1699 watersheds were negative cases (debris flows had not occurred).
According to previous studies, the size of the types of cases selected for a model should be similar [28,29].
Therefore, 772 negative cases were selected randomly along with the same number of positive
cases, to train and validate the models. In general, approximately 70% of the data was randomly
selected for model training, meanwhile the remaining 30% was used for model validation. This data
partitioning method, namely the validation set approach, was easy to implement. However, the
ratio of training/validation set needed to be chosen carefully. The inappropriate ratio might cause
potential problems in the procedure of data mining, such as overfitting or deficient model training,
which significantly affects the predictive performance of the model. A split of 70%–30% is a common
choice adopted by many investigators for coping with this challenge [17,22,30,31]. Therefore, 1082
watersheds consisted of 541 positive cases and 541 negative cases were used to train the models, while
462 watersheds contained 231 positive cases and 231 negative cases served the output validation.
The positive/negative cases were labeled as 1/0 for modeling. To obtain more robust conclusions, the
sampling procedure was repeated three times. All three sample datasets participated in the model
operation. Lastly, the values of causal factors were resampled for each watershed.
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3.2. Model Construction Using Machine Learning Algorithms

After preparing datasets, we constructed and trained four debris flow susceptibility models using
machine learning algorithms. The statistical tool R version 3.4.4 was used for the model training [32].
We paid more attention to adjust and optimize the parameters based on the cross-validation approach,
for improving the effectiveness of the models. The model output was the occurrence probability of
debris flow and was used to simulate susceptibility.

3.2.1. Logistic Regression (LR)

Logistic Regression (LR) is a multivariate regression algorithm that has been extensively used
for the susceptibility assessment [22,33,34]. LR is suitable to understand the relationship between a
binary variable (whether the debris flow will occur or not) and several causal factors, and estimate the
probability of an event [35]. The logit–natural logarithm of LR can be expressed as below:

log
(

p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp (1)

Therefore, in this study, the probability p of a debris flow occurrence in each watershed could be
estimated by using the following equation:

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(2)

where X = (X1, . . . , Xp) are the debris flow causal factors, β0 represents the intercept, (β1, . . . , βp) are
the regression coefficients. LR uses the maximum likelihood method to estimate (β1, . . . , βp). Finally,
the probability of a debris flow occurring varies from 0 to 1.

3.2.2. Random Forest (RF)

Random Forest (RF) is a multivariate model that belongs to one of the ensemble-learning
techniques [36]. The algorithm is also suitable for debris flow susceptibility assessment. According to
the decision rules, a series of decision trees were established, and final decision (whether the debris
flow will occur or not) was determined based on the majority vote [37]. When constructing these
decision trees, each time a split in a tree was considered, a random sample containing m causal factors
was selected as the split candidates, among all factors. Forcing each split to consider only a subset of
all factors helped to overcome the weakness of overfitting and improved the stability. This process was
thought of as de-correlating trees, thereby, making the results more reliable. There were two important
parameters, namely the number of trees and the tree depth, which needed to be tuned when modeling.
Additionally, to assess factor importance, the mean decrease accuracy and mean decrease Gini were
calculated [38–40].

3.2.3. Support Vector Machines (SVM)

Support Vector Machines (SVM) was developed in the 1990s [41] and has grown into a popular
approach for classification because of its superior empirical performance in a variety of settings [30,42,43].
In this study, debris flow causal factors were mapped into a high-dimensional feature space. Then,
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the model struggled to detect a hyperplane to separate positive cases and negative cases, as much as
possible [44]. The optimal hyperplane can be obtained by solving the following optimization problem:

maximize
β0,β11,β12,··· ,βp1,βp2,ε1,ε2,··· ,εn

M

subject to yi

β0 +
p∑

j=1
β j1xi j+

p∑
j=1

β j2x2
ji

 ≥M(1− εi)

n∑
i=1

εi ≤ C, εi ≥ 0,
p∑

j=1

2∑
k=1

β2
jk = 1

(3)

where C is a non-negative tuning parameter, M is the width of the margin, ε1, ε2, . . . , εn are slack
variables. Later, to classify new data, the decision function can be written as below:

f (x) = sgn

 n∑
i=1

yiαiK
(
xi, x j

)
+ b

 (4)

where K is the function that we will refer to as a kernel, b represents the offset from the origin of the
hyperplane, n means the number of causal factors, and αi are positive real constants. The radial basis
kernel function was adopted in this study due to its robustness, as reported by Rahmati et al. [30] and
Kavzoglu et al. [45]. The core parameters of SVM modeling included gamma and cost.

