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Abstract: Asian megacities have attracted much scientific attention in the context of global
urbanization, but few quantitative studies analyze wetland transformation in the rural–urban
interface. With its rampant growth and transformation from a tree-lined “Garden City” to a busy
megalopolis with often-blocked highways and large built-up areas, Bengaluru (Karnataka, S-India)
is a good example for assessing how urbanization has led to the acute degradation of wetlands.
We therefore investigated long-term land cover and wetland changes from 1965 to 2018 based
on an object-based classification of multi-temporal Corona and Landsat images. To quantify and
compare the dynamics of open water surfaces and vegetation, we defined the potential wetland
areas (PWA) along the rural–urban gradient and linked our analyses to an index describing the
degree of urbanization (survey stratification index (SSI)). During the five decades studied, built-up
areas in the Bengaluru Urban district increased ten-fold, with the highest growth rate from 2014
to 2018 (+ 8% annual change). Patches of lake wetlands were highly dynamic in space and time,
partly reflecting highly variable annual rainfall patterns ranging from 501 mm in 1965 to 1374 mm
in 2005 and monsoon-driven alterations in the hydrologic regime. While water bodies and flooded
areas shrunk from 64 km2 in 1965 to 55 km2 in 2018, in 1965, the total rural wetland area with an
SSI > 0.5 was twice as high as in 2018. The rural–urban land cover pattern within potential wetland
areas changed drastically during this period. This is reflected, for example, by a four-fold increase
in the wetland area with an SSI of 0.3, as compared to a decline by 43% in wetland area with an
SSI of 0.8. While, in urban areas, wetlands were mostly lost to construction, in areas with a rural
character, open water bodies were mainly transformed into green space. The detected changes in
urban wetlands were likely accompanied by ecological regime changes, triggering deteriorations in
ecosystem services (ESS) which merit further research.

Keywords: lakes; Bengaluru; rural–urban gradient; object-based classification; land cover
changes; urbanization

1. Introduction

Water bodies and related wetlands provide key ecological functions, such as a habitat for wildlife,
groundwater recharge, carbon storage, water regulation [1,2] and other ecosystem services (ESS) that
bene-fit people, such as flood control, fish production, irrigation water, and recreation [3–5]. As such,
wetlands are one of the world’s most important natural resources [6]. Despite their importance when it
comes to people and the environment, today’s wetlands are under threat due to increasing pressure
for human demands, as well as alterations in environmental and climatic conditions [7]. High losses
of wetlands occur in many parts of the world [8]. A recent assessment conducted in the context of
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the Ramsar Convention on Wetlands revealed that 64% of the world’s wetlands have been lost since
1900 [9]. Wetland transformation is particularly critical in metropolitan areas where environmental
degradation is a consequence of rapid land use and land cover changes triggered by urbanization.
Such changes were recently shown in China in Lianyungang and Beijing [10,11], in South Asia in
Bengaluru, India [12] and Colombo, Sri Lanka [13], in Australia in Western Sydney [14], and in
Europe in Andalusia, Spain [15] and Uppsala, Sweden [16]. In this context, several authors have
indicated that urban wetlands are particularly vulnerable to environmental stressors and ecological
transformations are more imminent than in rural wetlands [17,18]. Yet, the role of these habitats as
urban social–ecological systems has only been recognized since 2008 as part of the Ramsar discourse [19].
Urbanization and accompanying problems of water provision, waste discharge, space-consuming
housing, and industrialization have major effects on ecosystem functions in cities and their associated
rural–urban transitional spaces where they affect hydrological and climatic processes such as in Tampa
Bay, USA [20] and Lianyungang, China [10].

The processes and speed of wetland losses in urban spaces vary greatly among countries and
have, particularly in South Asian cities, also been linked to urban floods, water scarcity, and livelihood
losses [21,22]. In many megacities in lower income countries in the Global South, where social
inequalities and weak governance aggravate the consequences of environmental pressure, the patterns
and trends of urbanization are significantly different from those in post-industrial cities in industrialized
countries [23,24], and wetland degradation is more complex [25]. This is particularly true for large urban
agglomerations in India, where population growth and city expansion are exceptionally high [26,27]
due to rapid industrial and economic development, leading to the high extinction rate of natural
habitats, vegetated areas, and wetlands [12,25,28]. Bengaluru (Karnataka State, India), is a prime
example in this context and its history and hydrogeological setting was comprehensively reviewed
a decade ago [29]. Currently, it is one of the fastest growing megacities in Asia with >10 million
inhabitants [30].

