
remote sensing  

Article

Statistical Applications to Downscale
GRACE-Derived Terrestrial Water Storage Data and to
Fill Temporal Gaps

Hossein Sahour 1, Mohamed Sultan 1,*, Mehdi Vazifedan 2, Karem Abdelmohsen 1,3 ,
Sita Karki 1 , John A. Yellich 4, Esayas Gebremichael 5 , Fahad Alshehri 1 and
Tamer M. Elbayoumi 6

1 Department of Geological and Environmental Sciences, Western Michigan University,
Kalamazoo, MI 49008, USA; hossein.sahour@wmich.edu (H.S.); karem.abdelmohsen@wmich.edu (K.A.);
sita.karki@wmich.edu (S.K.); fahad.k.alshehri@wmich.edu (F.A.)

2 Department of Statistics, Western Michigan University, Kalamazoo, MI 49008, USA;
mehdi.vazifedan@wmich.edu

3 Geodynamics Department, National Research Institute of Astronomy and Geophysics (NRIAG),
Helwan, Cairo 11421, Egypt

4 Michigan Geological Survey, Western Michigan University, Kalamazoo, MI 49008, USA;
john.a.yellich@wmich.edu

5 Department of Geological Sciences, Texas Christian University, Fort Worth, TX 76129, USA;
e.gebremichael@tcu.edu

6 Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411, USA;
tmelbayoumi@ncat.edu

* Correspondence: mohamed.sultan@wmich.edu

Received: 31 December 2019; Accepted: 3 February 2020; Published: 6 February 2020
����������
�������

Abstract: The Gravity Recovery and Climate Experiment (GRACE) has been successfully used to
monitor variations in terrestrial water storage (GRACETWS) and groundwater storage (GRACEGWS)
across the globe, yet such applications are hindered on local scales by the limited spatial resolution
of GRACE data. Using the Lower Peninsula of Michigan as a test site, we developed optimum
procedures to downscale GRACE Release-06 monthly mascon solutions. A four-fold exercise was
conducted. Cluster analysis was performed to identify the optimum number and distribution
of clusters (areas) of contiguous pixels of similar geophysical signals (GRACETWS time series);
three clusters were identified (cluster 1: 13,700 km2; cluster 2: 59,200 km2; cluster 3: 33,100 km2;
Step I). Variables (total precipitation, normalized difference vegetation index (NDVI), snow cover,
streamflow, Lake Michigan level, Lake Huron level, land surface temperature, soil moisture, air
temperature, and evapotranspiration (ET)), which could potentially contribute to, or correlate with,
GRACETWS over the test site were identified, and the dataset was randomly partitioned into training
(80%) and testing (20%) datasets (Step II). Multivariate regression, artificial neural network, and
extreme gradient boosting techniques were applied on the training dataset for each of the identified
clusters to extract relationships between the identified hydro-climatic variables and GRACETWS

solutions on a coarser scale (13,700–33,100 km2), and were used to estimate GRACETWS at a spatial
resolution matching that of the fine-scale (0.125◦ × 0.125◦ or 120 km2) inputs. The statistical models
were evaluated by comparing the observed and modeled GRACETWS values using the R-squared,
the Nash–Sutcliffe model efficiency coefficient (NSE), and the normalized root-mean-square error
(NRMSE; Step III). Lastly, temporal variations in GRACEGWS were extracted using outputs of land
surface models and those of the optimum downscaling methodology (downscaled GRACETWS) (Step
IV). Findings demonstrate that (1) consideration should be given to the cluster-based extreme gradient
boosting technique in downscaling GRACETWS for local applications given their apparent enhanced
performance (average value: R-squared: 0.86; NRMSE 0.37; NSE 0.86) over the multivariate regression
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(R-squared: 0.74; NRMSE 0.56; NSE 0.64) and artificial neural network (R-squared: 0.76; NRMSE 0.5;
NSE 0.37) methods; and (2) identifying local hydrologic variables and the optimum downscaling
approach for individual clusters is critical to implementing this method. The adopted method could
potentially be used for groundwater management purposes on local scales in the study area and in
similar settings elsewhere.

Keywords: downscaling; GRACE; multivariate regression; artificial neural network; XGBoost

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission that was jointly
implemented by the National Aeronautics and Space Administration (NASA) in the United States and
the Deutschen Zentrum für Luftund Raumfahrt (DLR) in Germany to map the temporal variations in
the global gravity field [1,2]. The GRACE satellites were launched in March 2002, and the GRACE
Follow-On (GRACE-FO) mission was launched in May 2018; since then, their applications have
resulted in advances in hydrologic sciences (e.g., [3–7]) in the assessment and monitoring of spatial and
temporal variations in groundwater storage (GWS) in many parts of the world, including Africa [3–5],
the Middle East [6,7], China [8], India [9], California [10], and Mexico [11]. However, such applications
are hampered by the relatively low horizontal resolution of GRACE data and the fact that GRACE does
not have vertical resolution [12,13]. In other words, GRACE cannot determine in which compartment
(e.g., surface water, groundwater, or soil moisture) the observed mass variations are occurring.

Many studies utilizing GRACE data for hydrological research and applications (e.g., [14,15]) target
large aquifers and watersheds (areas of 450 × 103 to 6 × 106 km2). However, the majority of the world’s
aquifers and watersheds are much smaller; even for the larger ones, one often needs to understand the
partitioning of water on the sub-basin level. A finer resolution of GRACE solutions would be a useful
tool for tracking the changes in GWS (GRACEGWS) on local scales, especially for regions that do not
have sufficient in-situ monitoring sites.

Downscaling techniques allow predictions to be made at a finer spatial resolution than that of the
original dataset [16]. Downscaling approaches, especially those developed for climate models and
later applied to remotely acquired data, can be classified into two main groups: Dynamic downscaling
and statistical downscaling [16]. The former approach has been successfully applied to downscale
global climate models (GCMs) over regions of interest by integrating GCM outputs with the physical
characteristics of Earth’s surface in the area of interest. Monthly GRACE terrestrial water storage
(GRACETWS) solutions from Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and
Deutsches GeoForschungsZentrum (GFZ) (spatial resolution: 150,000 km2) were assimilated into
a land surface model to generate high-resolution water storage changes within the major watersheds
of the Mississippi River [17]. GRACETWS derived from spherical harmonic (SH) solutions were
assimilated into the Catchment land surface model to extract GRACE-based drought indicators
(spatial resolution: 1◦ × 1.25◦) for North America [18]. Gridded (25 km2) Advanced Microwave
Scanning Radiometer–Earth Observing System (AMSR-E) data were assimilated into a fine-scale
(1 km2) NOAH land surface model using three-dimensional and one-dimensional Kalman filters [19].
The JPL GRACETWS mascon solutions (3.0◦ × 3.0◦) were assimilated into the fine-resolution (0.05◦ ×
0.05◦) hydrologic models [20,21]. The scale factor was used to minimize the leakage errors and to
improve the spatial resolution of the JPL spherical harmonics solutions [22]. Such applications often
require extensive computing time and resources that are not available for many researchers [23]. Also,
many of the above-mentioned procedures depend on the selected hydrological model, some of which
are lacking surface or groundwater components.