3.2.4. Boosted Regression Trees (BRT)

Boosted Regression Trees (BRT) is an approach of combining gradient boosting algorithm with
classification and regression trees [46]. BRT adopts a method similar to RF to implement the debris flow
susceptibility assessment. The difference is that smaller trees are typically sufficient in BRT, because
of their slow learning process. Additionally, each tree in BRT is created based on the modification of
previous trees, unlike the RF algorithm. The core of training the BRT model is to select the optimal
value of three pivotal parameters—the shrinkage coefficient, the number of trees, and splits in each tree.
They control the rate at which boosting learns, the model’s scale, and the complexity of the boosted
ensemble, respectively. The optimal parameters were automatically set through cross-validation.

3.3. Evaluation and Comparison Methods

In this study, two commonly used criteria, including the predictive accuracy (ACC) and receiver
operating characteristic (ROC) curve were applied to quantify and compare the performance of models.
ACC is a statistical metric that relies on the components of the confusion matrix [30,47]. As Table 2
shows, the confusion matrix reveals the discrepancy between the model results and the actual observed
outcomes. ACC can be estimated by the following equation:

ACC =
TP + TN

TP + TN + FP + FN
(5)

where TP and TN refer to the number of watersheds that are correctly classified, while FP and FN refer
to the number of watersheds classified incorrectly.

Table 2. Confusion Matrix.

Observed
Predicted

Debris-Flow Non-Debris-Flow

Debris-flow True positive (TP) False negative (FN)

Non-debris-flow False positive (FP) True negative (TN)
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The ROC curve, which elucidates the alterations of true positive rate (TPR) and false positive rate
(FPR) when the discrimination threshold changes [48,49], is also a widely used technique to measure
the goodness-of-fit and the predictive power of probabilistic models. TPR is the ratio of positive cases
that are correctly identified under a specific threshold value. FPR means the ratio of all negative cases
that are incorrectly predicted to be positive, under the same threshold value. They also rely on the
confusion matrix and can be obtained from following equations:

TPR = TP/(TP + FN) (6)

FPR = FP/(FP + TN) (7)

This popular graph visualizes the confusion matrix under various thresholds and tracks two
kinds of classification errors [50]. The overall performance of debris flow susceptibility models is
quantified by the area under the curve (AUC). An ideal ROC curve should be close to the upper-left
corner, usually the higher the AUC value the better the model. According to the previous studies, the
performance of a model based on the AUC value can be classified as several levels: 0.5~0.6 = poor,
0.6~0.7 = moderate, 0.7~0.8 = acceptable, 0.8~0.9 = excellent, and 0.9~1 = almost perfect [19,30].

4. Results

4.1. Development of Debris Flow Susceptibility Maps

The core of LR modeling was the estimation of the regression coefficients using the maximum
likelihood method. During the RF modeling, the number of trees and the tree depth were determined as
1000 and 5. For the SVM model, the parameters, gamma and cost, were tuned to 1 and 10, respectively.
The important parameters in the BRT model, i.e., the shrinkage coefficient, the number of trees, and
splits in each tree, were identified to be 0.2, 1000, and 4, respectively. After model building and
operation, we averaged the model outputs of three sample datasets to generate the results. Repeated
sampling was helpful to reduce sampling error and gain more robust analysis results. Four models
were applied to calculate the debris flow susceptibility index for each watershed in the Sichuan
Province. According to the computed index, ranging from 0 to 1, susceptibility levels were reclassified
into five categories (very low, low, moderate, high, and very high) using the natural break classification
method in the GIS environment [17]. Then, susceptibility maps were produced in the GIS platform for
visualization (Figure 5). The results of the assessment showed that watersheds with high and very
high debris flow susceptibility were chiefly distributed in the central mountainous region of the study
area. Whereas there was lower susceptibility in the western plateau districts as well as the eastern
plain districts, with a gentle topography fluctuation.