In recent decades, the boom of the IT sector led to massive population growth along with
drastic land cover changes [31,32]. Complex governance structures, industrial development and
the intensification of agricultural land use fueled the encroachment and pollution of water bodies
with the consequential loss of natural habitats and ESS [31]. Lack of information on the change
dynamics and its drivers as part of a complex social–ecological transformation process [33], limited
knowledge about Bengaluru’s urban environment, and limited awareness about the role of ESS in
people’s livelihoods [12], has long hindered the development of effective sustainable management
strategies to maintain and potentially restore wetland resources and their multiple functions.

For city planning and effective wetland management, there is a critical need to know the
distribution and extent of open surface water and wetlands in space and time and to understand
the dynamics and thresholds of ecological change in human-dominated landscapes [16]. Only such
information allows for the assessment of competing claims about wetlands [34]. To improve the
decision-making process and planning, accurate mapping and monitoring of wetland dynamics is
essential [7]. In this context, GIS and remote sensing techniques, with their advantages of synoptic
and repeated observations, have become increasingly important tools, providing many advantages
compared to time-consuming and costly conventional field survey methods [35–38]. Time series of
remote sensing data and satellite image derived vegetation and water indices have been used in many
land cover change (LCC) studies focusing on wetland ecosystems [7,11,25,37,39]. The present study
exceeds most of the published work in terms of the time scope covered (1965 to 2018); this was achieved
by including Corona b/w images in the analysis in addition to various multi-spectral sensors from the
Landsat series.

The term wetlands covers a wide variety of different habitats and, although definitions vary, they
have much in common [6,40], as they represent the transition between an aquatic and a terrestrial
ecosystem [41]. Wetlands are dynamic, both in space and time, and can easily shift from one ecological
state to another [8] as a result of annual and seasonal fluctuations in environmental conditions,
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such as variation in annual rainfall patterns. Moreover, dynamic and fuzzy spectral boundaries
between different wetland types and other land cover categories hamper long-term remote monitoring
of wetlands [42,43]. For the identification of water bodies and wetlands, many different remote
sensing approaches have been proposed such as supervised [44] and unsupervised classification [45],
object-based image analysis (OBIA) [43–45], machine learning algorithms [46], and the spectral
water index method [7,47]. The latter is widely used due to its relative high accuracy and its
straightforward calculation procedure [48]. The combined use of the advanced classification techniques
of multi-temporal imagery and of ancillary information on soils, elevation data or image-derived
(water) indices greatly improved wetland classification in recent decades [42]. In particular,
OBIA methods, which can incorporate spectral, spatial, textural, and contextual information into the
classification process, yield greater accuracies for wetland mapping compared to traditional pixel-based
approaches [49]. They are also useful for urban contexts [27].

Some South Asian urban wetland systems have been extensively studied and mapped.
Some examples are Kolkata in India [21] and Colombo in Sri Lanka [13]. However, only a few
studies have investigated the dynamics and changes in small urban wetlands and (lake) water
bodies [50,51], such as those that prevail in the district Bengaluru Urban. For Bengaluru itself,
such studies are either restricted to single lakes [52,53] or to a short time series [44,54,55]. So far,
no comprehensive long-term study exists on the complex relationships between the structural changes
in urbanizing landscapes and the fate of wetlands within them.

To close this knowledge gap, this study aimed at (i) investigating long-term land cover changes
(LCC) over the past five decades in Bengaluru using an object-based classification of multi-temporal
satellite images combined with ancillary information (water index), (ii) exploring the dynamics of lake
wetlands and their dependence on rainfall patterns, (iii) assessing differences of wetland transformation
along a rural–urban gradient and (iv) depicting changes within wetland areas in terms of a rural–urban
landscape and land cover characteristics. We hypothesized that, in recent decades, urbanization
processes and wetland changes were highest in the rural and peri-urban spaces around Bengaluru.
The present study therefore attempts, on one hand, to contextualize wetland dynamics with other
landscape-related indicators of urbanization and, on the other hand, places a special focus on land
cover changes within the potential wetland areas. The latter were identified from the 1965 and 2018
images to create a consistent reference area for the temporal analysis in between.