Statistical downscaling, on the other hand, does not require these resources. Statistical downscaling
evaluates observed spatial and temporal relationships between inputs (independent variables) and
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outputs (dependent variables) using coarse-scale datasets (inputs and outputs) and applies the extracted
relationships to produce the dependent variables at a spatial resolution matching that of the fine-scale
inputs [24]. A variety of statistical methods have been applied to downscale remote sensing or
ground-based data, including Markov chains and support vector machines [25], regression kriging [26],
neural networks [27], and stochastic models [28]. Stepwise regression was successfully applied to
downscale satellite-based precipitation data (TRMM3B43 products) and average daily precipitation
and air temperature data from weather stations [29,30]. Artificial neural networks (ANNs) were used
to downscale GCM outputs [31] and rainfall [32]. The major limitation of the statistical approaches
comes from the assumption of stationarity between the coarse- and fine-scale dynamics and from the
uncertainty and probability associated with this assumption [23].

Statistical approaches were successfully used to downscale GRACE data to a high-resolution
(~16 km2) dataset of groundwater storage changes over a portion of California’s Central Valley using
ANN techniques [27]. In this study, temporal GRACETWS and a series of widely available hydrologic
variables were used as model inputs and target data were extracted from groundwater storage changes
that were estimated from an extensive well network dataset (2189 wells). Similarly, variations in GWS
were extracted and tested against temporal variations in groundwater levels in Texas, Nebraska, and
Illinois [33] by using coarse-resolution (3◦ × 3◦) GRACETWS JPL Release-05 monthly mass concentration
(mascons; JPL RL-05M) and high-resolution hydrologic variables, and applying ANN techniques.
Statistical downscaling was also used to successfully downscale GWS anomalies from 110 to 2 km in
the North China Plain on both interannual and monthly scales in areas where a strong relationship
between GWS and ET was detected and where the relationship was established under different
spatial resolutions [34]. The successful applications in the first two examples (in California’s Central
Valley, Texas, Nebraska, and Illinois) rely heavily on the availability of temporal head data from
dense networks of wells, and for the latter (North China Plain) on the presence of strong relationship
between GWS and ET—conditions that are not necessarily available in many of the basins worldwide.
In a fourth study, temporal GRACETWS solutions and land surface and hydro-climatic variables were
used to predict groundwater level anomaly (GWLA). A network of 32 wells (21 wells for training
and 11 wells for testing) was used to establish and test the relationship between GRACETWS and
hydro-climatic variables as input and GWLA as the response variable using a downscaling algorithm
based on machine learning (ML) [35]. In many of the applied statistical downscaling approaches,
including the latter study, a dense network of wells is required to establish a relationship between
hydrological variables and groundwater anomalies extracted from the well data. Those methods
cannot be applied in many parts of the world with limited monitoring well sites.

In this study, we applied statistical techniques to extract relationships between coarse-resolution
GRACE solutions (target data) and hydrologic variables (total precipitation, normalized difference
vegetation index (NDVI), snow cover, streamflow, Lake Michigan level, Lake Huron level, land
surface temperature, soil moisture, air temperature, and evapotranspiration (ET). These variables could
potentially correlate with, or contribute to, the temporal variations of GRACETWS. We used those
relationships and high-resolution hydrologic variables to generate high-resolution modeled monthly
GRACE solutions. The Lower Peninsula (LP) of Michigan was used as a test site. We applied and
compared the findings from three statistical methods—stepwise multivariate regression (MR) models,
ANN, and extreme gradient boosting (XGBoost)—to downscale GRACE data and to fill the temporal
gaps in the time series data over the LP throughout the investigated period (2002–2016).

2. Overview of the Study Area

The LP (Figure 1) depends heavily on its groundwater resources to support a population of
10 million citizens, its agricultural sector (35% of its area is agricultural land [36]), and its industry [37].
The area in general, and the local communities in particular, can benefit from reliable datasets that
show spatial and temporal variations in GWS at the local scale. This is especially true for the southern
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counties of the LP, where intensive agricultural activities are established and groundwater withdrawal
rates (30 to 90 million gallons/day [38]) are the highest in the state.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 30 

 
 

 
Figure 1. Location map showing the distribution of the three clusters (1, 2, and 3), the Holland and 
Harbor Beach lake-level measuring stations, stream gauges, lakes Austin and Ostego, three arbitrary 
pixels (Point 1, Point 2, and Point 3) in clusters 1, 2, and 3, respectively where downscaled GRACETWS 
and GRACEGWS trends, time series, and uncertainties were estimated, and monitoring wells in 
Kalamazoo (well A: site name 02S 11W 22CDBB 01) and in Lansing (well B: site name 04N 02W 
26BBDB 01 and well C: site name: 04N 02W 16DAAA 01). Inset shows the location of the study area 
in the USA. 

Nine hydrologic provinces with varying sedimentary deposits and aquifer thicknesses (Figure 
2) were identified in the LP [39]. Province 1 has a relatively thin (1 to 60 m) glacial-lacustrine sand 
unit that overlies Silurian and Devonian limestone and dolomite. Aquifers in Silurian and Devonian 
rocks are the main source of groundwater in the area. Province 2 is largely covered by thick (>300 m 
in some areas), coarse-grained, and sandy glacial deposits, whereas province 3 is characterized by 
variable thicknesses (15 to 75 m) low-yield lacustrine deposits that overlie the Mississippian bedrocks. 
Province 4 is located in the most southern section of the LP and is characterized by thick (30 to 180 
m) coarse-grained glacial deposits that overlie the low-yield Mississippian rocks; it is the main source 
for groundwater in the area. Province 5 glacial deposits vary in thickness (7 to 150 m) and overlie the 
high-yield Pennsylvanian aquifers. In this province, the thickness of the glacial aquifer thins to the 

Figure 1. Location map showing the distribution of the three clusters (1, 2, and 3), the Holland
and Harbor Beach lake-level measuring stations, stream gauges, lakes Austin and Ostego, three
arbitrary pixels (Point 1, Point 2, and Point 3) in clusters 1, 2, and 3, respectively where downscaled
GRACETWS and GRACEGWS trends, time series, and uncertainties were estimated, and monitoring
wells in Kalamazoo (well A: site name 02S 11W 22CDBB 01) and in Lansing (well B: site name 04N 02W
26BBDB 01 and well C: site name: 04N 02W 16DAAA 01). Inset shows the location of the study area in
the USA.

Groundwater availability differs from one place to another in the LP; it is plentiful in some regions
(e.g., the southwest) and less so in other areas (e.g., the southeast) [39]. The major aquifers in Michigan
are largely found in (1) glacial deposits, where yields are mostly from outwash and glacio-fluvial
deposits; and (2) sedimentary bedrock units, where yields come largely from the Mississippian and
Pennsylvanian rocks [39]. The surface and groundwater in the area drain into the Great Lakes (Lake
Michigan, Lake Huron, and Lake Erie) [40].