Figure 6 depicts the relative distribution of the susceptibility classes calculated for each model. In
the LR model, the low class had the largest proportion (22.42%). 21.57%, 17.44%, 16.35%, and 22.22%
of watersheds which fell into the ‘very low’, ‘moderate’, ‘high’, and ‘very high’ susceptibility classes,
respectively. For the debris flow susceptibility maps of the RF and SVM model, the percentages of each
class were very similar to those acquired by the LR model. Furthermore, the percentage of very high
class in the BRT model (12.59%) was small, which was lower than that based on other models. The
moderate and lower debris flow susceptibilities were the main levels in the study area.
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Overall, the susceptibility map intuitively describes the prone distribution of future debris flows.
The establishment of a large-scale prediction system based on machine learning methods has extremely
high application values and broad application prospects. More comprehensive analyses of debris flow
prediction system should be conducted to guide the practice of disaster prevention and reduction in
the future.

4.2. Evaluation and Comparison of Machine Learning Models

The performance of the four models was evaluated and compared using the criteria chosen
in Section 3.3. Analyses of the ACC and AUC using the training set are shown in Figure 7a and
Table 3. The highest AUC value belonged to the BRT model (AUC = 0.907), followed by the RF model
(AUC = 0.870), the SVM model (AUC = 0.865), and the LR model (AUC = 0.843), respectively. Similarly,
it could be found that the BRT model had the highest ACC value (0.823), other models followed it. The
criteria showed a high goodness-of-fit for all models in the training step. However, performance in
the training step was not enough to assess the prediction capacity of the model [51]. Therefore, we
paid more attention to the performance of models in the validation set. Table 4 and Figure 7b show
the ACC and AUC values on the validation set. The highest ACC and AUC values belong to the BRT
model (ACC = 0.781, AUC = 0.852), followed by the RF model (ACC = 0.779, AUC = 0.849), the SVM
model (ACC = 0.781, AUC = 0.849), and the LR model (ACC = 0.762, AUC = 0.829), respectively. The
ACC values of these models are far above 75% and the AUC values range from excellent to almost
perfect. According to these, all four machine-learning models performed well, considering the above
factors for debris flow susceptibility mapping. The BRT model was superior to the rest of the models.
This reiterates the fact that a data-driven classification model that learns slowly shows impressive
performance [48].
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Table 3. The ACC and AUC values of the four models on the training set.

Evaluation Criteria
Models

LR RF SVM BRT

ACC 0.762 0.791 0.785 0.823

AUC 0.843 0.870 0.865 0.907

Table 4. The ACC and AUC values of the four models on the validation set.

Evaluation Criteria
Models

LR RF SVM BRT

ACC 0.762 0.779 0.781 0.781

AUC 0.829 0.849 0.849 0.852

4.3. Assessment of Factor Importance

To evaluate the effect of factor selection, BRT was utilized. The AUC value of BRT experienced
improvement after removal of unimportant factors. Therefore, a careful analysis of causal factors
before modeling is indispensable. Considering the relevance and their corresponding weights, and
discarding unimportant factors, result in better forecasting performance.

A variety of factors can trigger occurrences of debris flows. Under the premise that the main
controlling factors of debris flow are still controversial, the assessment of factor importance is valuable
for interpreting and diagnosing the contribution of different predictor variables. The relative importance
of the fifteen factors used to build the models and produce the debris flow susceptibility maps are
presented in Figure 8. The results are shown based on the mean decrease of the Gini index in
the RF model and are expressed relative to the maximum value. The Gini index is regarded as a
commonly-used measurement of total variance across all classifications, and is suitable for assessing
the factor importance [48]. A large mean decrease value of the Gini index by splits over a given factor
shows a significant predictor. The classification tree models (RF and BRT) have the same mechanism for
assessing the relative importance of factors. While LR and SVM rank the factor importance by relying
on the regression coefficients and weight vectors, respectively. One of the advantages of applying the
Gini index in the RF or BRT model is that it is easier to interpret these results than the SVM or LR.
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As this figure shows, we can deem that all fifteen factors have positive contributions to debris flow
susceptibility modeling. The mean altitude, altitude difference, aridity index, and groove gradient
have the largest mean decrease in the Gini index, followed by others. There were four topographical
factors, three meteorological factors, three edaphic factors, two geological factors, two sociometric
factors, and one land-cover factors. That is, the topography, meteorology, and edaphology were
the most important factor clusters. Previous studies also illustrated that by explaining the general
cause of debris flows—surface rock and soil gradually lose their strength because of earthquakes or
weather conditions, which are potentially unstable in the steep slopes, and finally, seepage forces
formed by rainfall cause them to slide, the slide distance depends on the topography and strength loss
amount [52–54].
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The susceptibility map derived from the BRT model has been combined with the factor maps to
analyze the relationship between the causal factors and debris flow occurrences. The distribution of
watersheds with high and very high susceptibility classes (737 watersheds) on four most important
factor maps (mean altitude, altitude difference, aridity index, and groove gradient) is shown in
Figure 9. It can be seen that there are obvious regularities. Most watersheds with high and very high
susceptibility classes are highly associated with the following conditions—mean altitude varying from
2000 to 3000 m, altitude difference varying from 2000 to 3000 m, aridity index varying from 0.85 to 1.35,
and groove gradient varying from 100% to 200%. According to this case, prevention and mitigation of
debris flow risk should be paid more attention to in these types of highly coupled areas.
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5. Discussion