2. Methods

2.1. Study Area

Bengaluru, the capital of Karnataka State, is a rapidly growing megacity with a population > 10
million. The study area (2182 km2) comprises the Bengaluru Urban district, situated at an altitude
between 875 and 940 m a.s.l (Figure 1). The climate is favorable with a mean annual rainfall of approx.
880 mm and a monsoon season lasting from June to October [54]. Due to its large number of open green
spaces and a large series of partly interconnected wetlands and water bodies, the city was historically
well known as the “Garden City” or “City of Lakes” [12,56,57]. Once a tiny village in the twelfth
century [31] it continuously grew through the 16th century when the feudal king Kempegowda of
the Vijayanagara empire established the first tanks to meet drinking water needs. The increasingly
interconnected tank and lake system was further enlarged throughout the kingdom of the Wodeyars
and the Maharajas of Mysore during the 17th and 18th century. It has been documented that the water
demand of the growing town eventually became so big that its supply needed to be supplemented by
the Cauvery-Arkavathi river system, which ended up becoming almost dry in drought years. Since
the colonial period, an increasing number of borewells helped to complement the water supply from
Bengaluru’s tank-lake system to satisfy increasing demands for irrigated agriculture, sanitation and
drinking water. Excessive exploitation of the aquifer and leaching of waste water make Bengaluru’s
future very vulnerable to water scarcity [58,59].
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expansion and infrastructure activities have occurred in recent decades [33]. The remaining green space 
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Figure 1. Overview of the studied Bengaluru Urban district (S-India) showing the results of the land 
cover classification for 2018. 

2.2. Data Sets and Preprocessing 

Figure 1. Overview of the studied Bengaluru Urban district (S-India) showing the results of the land
cover classification for 2018.

Since 1949, urban areas have expanded spatially more than ten times [57], transforming a formerly
predominantly rural landscape into an urban metropolis. Today, Bengaluru ranks fourth among India’s
largest megacities after Delhi, Mumbai and Kolkata [57] with rapid advances in the knowledge-based
industries of the information and communication sector [31,60].

For hundreds of years, its hydrological landscape was characterized by small lakes and
human-made reservoirs, historically called “katte”, whose water was used for humans and livestock
while large open water bodies (“kere”) were used for irrigation of agricultural land [29,61]. The local
term “kunte” refers to tanks, which were established “by digging a square cavity into the ground” [62].
Until today, the importance of these water bodies is reflected in many village names. Altogether, more
than 200 lakes have been reported within Greater Bengaluru in 2010 [63] and an even larger number of
lakes and wetland can be found in the rural hinterlands of the city. Paddy (Oryza sativa L.) and ragi
(Eleusine coracana Gaertn.) are the most important cereal crops cultivated in the area along with other
subsidiary crops such as maize (Zea mays L.) and various pulses and vegetables. As a consequence
of the environmental pressure from population and economic growth, high losses of green space for
urban expansion and infrastructure activities have occurred in recent decades [33]. The remaining
green space within Bengaluru is diverse and comprises home gardens, forest patches, wooded streets,
wetlands, and parks [30,64].

2.2. Data Sets and Preprocessing

For time series analysis of land cover and wetland changes from 1965 to 2018, we used panchromatic
(b/w) Corona images and Landsat satellite data (Table 1) obtained by the United States Geological Survey
(USGS, https://www.usgs.gov/). We downloaded cloud-free Landsat image products (L1T), which were
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already radiometrically, geographically, and topographically corrected. To assure similar vegetation and
surface-hydrological conditions during each year and to minimize bias in the surface water boundaries,
the acquisition dates of all Landsat images closely matched. They were all taken during the end of
the monsoon period and the beginning of the dry season (December–February). All Landsat images
were converted to top-of-atmosphere (TOA) reflectance values using the equations and parameters
recommended by [65] and atmospherically corrected using the dark objects approach [66]. For this,
we used the Semi-Automatic Classification Plugin within QGIS (ver. 2.18).

Table 1. Satellite sensor, date of acquisition, spectral and spatial (m) resolution of the satellite dataset
used for land cover change (LCC) analysis of Greater Bengaluru (Karnataka, S-India). Source of Data:
U.S. Geological Survey’s Earth Resources Observation and Science.