Nine hydrologic provinces with varying sedimentary deposits and aquifer thicknesses (Figure 2)
were identified in the LP [39]. Province 1 has a relatively thin (1 to 60 m) glacial-lacustrine sand unit that
overlies Silurian and Devonian limestone and dolomite. Aquifers in Silurian and Devonian rocks are the
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main source of groundwater in the area. Province 2 is largely covered by thick (>300 m in some areas),
coarse-grained, and sandy glacial deposits, whereas province 3 is characterized by variable thicknesses
(15 to 75 m) low-yield lacustrine deposits that overlie the Mississippian bedrocks. Province 4 is located
in the most southern section of the LP and is characterized by thick (30 to 180 m) coarse-grained glacial
deposits that overlie the low-yield Mississippian rocks; it is the main source for groundwater in the
area. Province 5 glacial deposits vary in thickness (7 to 150 m) and overlie the high-yield Pennsylvanian
aquifers. In this province, the thickness of the glacial aquifer thins to the south and groundwater is
largely extracted from the Pennsylvanian sandstone. Province 6 is characterized by thin to moderate
glacial drift that overlies high-yield Mississippian bedrock aquifers. The latter is largely composed
of the Marshall Sandstone, whereas the glacial deposits are absent in some areas but thicken (up
to 120 m) in others. Province 7 is characterized by thin glacial deposits (<10 m in most areas) that
overlie moderate-yield Silurian and Devonian limestone and dolomite intercalated with sand and shale
layers. Province 8 is characterized by low-yield, moderate to thick (15 to 120 m), and lacustrine clay
deposits that overlie low-yield Devonian and Mississippian sandstone. Lastly, Province 9 consists of
featureless lacustrine and low-yield glacial sand and clay deposits of variable thickness (7 to 90 m) that
overlie Pennsylvanian and Mississippian sandstone aquifers [39]. In general, the vertical hydraulic
conductivity of the glacial aquifer is high (9.64 × 10−7 to 3.8 × 10−5 m/day) in the southern sections
compared to the northern sections (3.8 × 10−5 to 0.45 m/day; [41]).
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3. Methodology

A four-fold exercise was conducted to accomplish the statistical downscaling of the GRACE-derived
terrestrial water storage (GRACETWS) (Figure 3). First, clustering analysis was conducted on GRACETWS

data over the LP to identify clusters of pixels, where pixels within each cluster have similar GRACETWS

values yet are statistically different from those of neighboring clusters (Step I). Variables that correlate
with and/or control GRACETWS were then identified (Step II). In Step III, for each cluster, relationships
between coarse-scale inputs (independent variables) and outputs (GRACETWS; dependent variables
or target) were extracted using three statistical approaches—MR, ANN, and XGBoost—to produce
the dependent variables at a spatial resolution matching that of the fine-scale inputs (0.125◦ × 0.125◦

or 120 km2). In doing so, we assumed that the extracted statistical relationship between the input
variables and the target applies at the finer scales as well. In this step, the adopted statistical models
were compared and evaluated to select the optimum methodology. Finally, GWS variations were
extracted using the outputs of the applied land surface model and outputs of the optimum downscaling
method (downscaled GRACETWS) (Step IV).
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Figure 3. Flow chart showing the four main steps that were used to downscale GRACE-derived
terrestrial water storage (GRACETWS) from 12,000 to 120 km2 and to extract fine-resolution (120 km2)
GRACE-derived groundwater storage GRACEGWS.

Initially, we selected 11 variables that could correlate with, or contribute to, the temporal variations
of GRACETWS. All input variables listed below (Section 3.2) are available at a spatial resolution ranging
from 0.05◦ × 0.05◦ to 0.125◦ × 0.125◦, and the output target values for each of the identified clusters
were calculated from the gridded values within each of the clusters. Input variables were resampled
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to the size of their corresponding clusters for Step I and resampled to 0.125◦ × 0.125◦ (120 km2) for
Step III.

We adopted three statistical approaches to model the relationships between the 11 variables and
GRACETWS, namely, the MR, ANN, and XGboost approaches for each cluster. For each of the three
approaches, the data were randomly partitioned into two subsets, training and testing. The training
subset comprised 80% of the data points (percentage of the months in the time series data) and was
used to construct the model, whereas the remaining 20% were used to evaluate the performance of the
model. This approach was applied to each of the identified clusters.

3.1. Cluster Analysis

Working with small areas (individual pixels) introduces significant leakages from neighboring
pixels. We adopted cluster analysis to identify larger areas (contiguous pixels) with similar geophysical
signatures (GRACETWS time series) and hence reduce leakage errors. Clustering is the partitioning of
the set of objects into groups in such a way that the objects within a group are more similar to each
other than those in other groups. We applied K-means, one of the most popular methods for clustering
analysis, to the monthly GRACE Release-06 (CSR RL06) solutions over the study area. In this method
(K-means), the dataset is partitioned into K clusters in which each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster [42]. The optimum number of clusters
was estimated, and the area was partitioned into the identified number of clusters. The monthly
values of a variable for each cluster represent the average values of all pixels within that cluster in the
investigated month.

The optimal number of clusters was determined using the gap statistic implementation [43], where
three steps are undertaken:

Step 1: Estimate the gap statistic using Equation (1):

Gap (k) =
1
B

∑B

b=1
(log Wkb − log Wk), (1)

in which k is the number of clusters, B is the number of reference datasets generated using a uniform
prescription, Wkb is the within-dispersion measures, and Wk is the within-cluster dispersion.

Step 2: Compute the standard deviation:

sdk =
[( 1

B

)∑
b

{
log(Wkb) − l

}2
] 1

2
,

where:
l =

( 1
B

)∑
b

log(Wkb).

Step 3: Define sk = sdk

√
1 + 1

B and choose the number of clusters via:

k̂= smallest k such that Gap (k) ≥ Gap (k + 1) − sk+1.

3.2. Identification of Variables that Correlate with and/or Control GRACETWS

In this section, we briefly describe the variables and target data for the MR, ANN, and XGboost
models. We selected the input variables (total precipitation, normalized difference vegetation index
(NDVI), snow cover, streamflow, Lake Michigan level, Lake Huron level, land surface temperature,
soil moisture, air temperature, and evapotranspiration (ET)) based on their probable correlation and/or
contribution to the target (GRACETWS). The spatial resolution, format, and sources of these datasets
are given in Table 1. A number of these variables (e.g., soil moisture, NDVI, and evapotranspiration)
may be related to, or affected by, the soil characteristics and the underlying glacial aquifer parameters.
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Table 1. Initial input variables for the statistical models.

Variable Name Format Resolution Source

NDVI raster (0.05◦ × 0.05◦) MODIS
Snow cover raster (0.05◦ × 0.05◦) MODIS

Land surface temperature raster (0.05◦ × 0.05◦) MODIS
Total precipitation raster (0.125◦ × 0.125◦) NLDAS
Air temperature raster (0.125◦ × 0.125◦) NLDAS

Soil moisture raster (0.125◦ × 0.125◦) NLDAS
Lakes Level numerical N/A NOAA
Streamflow numerical N/A USGS

Evapotranspiration raster (0.125◦ × 0.125◦) NLDAS

3.2.1. GRACE-Derived TWS

Three communal GRACE mascon solutions (from April 2002 through June 2016) were applied in
this study and reported relative to a 2004–2009 mean baseline. The first is the GRACE CSR-RL06M
solutions provided by the University of Texas Center for Space Research (UT-CSR); they were derived
using Tikhonov regularization [44], and resolved on a geodesic grid (grid size: 12,000 km2) [44,45].
The second is the mascon solutions from the Jet Propulsion Laboratory (JPL-RL06M) [46] and the third
is the mascon solution from NASA Goddard Space Flight Center [47].

The CSR-RL06M solutions were selected as the initial mascon solutions for extracting trends and
time series over the investigated areas. The uncertainty associated with the calculated trend values
were calculated from the differences in trend values extracted from the three solutions (CSR-RL06M,
JPL-RL06M, and GSFC-M) [48,49] (Table 2). No post-processing and/or filtering or application of
empirical scaling factors were applied [44,46,50]. SH solutions of GRACE data have been successfully
applied in many studies to monitor variations in TWS on large scales [3,51]; however, its application
on local scales was hindered by its coarse spatial resolution (>125,000 km2), leakage problems from
adjacent pixels, and the required complex post-processing steps [52]. Compared to SH, the GRACE
RL06 mascon solutions have a higher signal-to-noise ratio, higher spatial resolution, and reduced
leakage from neighboring mascons that are in separate constraint regions [52,53]. The extracted trends
and associated uncertainties for each of the investigated clusters are given in Table 2.