On the basis of the remote sensing data, GIS tools, and machine learning algorithms, debris flow
susceptibility assessment of the Sichuan Province was implemented. The final four susceptibility maps
did not vary considerably between the models and had a consistent spatial distribution pattern. There
were obvious regional characteristics exhibited in the susceptibility maps. The transition belt of the
Qinghai–Tibet Plateau to the Sichuan Basin concentrates most watersheds of high and very high debris
flow susceptibility, where the topography varies enormously. Additionally, this region is coupled with
dry valleys and fault zones. Severe soil erosion and frequent earthquakes provide abundant loose
materials for debris flows. Similarly, we should also blame the hazard prone on the engineering dregs
generated by high-intensity road and hydropower development. Through a combined analysis of
factor importance, we identified the high-risk areas and major causal factors that were conducive to
preferable hazard prevention. Some factors, such as NDVI and seismic intensity, were always regarded
as necessary factors. However, the analyses of factor importance revealed that they were not highly
important in this particular application. Hence, we inferred that some factors were site-specific. This
inference was in agreement with the investigation conducted by Chen et al. [55].

In this study, all models exhibited good performance and was suitable for constructing debris
flow susceptibility maps. Among them, the BRT model was the most reliable and accurate in the study
area. As shown in Figure 4, proportions of the different debris flow susceptibility classes from the four
models were not exactly the same. From this empirical observation, we concluded that the predictions
of the BRT model tended to be optimistic, even though there was no structural evidence. There was
no universal agreement on which algorithm performed best on various environments. Each machine
learning method has its pros and cons, and the performance of one method is not always better than
the other. Rahmati et al. [30] applied seven machine learning methods to analyze the susceptibility
of gully erosion and found that the BRT model exhibited a better performance than SVM. However,
Garosi et al. [19] illustrated that the BRT and ANN models obtained similar outstanding performance in
their research. This might result from the lack of uniform criteria for the selection of factors. Although
advanced machine learning methods have slightly different performance in various studies, they
always have good predictive abilities and are suitable for the study of susceptibility. Based on the
above analyses, we recommend that governors and investigators obtain an optimal susceptibility map
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by comparing and combining multiple models in practical applications. Therefore, further comparison
and ensemble studies are necessary to guide the method selection for predicting debris flows.

6. Conclusions

Comparative studies of multiple machine learning models for debris flow susceptibility mapping
are very useful to predict future events. The important contributions of our comparative research
are summarized below. In this study, all four machine-learning models showed great performance.
The BRT model obtained the optimal goodness-of-fit and predictive capability as compared to the
other models, in terms of both AUC and ACC, while it was also stable and did not show any
overfitting. Therefore, these models, especially BRT, show promising techniques for producing debris
flow susceptibility map. This map of the study area shows that the distribution of the watersheds with
high and very high susceptibility is coupled with an extreme topography transition zone. Additionally,
environmental data based on RS and GIS provide important data sources for regional analyses of
debris flow susceptibility. Proper selection of the optimal factors and appropriate mapping units not
only improved the prediction performance of the models but also helps avoid the arbitrariness of the
factors used. The topographical factors, meteorological factors, and edaphic factors played the most
important role in this case. These study results provide a comprehensive perspective on debris flow
susceptibility in the Sichuan Province, which are essential for policymakers to implement sustainable
disaster mitigation in high debris-flow-prone areas.
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