Satellite (Sensor) Date of Acquisition Spectral and Spatial Resolution (m)

Corona KH-4A 10.10.1965 Panchromatic; 2.75
Landsat-5 (TM) 19.01.1988 Band 1-5,7; 28.5
Landsat-5 (TM) 16.01.1993 Band 1-5,7; 28.5
Landsat-5 (TM) 02.02.1999 Band 1-5,7; 28.5
Landsat-5 (TM) 16.12.2004 Band 1-5,7; 28.5
Landsat-5 (TM) 12.01.2009 Band 1-5,7; 28.5
Landsat-8 (OLI TIRS) 10.01.2014 Band 2-7; 28.5
Landsat-8 (OLI TIRS) 21.01.2018 Band 2-7; 28.5

Corona images (KH-4A), which were acquired for the year 1965 and produced by the Central
Intelligence Agency (CIA) and the U.S. Air Force [67], depict the earliest data in our time series
and had a maximum resolution of 2.75 m at nadir. Due to limited temporal resolution, it was
only possible to obtain Corona images for the month of October, depicting the end of the primary
rainy season (June–September) and the beginning of the northeast monsoon season. The scanned
images were georeferenced using ground control points extracted from recent Google EarthTM images
(https://www.google.com/earth/). We used easily identifiable landscape features occurring in both
image products, such as road intersections, airports, buildings and/or geomorphologic features.
Subsequently, the georeferenced images were mosaicked to generate a new image covering the whole
study region. All images were clipped to the Bengaluru Urban district area and resampled to the same
size (30 m) to match the resolution of the Landsat image using the nearest neighbor method.

Daily rainfall data from 1963 to 2000 from two meteorological stations situated in Bengaluru
North and Bengaluru South were employed for the analysis of precipitation effects on lake surfaces.
For the period from 2001 to 2019, we used rainfall records from the University of Agricultural Sciences,
GKVK station, Bengaluru (https://www.uasbangalore.edu.in/index.php/research/agromoterology).
Total monthly and annual precipitation was calculated from daily rainfall data for Bengaluru, and
used to contextualize the surface area of wetlands and lakes to the climate/weather conditions that
prevailed in the observation years.

2.3. Classification of Corona and Landsat Images

Initially, the land cover categories occurring in the study area were visually identified based on
recent (2018) Google Earth images and field visits. The agricultural land surrounding Bengaluru is
characterized by a heterogeneous mosaic of shrubs, trees, annual and permanent crops, fallow fields,
and tree plantations. These are all landscape features with high spectral similarities at the beginning of
the dry season. We thus tried to reduce classification errors by decreasing the number of land cover
categories [68] and using a simplified class for agricultural land including vegetated fallow land with
grasses and shrubs. This resulted in the following land cover classes: 1 = water (open water bodies),
2 = hydrophytic vegetation (flooded areas with hydrophytic vegetation), 3 = built-up area (urban
cover, including buildings, roads and other asphalted or concreted areas), 4 = woodland (vegetated
areas with high tree density), 5 = crop–shrub mosaic (agricultural fields and areas with grass and
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shrubs including vegetated fallow fields), 6 = barren land (barren rocks, sparsely vegetated areas).
This approach followed the classical classification approach of [69]. It is spatially rather coarse, thereby
reflecting (i) the limitations imposed by major differences in the resolution and sensor type of the
available satellite images over five decades and (ii) our interest in quantifying and explaining the
transformation dynamics of water bodies, associated wetlands and urban development as a function of
rural–urban transformation. In our analysis we had to neglect the evident connections of the structural
and functional components of human–nature-based urban ecosystem analysis that have been stressed
in the HERCULES methodology proposed by [70,71] and were further taken up by [72].

To detect changes in the satellite data, a post-classification comparison approach was applied,
which allows the use of heterogeneous data sets by classifying images from different sensors (Corona,
Landsat TM and OLI) independently and subsequently comparing the results. Classification was based
on an object-based approach within ArcGIS 10.6 (ESRI Inc., Redlands, CA, USA). Image segmentation
was performed using the mean shift algorithm [73,74], which is based on a moving window calculating
an average pixel value for the determination of pixel combinations for each segment. The segmentation
process was applied to the six spectral bands of the Landsat images and the one spectral band of the
panchromatic Corona images. Initially, analyses and tests of various parameters for segmentation
revealed the best segmentation results using the following parameter settings: 0.1 for shape and 0.5 for
compactness. The characteristics of each segment were summarized using the following parameters:
spectral detail, spatial detail, and minimum segment size. Training data for the different land cover
categories (10–15 per category; n = 75) were identified for each segmented image from 2018 and
2014 based on high spatial resolution images provided by Google Earth as well as expert knowledge
resulting from on-site field visits in the study area. Due to lacking geographical information, such as
historical aerial photographs and data for the inspected years on land cover in the past, we visually
redefined the training sites, where necessary. This was done based on the already-known shape and
spectral characteristics (color, structure, size) of the different classes using the spectral information of
the color–infrared composites of the 1988–2009 Landsat images and the original high-resolution (3 m)
Corona image.