Table 2. Secular trends for GRACETWS and GRACEGWS from 2002 to 2016.

Cluster ∆TWS (mm/year) ∆SMS (mm/year) ∆SWE (mm/year) ∆GWS (mm/year)

1 16.2 ± 5 0.3 ± 0.0 0.1 ± 0.0 15.8 ± 5
2 14.4 ± 5.2 0.0 ± 0.0 0.7 ± 0.0 13.7 ± 5.2
3 8.8 ± 3.4 −0.7 ± 0.0 0.1 ± 0.0 9.5 ± 3.4

Notes: Locations for clusters are shown in Figure 1. ∆TWS: Change in terrestrial water storage. The values are
based on originial GRACETWS before gap filling for missing months. ∆SMS: Change in soil moisture storage. ∆SWE:
Change in snow water equivalent. ∆GWS: Change in groundwater storage. ∆CWS: Change in canopy water storage
for each of the three clusters was found to be negligible. (0.0) and was ignored in estimating ∆GWS.

3.2.2. NDVI

We used NDVI products derived from the Moderate-resolution Imaging Spectroradiometer
(MODIS) as one of the variables. NDVI uses the red and near-infrared bands, which are sensitive
to healthy vegetation. The data consists of global monthly NDVI values reported at a 0.05◦ × 0.05◦

spatial resolution downloaded from Land Processes Distributed Active Archive Center’s website [54].
The uncertainties associated with MODIS NDVI products were estimated by comparing the NDVI
products with that extracted from the Advanced Very-High-Resolution Radiometer (AVHRR) and
from the Visible Infrared Imaging Radiometer Suite (VIRS) [55]. The reported statistical coefficients
between the NDVI products of MODIS and each of the AVHRR (R-square 0.99) and VIRS (R-square
0.99) indicate high consistency of the NDVI values extracted from different sensors [55].
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3.2.3. Snow Cover (SC)

The monthly average snow cover (spatial resolution: 0.05◦ × 0.05◦) values were computed from
daily snow cover observations extracted from the MODIS/Terra Snow Cover Daily L3 Global 0.05Deg
Climate Modeling Grid dataset. The normalized difference snow index—an index that is sensitive to
the high reflectance over snow-covered lands in the visible wavelength region and low reflectance in
the shortwave infrared regions—was used to identify snow-covered land. The monthly averages are
calculated from the corresponding 28 to 31 days of observations in the daily maximum snow cover
extent data. The MODIS monthly snow cover data were downloaded from NSIDC’s website [56].

3.2.4. Stream Flow (SF)

The stream flow data were obtained from the United States Geological Survey (USGS). A good
correspondence between GRACETWS and streamflow was noted in previous studies [57–59]. We used
monthly mean values, which are average monthly values of average daily streamflow for each of the
nine gauge stations. In the selection of the gauge stations, preference was made to the gauges on the
main river, as observations from such locations are more likely to represent the overall fluctuations of
runoff within the investigated cluster. The selected gauge stations are located in the following rivers:
Clinton River in Sterling, Sable River near Red Oak, Pine River near Midland, Grand River in Lansing,
St. Joseph River in Niles, Boardman River near Mayfield, Muskegon River near Croton, Kalamazoo
River near Battle Creek, and St. Joseph River in Elkhart (Figure 1). The monthly streamflow data were
downloaded from the USGS National Water Information System’s web interface [60].

3.2.5. Lake Levels (LL)

Average monthly water level data for Lake Michigan and Lake Huron were obtained from the
NOAA’s Center for Operational Oceanographic Products and Services. The Lake Michigan water
levels were obtained from the Holland station and the Lake Huron levels from the Harbor Beach
station. The former station is located along Lake Michigan’s eastern shoreline and the latter along
Lake Huron’s southwestern shoreline (Figure 1). At both stations, water levels are measured every
six minutes. The average monthly water level data were downloaded from NOAA’s website [61].

3.2.6. Land Surface Temperature (LST)

The monthly MODIS/Terra land surface temperature (LST) is derived by averaging the daily
values of MOD11C3 products. These products have been validated through a series of field studies
by the MODIS land team [62]. The spatial resolution of the monthly LST is 0.05◦ × 0.05◦ and the
data were obtained from the NASA’s Earth Science Data Systems available at [62]. The performance
of the MODIS LST product was evaluated in several locations in the USA; results showed a good
correspondence (absolute biases < 0.8 ◦C and RMSEs < than 1.7 ◦C) between the in-situ measurements
and MODIS LST products [63].

3.2.7. Rainfall, Snow Water Equivalent, Soil Moisture, Air Temperature, and Evapotranspiration

The NASA’s North American Land Data Assimilation System (NLDAS) NOAH model outputs
(total monthly rainfall, snow water equivalent (SWE), soil moisture (SMS), air temperature (AT), and
evapotranspiration (ET); spatial resolution: 0.125◦ × 0.125◦) were used as inputs to our models. These
data are produced from daily ground-based precipitation analysis, bias-corrected shortwave radiation,
and surface meteorology re-analyses to drive land surface models [64]. The average monthly data
used in this research were downloaded from NASA Goddard Earth Sciences Data and Information
Services Center’s website at [65].

The monthly total precipitation was computed from the sum of the monthly SWE and rainfall.
The outputs of NLDAS products have been validated and enhanced through several research works
(e.g., [66–68]). The accuracy of the NLDAS products varies from one product to another and from one
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location to another. For instance, the uncertainty for ET products was reported to be 48-mm per month
over the contiguous United States [66]. Comparing the NLDAS products with in-situ measurements
showed that the performance of the soil moisture product over the contiguous United States was very
high (RMSE = 0.02 to 0.11) [69]. The uncertainty of the NLDAS snow water equivalent is less than
20% based on comparisons with IMS (MultiSensor Snow and Ice Mapping System) observations [70].
The uncertainties in air temperature over Michigan were estimated by comparing the monthly mean
values between NLDAS and the National Centers for Environmental Prediction (NCEP) products.
The reported difference was <0.4 ◦C [71]. The NLDAS precipitation data were compared with five
other available datasets over the western United States and the mean relative difference between them
ranged from 11% to 18% [72].

3.3. Construction, Evaluation, and Selection of an Optimum Model for Downscaling

For each cluster, all datasets (variables and targets) were randomly partitioned into two groups:
Training (80% of the time series for each cluster) and testing (20% of the time series for each cluster).
We constructed and applied three statistical models (MR, ANN, and XGBoost) to establish the
relationships between the variables (predictors) and GRACE (the target) for each of the investigated
clusters. The performance of each model was compared and evaluated. The evaluation of the models
was carried out by comparison between the observed values (testing subset) and predicted values
using the coefficient of determination (R-squared), the normalized root-mean-square error (NRMSE),
and the Nash–Sutcliffe model efficiency coefficient (NSE) (Table 3) [73]. The R-squared values range
from 0 to 1; those for the NRMSE and NSE indices range from 0 to 1. The predictive power of the
models increases with increasing R-squared and NSE values and with decreasing NRMSE values.
The rate of the performance for each approach was based on classifications adopted by [74]. Following
the identification of the statistical model that yielded the highest performance, we used the selected
model to downscale the GRACE solutions for each of the clusters to 0.125◦ × 0.125◦ throughout the
investigated period.

Table 3. Performance of the applied models modified from [74].