After image segmentation and the identification of training sites, a classification with the Random
Forest (RF) method using RF models comprising 100 trees and 50 bootstrap samples was applied.
The random forest approach is increasingly employed for satellite image classifications, especially for
the analysis of wetlands and aquatic habitats [39]. Briefly, RF is based on a machine learning method [75]
and works with a collection of decision trees to prevent overfitting. In contrast to classification and
regression trees (CART), RF produces multiple decision trees and merges them together to obtain a
more accurate and stable prediction. The multiple decision trees of the RF are trained on a bootstrapped
sample of the original training data [75].

We added the following segmentation attributes: color, mean, standard deviation, and compactness
as classification inputs. Additionally, to improve the detection of water bodies and wetlands, we
calculated for each Landsat image the automated water extraction index (AWEI) ([7] Equation (1))
and used it as an ancillary raster dataset in classification. Compared to other indices, such as the
normalized difference water index, the normalized modified difference water index, and the water
ratio index, the AWEI index yields higher accuracies for water extraction, especially in mountainous
areas where classification errors are often a result of terrain-induced shadow effects [7].

AWEI = 4× (ρblue − ρSWIR 1) − (0.25 × (ρNIR + 2.75× ρSWIR 2) (1)

where ρ is the reflectance value of spectral bands of Landsat-5 (TM): band 1 (blue), band 4 (NIR), band 5
(SWIR 1), band 7 (SWIR 2); or Landsat-8 (OLI TIRS): band 2 (blue), band 5 (NIR), band 6 (SWIR 1),
band 7 (SWIR 2).

The calculation of the AWEI was impossible for the panchromatic Corona datasets, as well as
the automatic detection of all land cover classes due to the lack of spectral information and similar
characteristics of ground objects belonging to different classes (barren land, built-up areas, and water
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areas). The classification with the RF approach was, therefore, reduced to land cover categories for
which automatic detection was feasible, namely woodland, crop–shrub mosaic, and a class combining
barren land, water, and built-up areas. During post-processing, this class was refined (see below).

2.4. Post-Processing and Accuracy Assessment

For a post-classification comparison of the classified Landsat and Corona images, it was necessary
to improve the image classification of the Corona images and refine the combined class (barren land,
water, and built-up areas) using visual interpretation. For this, the land cover categories barren
land, built-up, and water including hydrophytic vegetation were detected visually in the original
high-resolution Corona images (3m) and manually digitized. The digitized land cover polygons were
subsequently transformed into a raster file with a resolution of 30m and merged with the classified
Corona image.

An accuracy assessment was conducted using a probability stratified sampling design, as
recommended by Olofsson et al. (2014), using the AcATaMa Plugin [76] within QGIS (ver. 2.18; [77];
Appendix A). For the overall sampling size for the accuracy assessment we specified a target standard
error for an overall accuracy of 0.01. The resulting sample size using the equation in [78] was n = 113.
Within AcaTaMa, we used random proportional sample allocation for all land cover categories. For the
categories with a low proportion, namely water, hydrophytic vegetation and barren land, we randomly
allocated 10 additional samples to allow for better accuracy estimates for these land cover categories,
resulting in a total number of 123 sample plots for accuracy assessment.

For the 2018 and 2014 classification results, all validation samples were visually classified using
high-resolution Google Earth images from 2018 and 2014. Due to the lack of historical geographical
data usable for accuracy assessment, the Landsat classification results from 1988 to 1999 were validated
based on the original Landsat dataset, displayed as a false color composite. The classification result
from 1965 was validated based on the original high-resolution panchromatic image.

For each classified image, a confusion matrix showing the classified data versus the class values
of the inspected validation plot was established. Based on this, the reference accuracy (= producers’
accuracy, which indicates how well a certain area can be classified), reliability (= users’ accuracy,
which is the probability that a class on the map represents the category on the ground) and overall
accuracy [79] were calculated (Appendix A).

We additionally converted the absolute counts of the sample into the estimated area proportions
and calculated the standard errors of the estimated area and the 95% confidence intervals as proposed
by [80]. To improve the accuracy estimations, we calculated the quantity disagreement and allocation
disagreement, as proposed by [81], as an alternative to the criticized Kappa index. Quantity
disagreement is “the amount of difference between the reference map and a comparison map”,
whereas allocation disagreement can be considered “as the percentage of classification errors caused
by the incorrect spatial allocation of pixels in the classification” [81].

To allow a comparison of the magnitude of land cover changes for the different time periods, we
calculated the annual percentage of change using the following formula:

C =
A2−A1

A1
× 100÷ (T2− T1) (2)

where C is the annual rate of change (%), A1 is the area of land cover type at time 1 (T1), A2 is the area
of land cover type at time 2 (T2).

2.5. Delineation of Potential Wetland Areas (PWA)

Due to the dynamic character of lake wetlands with the seasonal and annual varying extent of
open water bodies as a result of hydrologic alterations, correct interpretation of wetland changes using
satellite-based time series data is difficult. To overcome this challenge and define a consistent wetland
zone for a detailed analysis, we identified the boundaries of potential wetland areas in the study region
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and investigated changes in land cover within these areas. The boundaries of all potential wetlands
(open water surface and surrounding wetlands with hydrophytic vegetation within a 500 m buffer) were
digitized manually on-screen based on Corona images from 1965 and on Google Earth images from 2018.
In addition, we used freely available OpenStreetMap (OSM) data (https://www.openstreetmap.org;
https://planet.openstreetmap.org) of open water bodies as a base file, which has been updated and
corrected manually using the Google Earth image as a reference. Both areas were combined to produce
a shapefile with PWA that existed in 1965 and 2018.

2.6. Characterization of the Rural–Urban Gradient and Associated Landscape Morphologies

To analyze wetland changes along the rural–urban gradient, we used a modified index-based
approach [82]. Originally developed to facilitate the stratified random sampling of villages for a
representative survey (and, thus, named the survey stratification index (SSI)), it was shown that the SSI
correlated with certain village and landscape morphologies, such as compact settlements surrounded
by fields in rural areas, a heterogeneous mix of different land cover patches in transitional and empty
layouts or densely built-up neighborhoods in urban areas. In the rural–urban interface of Bengaluru,
these morphologies are distributed in non-linear patterns with pockets of advanced urbanization often
associated with major traffic axes or economic infrastructure.

The SSI followed the logic of the urban–rural index [URI], [83] in a simplified manner and used
the proportion of built-up areas within a 1 km2 radius around the village center and its distance to the
city center as a proxy for urbanization. Instead of calculating the SSI for buffer zones surrounding
settlements, our approach in the present study was to characterize the whole landscape. The study
area was, therefore, subdivided in 1 km2 grid cells to extract the geographical input data for SSI
calculations. For each grid, we calculated the proportion of non-built up areas (%; for 1965 and 2018)
and the Euclidean distance to the city center (using Vidhana Souda as reference point, according
to [82]). Based on the two input parameters, which were normalized to a scale of 0–1, the SSI was
calculated for each grid cell using the following equation [82]:

SSI =
√
((zi distance)(zi non−built−up) )) (3)

where zi is the normalized variable of the Euclidean distance (distance) and the proportion of
non-built-up areas (non-built-up).

SSI values thus decrease with increasing urbanization. Roughly, values < 0.3 represent urban
areas, values > 0.5 have a rural character, and SSI values ranging from 0.3 to 0.5 represent transitional
areas [82]. This simple geographical approach for characterizing the rural–urban gradient does not
require statistical data, which are difficult to gather for such a long time series (1965–2018). Nevertheless,
it captures the spatially non-linear patterns of different degrees of urbanization.

3. Results

3.1. Land Cover Changes in Bengaluru Urban

The accuracy assessment for the 2018 image indicated a high accuracy with a quantity disagreement
of 5% and allocation disagreement of 0%. For the classification of historical images (1988–2014),
the overall accuracy ranged from 93 to 97% (Appendix A). Most of the classification errors were due to
quantity disagreement rather than allocation disagreement. The confusion between the land cover
categories ‘crop–shrub mosaic’ and ‘woodland’ resulted in a relatively high error of omission. This was
mainly due to (fruit) tree plantations within agricultural areas, which were misclassified as woodland.

Overall, the landscape of the Bengaluru Urban district was (73%) and still is (56%) dominated
by a crop–shrub mosaic (Figure 1, Table 2, Appendix B). However, the total extent of the crop–shrub
mosaic decreased by 23% from 1965 to 2018 and was mainly transformed into built-up land. Although
it was not possible to correctly classify cropland automatically, a visual comparison of the historical
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Corona images with recent Google Earth images revealed that agricultural fields changed only slightly,
and cropland extension was already as high in 1965 as it is today. Built-up areas increased tenfold with
the highest expansion rates being between 2004 and 2009 and between 2014 and 2018. Woodland areas
have decreased drastically and lost half of their original size over the past 53 years, but there was a
complex pattern of conversion and regrowth during the observation period. Until 2009, many areas
were deforested, while from 2009 to 2014, the proportion of woodland increased. The deforestation rate
was highest in the period from 2014 to 2018, reflecting the intensive construction of new built-up areas.