Performance Rating NSE NRMSE

Very Good NSE ≥ 0.75 NRMSE ≤ 0.5
Good NSE ≥ 0.65 and < 0.75 NRMSE > 0.50 and ≤ 0.60

Satisfactory NSE ≥ 0.50 and < 0.65 NRMSE > 0.60 and ≤ 0.70
Unsatisfactory NSE < 0.5 NRMSE > 0.70

3.3.1. MR Models

The MR, or multiple linear regression method, derives patterns in the data and establishes the
best fitting multivariate linear relationships between two or more dependent variables and the target
(GRACETWS). As described earlier, we applied a stepwise MR method in which the selection of
variables is carried out by addition to, or subtraction from, a set of dependent variables using some
pre-specified coefficients, such as the F-test, the t-test, and the coefficient of partial determination. In an
MR model, every value of the independent variable, X, is associated with a value of the target variable,
Y. The regression line for n independent variables X1, X2, . . . , Xn can be explained as follows:

Y = B0 + B1X1 + B2X2 + . . . + BnXn (2)

where Y is the predicted value of the target variable, B0 is the value of Y when all of the independent
variables are equal to zero, X1 through to Xn are independent variables, and B1 through to Bn are the
estimated regression coefficients. In multivariate linear regression, the response variable, Y (GRACETWS

in our work), is assumed to be linearly related to a set of n explanatory independent variables, X1,
X2, . . . , Xn, and the independent variables are not highly correlated with each other. Observations
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are selected independently and randomly from the population. Also, residuals are assumed to be
normally distributed with a mean value of 0.

The parameters are trained in such a way to achieve the highest similarity between the modeled
and observed values in the training data set. One optimization model is employed to minimize the
sum of the squares of the vertical deviations from each data point to the regression equation. The ideal
case is a model in which a data point lies completely on the fitted line (i.e., vertical deviation = zero).

We applied a stepwise multivariate regression approach. Stepwise regression fits the multivariate
regression several times, each time removing the least correlated variable until the statistically significant
variables are left. For a full description of variable selection in the stepwise method, see [75]. MR
models were first developed for each of the identified clusters to establish linear relationships between
coarse-resolution inputs (variables) and target (GRACETWS) values for each of the identified clusters.

All input variables were available in both coarse and fine resolutions, whereas GRACETWS values
were available in coarse resolution only. The variables were resampled to the size of each cluster using
bilinear resampling techniques.

3.3.2. ANN

The ANN method establishes empirical, possibly non-linear, relationships between a set of “input”
variables and corresponding “target” variables. An ANN is based on a series of connected units or
neurons, which are intended to replicate the functions of neurons in animal or human brains; they pass
information between one another, a structure that enables ANNs to be trained and learn. The ANN
method used in this study is known as multilayer perceptron (MLP). An MLP consists of units called
perceptrons. Perceptrons have one or more inputs, an activation function, and an output. An MLP
model is built up by combining perceptrons in structured layers. The perceptrons in a given layer are
independent of each other, but each connects to all of the perceptrons in the following layer. Each layer
is composed of a set of neurons and is trained with a back-propagation algorithm.

Backpropagation is one of the most extensively used algorithms for supervised training of
multilayered neural networks [76–78]. Backpropagation works by approximating the non-linear
relationship between the input and the target by altering the weight values internally. The processes
of the backpropagation can be divided into two stages: Feedforward and backpropagation. In the
feedforward step, a pattern is applied to the input layer, and its effect propagates, layer by layer, through
the network until the output is generated. The network’s sample output value is then compared to the
anticipated value for a given input, and an error signal is estimated for each of the output neurons.
Since all neurons within the hidden layer contributed to the signal errors in the output layer, the output
errors are transmitted backward from the output layer to each neuron within the hidden layer that
contributed to the output layer. This process is then reiterated, layer by layer, until each neuron in the
network has received an error signal that represents its relative contribution to the total error. Once the
error signal for each neuron has been computed, the errors are then applied by the neuron to adjust the
values for each connection weight. The goal is to minimize the value of the error function in weight
space. The weights with minimum error functions are then considered to be a solution to the learning
problem. In an ANN, the hyperparameter is a parameter whose value is set before the learning process
begins, and it controls the model structure (eg., number of layers, number of hidden neurons, number
of epochs). Additional information about the theory behind ANN applications can be found in [79].

In our study, we applied a trial and error technique to determine the optimal number of
hyperparameters, where the numbers were added gradually until the predicted and observed values
start to match by evaluating the model performance using the mean squared normalized error (MSE)
performance function. In our study, individual ANNs were constructed for each cluster. In all three
clusters, the ANNs consist of one input layer, one hidden layer, and one output layer. The number of
hidden neurons in our study ranged from 12 to 18. The number of epochs is the number of times the
entire training data are used to update the weights. In other words, it is the number of times that the
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backpropagation algorithm works through the entire training dataset. The number of epochs ranged
from 350 to 500.

The final model evaluation was carried out by the comparison between observed and predicted
values on testing data (out of sample data set) using the above-mentioned statistical coefficients
(NRMSE and NSE).

3.3.3. XGBoost

Gradient boosting was used with decision trees. Decision tree learning is a predictive modeling
approach in machine learning that uses a tree-like model to go from observations of predictors (branches
of the tree) to the prediction of the target value (leaves of the tree). The goal of our study was to create
a model to predict the GRACETWS values from sets of input variables for each month. Using trees has
several advantages including, but not limited to, the ability to handle various types of target variables
(e.g., numerical, categorical, and multivariate), modeling complex interactions, and managing missing
values with minimal loss of information [80]. However, there are two main limitations with trees:
Weakness of the prediction and difficulty in the interpretation of large trees [81]. To overcome these
limitations, the gradient boosting algorithm was introduced by [81] and developed by many others
(e.g., [82,83]).

In gradient boosting, the goal is to use a set of predictors (X1, . . . , Xn) to predict a set of
target data (Y1, . . . ,Yn) by fitting a model F(X)→ Y and minimizing the sum of the loss function
J =

∑n
i=1 L(Yi, F(Xi)) by improving the model F(X) (in our work, the loss function, L(x, y) = (x− y)2).

Then, the following iteration is performed:

1. Calculate the negative gradients of J with respect to F(Xi), which is − ∂J
∂F(Xi)

.

2. Fit a regression tree, h, to negative gradients − ∂J
∂F(Xi)

.

3. Let our new F(Xi) be F(Xi) + γh, where γ is the step size in our algorithm to reach the estimated
minimum of J.

As a significant improvement over gradient boosting, in XGBoost, we start with a loss function
L(Yi, F(Xi) + h) and minimize J =

∑n
i=1 L(Yi, F(Xi) + h) + Ω(h), where Ω(h) = γT + 1

2λ||w||
2. Here,

T is the number of leaves in the tree and w is the leaf weights. Figure 4 shows a schematic diagram of
the gradient boosting method.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 30 
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3.3.4. Selection of Optimum Statistical Model and Gap Filling

The performance of each of the three models was evaluated by comparing the predicted values
with the observed values on the testing subset using R-squared, normalized root mean squared error
(NRMSE) (Equations (3) and (4)), and Nash–Sutcliffe efficiency (NSE) (Equation (5)) as follows:

RMSE =

√∑n

i=1

(
Yo −Yp

)2

n
, (3)

NRMSE =
RMSE

Yoi
, (4)

NSE = 1−

∑n
i=1

(
Yp −Yo

)2

∑n
i=1

(
Yo −Yoi

)2 , (5)

where Yo is the observed value, Yp is the predicted value, n is the number of observations, and Yoi is
the mean of the observed data.

The model that produced the highest R-squared and NSE and the lowest NRMSE value was
selected. Using the optimum model, the relationships were established between input variables (total
precipitation, NDVI, snow cover, streamflow, Lake Michigan level, Lake Huron level, soil moisture,
air temperature, LST, and ET) and GRACETWS as the target variable. These relationships were used to
estimate the missing GRACETWS months.

3.4. Extraction of Temporal Groundwater Storage Using Outputs of Land Surface Models

We used the downscaled GRACE data to extract for each of the 0.125◦ × 0.125◦ pixels the changes
in GRACETWS (∆GRACETWS) and the secular trend for each of these pixels (Figure 5). Then, changes
in groundwater storage (∆GWS) were calculated using the downscaled ∆GRACETWS and outputs of
land surface models (NLDAS NOAH) and applying the following equation (Equation (6)):

∆GWS = ∆GRACETWS − (∆SMSNLDAS + ∆CWSNLDAS+ ∆SWENLDAS), (6)

where ∆SMSNLDAS, ∆CWSNLDAS, and ∆SWENLDAS are the changes in soil moisture, canopy water
storage, and snow water equivalent, respectively, as extracted from the NLDAS model. All these data
are provided in a spatial resolution of 0.125◦ × 0.125◦ (~120 km2).

Sources and Propagation of Errors

The uncertainties in the GRACETWS trends reflect the variations between trend values that were
extracted from three GRACE solutions (CSR-RL06M, JPL-RL06M, and GSFC-M) (Table 2; [48,49]).

The uncertainties in the downscaled GRACETWS are related to: (1) Uncertainties in the variables
(remote sensing-based and land surface model-based) that were used as inputs to the statistical models,
and (2) errors introduced by the applied statistical models. The statistical coefficients (R-square, NSE,
and NRMSE) describe the accuracy of the extracted model, namely the degree to which the extracted
statistical model can or cannot predict the target (GRACETWS in our case). Statistical models that
have R-square, NSE, and NRMSE values of 0.9, 0.9, and 0.1, respectively, can predict the target with
an accuracy of 90%. Since the reported accuracy of the models was estimated by comparing the
modeled and observed GRACETWS values in the test dataset, the reported model errors incorporate the
errors associated with the individual variables as well. In this respect, the coefficients could be used to
estimate the errors introduced by both the variables and the statistical models [35]. The combined
errors were estimated by averaging the three coefficients and are presented in Table 4 as the percent
uncertainty of the output (GRACETWS).
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Table 4. The coefficient of determination (R-squared), the normalized root-mean-square error (NRMSE), and the Nash-Sutcliffe model efficiency coefficient (NSE) for
each of the examined models (extreme gradient boosting, multivariate regression, and artificial neural network) over clusters 1, 2, and 3 and calculated uncertainties.

Method
Cluster 1 Cluster 2 Cluster 3

Coefficients Uncertainty (%) Coefficients Uncertainty (%) Coefficients Uncertainty (%)

Extreme Gradient
Boosting

R-squared 0.84 16 0.88 12 0.86 14
NSE 0.84 16 0.87 13 0.85 15

NRMSE 0.4 40 0.35 35 0.38 38
Average Uncertainty (%) 24 20 22.3

Ranking * VG VG VG

Artificial Neural
Networks

R-squared 0.6 40 0.84 16 0.86 16
NSE 0.25 75 0.84 16 0.82 18

NRMSE 0.85 85 0.4 40 0.42 42
Average Uncertainty (%) 66.7 24 25.3

Ranking US VG VG

Multivariate
Regression

R-squared 0.72 28 0.76 24 0.85 15
NSE 0.6 4 0.75 25 0.83 17

NRMSE 0.62 62 0.48 48 0.4 40
Average Uncertainty (%) 31.3 32.3 24

Ranking * S VG VG

Notes: * VG: Very Good; G: Good; S: Satisfactory; US: Unsatisfactory.
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Figure 5. Secular GRACETWS and GRACEGWS trend images (mm/year) over the LP for the period 2002
to 2016. The trend from the GRACETWS data prior to gap filling and associated uncertainty for each
cluster is presented in Table 2. (A) Secular GRACETWS trend extracted from GRACE mascon data after
filling the gaps for missing months. (B) Secular GRACETWS trend image extracted from the downscaled
GRACE solutions (120 km2) after filling the gaps for the missing months. (C) Secular GRACEGWS trend
image extracted from downscaled GRACETWS and NLDAS NOAH land surface model outputs.

We assumed that the model-based accuracy of GRACETWS in area A applies to all downscaled
pixels within this area. Similarly, the GRACETWS of the downscaled pixels within areas B and C will
inherit the estimated accuracy for areas B and C, respectively. These are reasonable assumptions given
that all of the CSR06M pixels within each of areas A, B, and C have similar geophysical signals.

The errors (uncertainties) associated with the estimated downscaled GRACEGWS values were
propagated from the estimated errors in the GRACETWS, and in the land surface model outputs
(SMSNLDAS, CWSNLDAS, and SWENLDAS) which were used in calculating changes in groundwater
storage (Equation (7)). The errors in each of these land surface model outputs were calculated as
the standard deviation of the values extracted from the three NLDAS simulations (NOAH, VIC, and
mosaic [84,85]. The errors in the estimated GWS (σGWS) were calculated by adding, in quadrature,
the uncertainties related to GRACETWS, SMSNLDAS, CWSNLDAS, and SWENLDAS values (Equation (7)).
The estimated total error rate for fine-scale GWS in three arbitrary pixels (location given in Figure 1) is
presented in Figure 6:

σGWS =

√
(σTWS)

2 + (σSMS)
2 + (σSWE)

2 + (σCWS)
2 . (7)
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4. Results

4.1. Cluster Analysis

The optimum number of clusters was estimated at 3. Three clusters were identified (cluster 1 area:
13,700 km2, cluster 2 area: 59,200 km2, cluster 3 area: 33,100 km2; Figure 1). The correlation coefficients
of the GRACE time series between clusters were evaluated through the construction of a correlation
matrix (Table 5). The correlation coefficients of the GRACE time series between clusters varies from
0.41 to 0.66, and those between clusters and the Michigan lake level varies from 0.43 to 0.74. In the
generation of the correlation matrix, the secular trends and seasonal cycles were removed from the
time series. Although we cannot rule out leakage from the adjacent water bodies and areas, we suggest
that there are significant geophysical signals in each of the investigated areas, as evidenced by the
following observations. First, higher correlation coefficients than those observed (0.41–0.66) are to be
expected between GRACETWS over areas 1, 2, and 3 if the leakage was significant. Second, lake levels
lag behind GRACETWS by 1 to 2 months for areas 1, 2, and 3 (Figure 7).
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Table 5. Correlation matrix for GRACETWS values over land (three clusters) and Lake Michigan water
levels. The values are presented after the removal of the seasonal cycle and secular trends.