Table 2. Land cover changes (area in km2, annual change in %, SE = standard error of area estimates in
km2, for a detailed accuracy assessment see Appendix A) from 1965 to 2018 in the Bengaluru Urban
district, S-India (land cover change data for Greater Bengaluru is summarized in Appendix B).

Year Water &
Hydro. Veg. Built-up Woodland Crop–shrub

Mosaic Barren Land

1965 Area (km2) 64.3 52.0 328.3 1590 147.7
SE (km2) 6.9 0.0 0.0 34.8 11.0

1988 Area (km2) 51.2 126.4 360.0 1628.7 16.0
SE (km2) 0.0 26.6 34.0 51.7 0.0

Change (%) −0.9 6.2 0.4 0.1 −3.9

1993 Area (km2) 47.0 171.4 349.2 1595.7 19.0
SE (km2) 10.7 20.9 34.1 45.6 2.7

Change (%) −1.6 7.1 −0.6 −0.4 3.8

1999 Area km2 57.0 243.4 321.9 1504.2 55.8
SE (km2) 7.6 25.6 22.2 36.2 22.5

Change (%) 3.5 7.0 −1.3 −1.0 32.3

2004 Area km2 46.5 329.0 229.1 1410.3 167.4
SE (km2) 0.0 0.0 22.7 31.8 11.9

Change (%) −3.7 7.0 −5.8 −1.2 40.0

2009 Area km2 44.9 455.3 167.0 1412.0 103.1
SE (km2) 0.0 18.8 23.3 39.3 0.0

Change (%) −0.7 7.7 −5.4 0.0 −7.7

2014 Area km2 46.1 449.5 235.4 1302.4 149.0
SE (km2) 6.3 28.5 35.9 43.1 18.2

Change (%) 0.5 -0.3 8.2 −1.6 8.9

2018 Area km2 54.8 592.6 160.6 1222.7 151.6
SE (km2) 4.8 19.5 36.8 42.5 15.2

Change (%) 4.8 8.0 −7.9 −1.5 0.4

1965 to 2018 Total
Change (%) −14.8 1039.0 −51.1 −23.1 2.6

3.2. Dynamics of Lake Wetlands

Patches of lake wetlands were highly dynamic in space and time with displaying increasing and
decreasing trends of open water bodies. These likely reflect precipitation patterns and alterations in
the monsoon-driven hydrologic regime (Figure 2). However, overall water bodies and flooded areas
shrunk from 64 km2 in 1965 to 55 km2 in 2018. Losses were highest from 1965 to 1988, increased from
1993 to a transient peak in 1999, and thereafter fluctuated around the 1993 level.
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Figure 2. Trajectories of annual rainfall (mm) and surface of open water bodies (km2) in Bengaluru
Urban district (S-India) from 1965 to 2018.

Based on the precipitation data for Bengaluru from 1963 to 2018, the average annual rainfall was
873 mm, which is in good agreement with other sources [54]. The inter-annual variation is high, as is
typical for the seasonally dry tropics. The minimum annual precipitation recorded in the observation
period was 501 mm in 1965, and the maximum was 1374 mm in 2005 (Figure 2). Among the years
chosen for the land cover analysis, 1965 was, thus, the driest year, and most of the rainfall was received
in the month of August, while the corresponding satellite picture was obtained in October. All other
satellite pictures were taken in or close to the month of January. While the years 1988, 1993, and 2014
were characterized by average precipitation regimes, with rainfall spread over the entire monsoon
season, 2004, 2009, and 2018 (with respect to the preceding years) had received higher than average
rainfall. On the other hand, 1998 was one of the wettest years recorded (1288 mm). Moreover, it was
among a series of six consecutive years (1995–2000) with annual rainfall well above average. This may
explain the transient peak in the observed water area in the year 2000. Over the five decades of
our study, the water area detected in the observation years reflected the respective rainfall patterns,
but generally declined.