Cluster1 Cluster2 Cluster3 Lake Level

Cluster1 1
Cluster2 0.41 1
Cluster3 0.66 0.56 1

Lake Level 0.74 0.43 0.58 1
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4.2. Evaluation and Comparison of the Models

Comparison of the performance of the three models revealed that, in general, the XGBoost models
perform better than the other two models (Table 4) as indicated by their lower NRMSE values and their
higher NSE and R-squared values and ranking. For example, the R-squared, NRMSE, and NSE values
for the XGBoost models ranged from 0.84 to 0.88 (average: 0.86), 0.35 to 0.40 (average: 0.37), and 0.84
to 0.87 (average: 0.86), respectively; those for the ANN models ranged from 0.6 to 0.86 (average: 0.76),
0.40 to 0.85 (average: 0.56), and from 0.25 to 0.82 (average: 0.64), respectively; and those for the MR
models from 0.72 to 0.85 (average: 0.77), 0.4 to 0.62 (average: 0.5), and from 0.6 to 0.83 (average: 0.73),
respectively. The performance of the XGBoost is high (clusters 1, 2, and 3: Very good), compared to
that for MR models (clusters 2 and 3: Very good; cluster 1: Good) and for the unified ANN model
(clusters 2 and 3: Very good; cluster 1: Unsatisfactory). One plausible explanation for the enhanced
performance of the XGBoost models over the ANN and MR models is that it can better account for
the specific characteristics or significant variables that control, or relate to, the observed temporal
GRACETWS solutions in each cluster. It is flexible and performs well with categorical and numerical
values [84], as is the case with our datasets (Figure 8).
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4.3. Factors Controlling the TWS and GWS Variations over the Study Area

Seven out of 11 variables showed statistical significance with the GRACETW values in the XGboost
models (Table 6). They were used for the downscaling process based on cluster-based XGBoost models.
Those variables are ET, air temperature, NDVI, total precipitation, soil moisture, Lake Michigan water
level, and streamflow. The significance of the variables is determined by their p-values. The insignificant
variables were omitted due to their high p-value (probability value). The p-value represents the
probability of the occurrence of a given event and helps determine the significance of the results.
The higher p-values (typically > 0.05) indicate weak evidence against the null hypothesis (i.e., there is no
significant relationship between the independent variable and the target, and therefore the variable is
insignificant [86]). The smaller p-values (typically ≤ 0.05) indicate the opposite: There is strong evidence
in favor of the alternative hypothesis, and there is a significant relationship between the independent
variable and the target.

Table 6. Percent contribution of each variable in the outputs of the XGBoost models and their optimum
lag times.

Variables

Clusters Total
Precipitation Temperature NDVI Soil

Moisture
Lake Michigan

Level Streamflow Evapotranspiration

1 5.1 (1) * 1.4 2.2 (1) 13.3 (2) 69.6 (1) 6.1 (1) 1.3 (2)
2 3.1 (3) 1.4 (3) 0.00 1.6 (1) 68.6 (2) 23.0 (1) 1.6 (2)
3 3.7 (1) 0.00 3.6 (2) 38.7 (1) 48.1 (2) 5.9 0.0

Note: * The number in parentheses shows the optimum lag time (in months) for each variable.
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Multicollinearity, a condition in which two or more predictors are highly correlated with
one another in linear regression models, was addressed using the variance inflation factor (VIF).
Multicollinearity makes it difficult to determine the effect of the individual predictors on the response
and to identify the variables to be included in the model. VIF is one of the most widely used diagnostic
indices for multicollinearity [87]. It estimates how much the variance of a coefficient is “inflated”
because of linear dependences with other predictors [87]. Using a VIF value of 11 in this study, one of
two variables (Lake Michigan and Lake Huron water levels) that show multicollinearity was omitted.
Lake Huron lake level was automatically removed from the set of individual variables in the stepwise
procedure and was not used in our models. Five lag times (months 1 through 5) were assigned to each
of the investigated variables to identify the optimum lag time for the individual variables. Four of the
examined variables (total precipitation, temperature, ET, and NDVI) were found to have optimum
lag times ranging from 1 to 3 months; none exceeded 3 months, and the remaining variables had no
lag times (Table 6). The optimal lag time was found to vary from one cluster to another; for example,
the lag in total precipitation varied from 1 month in cluster 1 to 3 months in cluster 2. Again, less
significant lag times for an individual variable were automatically removed throughout the application
of the stepwise regression.

The significant variables are the ones that correlate well with, respond fairly quickly to, and either
drive or are driven by the variations in GRACETWS. An increase in soil moisture and stream flow
over a cluster will increase its GRACETWS values, whereas an increase in land surface temperature or
ET will probably decrease its TWS values. Interestingly, lake levels correlated well with GRACETWS,
which is to be expected given that both the land (clusters 1–3) and surrounding water bodies (Lakes
Michigan and Huron) receive added water contributions (precipitation and SWE), which will increase
the water levels in the lakes and increase the GRACETWS over the land. However, the lake water levels
lagged behind GRACETWS by 1 to 2 months. We suspect that this lag time is related to the time period
it takes for runoff to reach the lake. Starting in 2013, there has been an increase in the water level in
both Lake Huron and Lake Michigan. A thorough investigation revealed that the recent rise in the
water level in Lake Michigan-Huron is due to above-average spring runoff, which drains into the lakes,
and excess precipitation over the lake as well [88].

5. Discussion

The original size of the pixels over the LP (irregular grid, pixel size ~12,000 km2) is coarse for
monitoring TWS and GWS on the county scales (size range: 500 (e.g., St. Joseph County) to 850 km2

(e.g., Kent County)). The adopted downscaling technique addresses this issue through the generation
of downscaled GRACETWS and GRACEGWS (spatial resolution: 0.125◦ × 0.125◦; 10 × 14 km = 140 km2).

Inspection of the secular trends in GRACETWS and GRACEGWS revealed two general patterns,
a near-steady state in GRACETWS and GRACEGWS (−1 to +1 mm/year) for an earlier period (2002 to 2012),
hereafter referred to as period I, followed by an increase in GRACETWS (28 to 120 mm/year) and GRACEGWS

(10 to 130 mm/year) for a later period (2013 to 2016), hereafter referred to as period II (Figure 9).
The breakpoints were identified using the regime shift detection method with a 95% confidence [89].

The two above-mentioned general patterns were observed throughout the entire investigated area.
For all of the downscaled pixels, no major differences in GRACETWS and GRACEGWS trends were
observed during period I, all of which show near-steady trends. However, distinct variations in the
GRACETWS and GRACEGWS trend values are observed in period II between the three clusters (Figure 9).
Cluster 1 (represented by point 1; Figure 9) has the highest GRACETWS (103 to 122 mm/year) and
GRACEGWS (100 to 130 mm/year) trends, followed by cluster 2 (represented by point 2), with a TWS
trend of 50 to 57 mm/year and GWS trend of 45 to 70 mm/year. Clusters 1 and 2 are located within
areas characterized by the highest average SWE (60 to 190 mm/year) and the highest average annual
rainfall (800 to 1043 mm/year), respectively. Cluster 3 is located in the southern and southwestern parts
of the LP, areas that are characterized by high groundwater extraction. This cluster (represented by
point 3) shows a TWS trend of 28 to 55 mm/year and a GWS trend of 10 to 55 mm/year.
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Figure 9. GRACETWS and GRACEGWS trend images and time series for downscaled data. (A) GRACETWS

trend image for period II (2013 to 2016). (B) GRACETWS time series (2012–2016) over three locations
(points 1, 2, and 3; Figure 1). (C) GRACEGWS trend image for period II. (D) GRACEGWS time series
(2012–2016) over three pixels (points 1, 2, and 3; Figure 1).

The glacial aquifers are widely distributed, they overlie all other aquifers, and crop out across
large sectors in the state, and thus one would expect that the observed variations in GRACEGWS are
largely controlled by variations in glacial aquifer storage. Clusters 1 and 2 are located in the northern
and central sections of province 2 ( Figures 1 and 2) where the glacial deposit is relatively thick, whereas
cluster 3 is located in the southwestern section of the LP, an area characterized by high groundwater
withdrawal for agricultural activities (Figure 1). The eastern part of cluster 3 is located in an area
characterized by low yield (Figure 2) and thin to moderate glacial deposits (refer to Section 2). Also,
in general, the northern, but not the southern sections, of the LP have high vertical conductivity and
low groundwater extraction rates [41]. The average annual rainfall over the entire LP increased from
774 mm/year (period I) to 783 mm/year (period II) and the average annual SWE increased from 50
(period I) to 55 mm/year (period II) (Figure 10). For cluster 1, the average annual rainfall increased from
689 (period I) to 723 mm/year (period II) and the average annual SWE increased from 44 to 75 mm/year.
Similarly, for cluster 2, the average annual rainfall increased from 761 (period I) to 785 mm/year (period
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II) and the average annual SWE increased from 52 to 56 mm/year in periods I and II, respectively.
For cluster 3, the average annual SWE increased from 36 (period I) to 44 mm/year (period II), but the
average annual rainfall decreased from 834 (period I) to 823 mm/year (period II). These collective
observations suggest that the observed steep GRACETWS and GRACEGWS trends over the northern
sections of the LP during period II could be related to one or more of these factors: (1) Thickened
glacial deposit, (2) high precipitation and/or snow fall rates, (3) high vertical conductivity [41], and (4)
low extraction rates.
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Figure 10. Average annual rainfall and snow water equivalent for periods I (2002–2012) and II
(2013–2016). (A) Average annual snow water equivalent for period I. (B) Average annual snow water
equivalent for period II. (C) Average annual rainfall (mm/year) for period I. (D) Average annual rainfall
for period II.

One would expect the above-mentioned temporal variations in precipitation and SWE to be
reflected in the downscaled GRACEGWS and groundwater levels. Figure 11 shows an overall
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correspondence between the downscaled GRACEGWS data and groundwater levels from three
monitoring wells (well A: site name 02S 11W 22CDBB 01, location Kalamazoo; well B: site name 04N
02W 26BBDB 01, location Lansing; and well C: site name 04N 02W 16DAAA 01, location Lansing;
Figure 1) within each of the downscaled GRACEGWS pixels. One should not expect a one to one
correspondence between the two datasets. The groundwater levels, but not the GWS, are affected by
groundwater withdrawal and by the lag time (between precipitation and recharge). Unfortunately, only
a few of the monitoring wells, all located in Kalamazoo and Lansing, have continuous measurements
throughout the investigated period and across the study area, none of which are located in the central or
northern LP (Figure 1). The correlation coefficient between the downscaled GWS (0.125◦ × 0.125◦) and
the observed groundwater level in wells A, B, and C were calculated at 0.4, 0.55, and 0.32, respectively,
higher than those between the original GRACEGWS and the wells (A: 0.14; B: 0.36; and C: 0.05).Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 30 
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We also compared the time series for surface water levels from two inland lakes (Otsego lake in
northern LP and Austin lake in southern LP; Figure 1) to downscaled GRACETWS time series in areas
(pixels) proximal to these lakes (Figure 12). The surface water lake levels approximate the groundwater
table in the surrounding areas and thus, the changes in lake level should be indicative of the temporal
variations in GRACEGWS [90,91]. Figure 12 shows a good correspondence between the downscaled
GRACEGWS and Otsego lake level (correlation coefficient: 0.73) and Austin lake level (correlation
coefficient: 0.75), an observation that further validates the adopted downscaling procedures.
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levels from two inland lakes, namely Otsego lake and Austin lake (see locations in Figure 1). The
discontinuities in the lake levels is due to temporal gaps in the collected data.

6. Conclusions

The GRACE data has been widely used to monitor the temporal and spatial variations in TWS
and GWS on large scales. However, such applications remained limited on the local scales due to
the poor spatial resolution (irregular grid of 12,000 km2) of the GRACE data. The objective of this
study was to address this shortcoming by downscaling the CSR mascon solutions to a finer resolution
(0.125◦ × 0.125◦) to enable monitoring of GRACETWS and GRACEGWS on county scales and fill the
gaps for missing months in the GRACE time series over the study area. Using cluster analysis, areas
of similar GRACETWS patterns within the study area were first identified. For each of the identified
clusters, variables (total precipitation, NDVI, snow cover, streamflow, Lake Michigan water level, Lake
Huron water level, soil moisture, land surface temperature, and ET) that presumably contributed to,
or were correlated with, the GRACE data were identified and collected on a monthly basis over the
investigated period (2002 to 2016). The data sets were randomly partitioned into two groups: Training
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data (80%) and testing data (20%). XGBoost, MR, and ANN methods were applied to extract statistical
relationships between the independent variables and the GRACETWS (dependent variable).

The comparisons of the observed GRACETWS (training dataset) versus the modeled GRACETWS

values showed that the XGBoost method outperformed the other two methods as indicated by their
lower NRMSE and higher NSE values compared to those obtained from the MR and ANN models.
The unified approaches have the advantage of providing adequate overall downscaling results over
large areas, yet one would expect the performance of the model to vary from one area to another
given that the selected variables and/or their significance is likely to vary across the investigated area.
We suggest that if statistical downscaling methods were selected for downscaling GRACETWS values
on local scales, preference should be given to cluster-based approaches over the commonly used
unified approaches.

The XGBoost model was used to downscale (12,000 to 120 km2) GRACETWS given the high
performance of this model over all other models (ANN and MR) and its ability to estimate the
contributions of the independent variables towards the response variable and to forecast missing
months within the GRACE’s time series data. Although the XGBoost model outperformed the ANN
method in all three clusters in our study area, that might not necessarily be the case over other locations.
We suggest that one should explore the use of multiple statistical approaches and select the one that
performs the best over each of the investigated areas (clusters).

Since the individual variables and the degree to which they correlate with GRACETWS vary
from one cluster to another, it is recommended to identify the local hydrologic components that
are specific to the investigated area and to select the optimum cluster-based model to improve the
accuracy of the downscaled GRACETWS values. The accuracy of the derived downscaled GRACEGWS

will largely depend on the accuracy of the land surface model outputs that were used in calculating
GRACEGWS, namely the SMSNLDAS and SWENLDAS in our case. Unfortunately, the State of Michigan
lacks a comprehensive groundwater monitoring program to validate the downscaled GRACEGWS

data adequately.
As discussed earlier, we cannot rule out leakage from the adjacent water bodies and/or areas, but

we suggest that there are significant geophysical signals from each of the investigated areas (clusters)
as evidenced by the modest correlation coefficients between the time series of areas 1, 2, and 3 and
by the lag of lake levels by 2– months behind the GRACETWS over the land areas. Currently, efforts
are underway to generate GRACETWS of higher spatial resolution (1◦ × 1◦) by NASA JPL, through
combining satellite gravimetry and in-situ GNSS measurements [92]. If and when such data become
available, we can apply the proposed methodologies on the individual pixels without worrying about
the leakage from their surroundings.

We developed a straightforward methodology that could be used to monitor temporal variations in
GRACETWS and GRACEGWS on local scales (county levels). The methodology takes advantage of readily
available remote sensing datasets and outputs of land surface models that are of global nature, both of
which come at no cost to users. These methodologies could be used by local communities and decision
makers for water management purposes in the State of Michigan. They can also provide a replicable
model for local applications across the continental USA and possibly in similar settings worldwide as
well. The performance of the statistical models can be enhanced by identifying and including local
variables that control, or correlate with, the GRACETWS solutions over the investigated areas.
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