The spatial distribution of losses, gains, and unchanged areas of the land cover category “water”
for the different observation periods confirmed its very dynamic pattern in space and time (Figure 3).
Losses in the first observation period from 1965 to 1988 mainly took place in the periphery of the city
in peri-urban and rural landscapes, especially in the north-western part of the city, with high losses
in open water for the large Hasaraghatta Lake. From 1993 to 1999, an increase in the groundwater
table, likely due to its recharge by high annual precipitation, led to an increase in open water bodies,
particularly for the southern part of the study region. From 2014 to 2018, most of the wetland losses
occurred in the surrounding area of the old city center and losses in the old city center were highest for
the period from 2004 to 2009. Overall, 57% of the detected losses in open water bodies were attributed
to their conversion into built-up areas, 6% to a crop–shrub mosaic and 6% to woodland. Gains in open
water bodies (lakes, ponds and reservoirs) were found for former woodland (5%) and the crop–shrub
mosaic (18%).
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3.3. Changes within PWA along the Rural–Urban Gradient

The delineation of PWA, based on the first and last year of observation, captured a total area of
128 km2, distributed over a total of 1118 polygons. The size of the individual PWA ranged from 0.15
to 950 ha. The investigated land cover changes within the potential wetland areas (PWA) confirm
the dynamics of lake wetlands in space and time, with likely considerable shifts from one ecological
state to another (Figure 4). The land cover categories woodland and crop–shrub mosaic within PWA
showed an increasing trend from 1965 to 1993, reflecting the fact that wetland habitats were converted
to cropland or green space. While built-up areas consumed 5 km2 of wetland surface altogether from
1999 to 2018, it devoured as much as 11 km2 between 1965 and 1999. Water areas were highly variable,
resulting from alternating wet and dry periods. In 1999, there was an abrupt rise in open water bodies
with a corresponding loss in crop–shrub mosaic. Excess precipitation during 1995 to 2000, with a peak
in 1998 (Figure 2), leading to the flooding of many areas surrounding lakes, may explain this transient
phenomenon. The effect appears dramatic as only the land cover changes within the PWA are shown
in Figure 4. Overall, barren land increased from 1965 to 2018.
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Figure 4. Land cover changes from 1965 to 2018 within potential wetland areas (PWA) of the Bengaluru
Urban district, S-India.

Changes in lake wetlands and built-up areas over the past five decades were plotted against
corresponding SSI values from 2018 to depict the differences along the urban–rural gradient (Figure 5).
Water areas within PWA decreased in the urban zone with low SSI values (< 0.3) and were transformed
into built-up areas, which is mirrored by the high gains within this land cover category. High vegetation
losses in wetlands were found for intermediate SSI values in the transitional zone between urban and
rural. In areas with a rural character (SSI > 0.7), the loss of open water bodies was most pronounced,
and they were mainly transformed into green space.
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3.4. Changes in the Rural Urban Characteristics of PWA

The rural–urban characteristics of PWA changed drastically from 1965 to 2018 (Figure 6). In 1965,
the rural character with low urbanization (SSI values > 0.5) prevailed, with most lake wetland areas
(35 km2 in total) having an SSI value of 0.8 (Figure 6), this was twice as high as in 2018. In the past five
decades, the SSI values within PWA decreased considerably, and only the area with SSI values < 0.3
increased. This indicated that, by 2018, formerly “rural wetlands” had been transformed into wetlands
with an urban character (Figure 7).
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Figure 6. Transformation of rural–urban characteristics (survey stratification index (SSI) of
Hoffmann et al. (2017) used as a proxy for the degree of urbanization) of lake wetlands (water
and vegetated areas in potential wetland areas (PWA)) from 1965 to 2018 in the Bengaluru Urban
district, S-India).
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Figure 7. Exemplary wetland changes in the Bengaluru urban district from 1965 (Corona image) to 2018 
(false color composite of a Landsat-8 image) for (a) rural areas (mean SSI value in 2018 = 0.75) 
surrounding Hasaraghatta Lake, where wetlands were transformed into green space and (b) urban areas 
(mean SSI value in 2018 = 0.15), with Agara Lake in the north-east, where wetlands were replaced by 
built-up areas. The potential wetland area (PWA) is depicted with blue lines.

Figure 7. Exemplary wetland changes in the Bengaluru urban district from 1965 (Corona image) to
2018 (false color composite of a Landsat-8 image) for (a) rural areas (mean SSI value in 2018 = 0.75)
surrounding Hasaraghatta Lake, where wetlands were transformed into green space and (b) urban
areas (mean SSI value in 2018 = 0.15), with Agara Lake in the north-east, where wetlands were replaced
by built-up areas. The potential wetland area (PWA) is depicted with blue lines.

4. Discussion

4.1. Land Cover Changes

The summary of our LCC analysis revealed that the most marked change since 1965 was the
expansion of built-up areas at the expense of the crop–shrub mosaic, wetlands and woodlands. This is
in line with previous studies on LCC in Bengaluru, although the exact change rates may vary due to
differences in study design (investigated time periods and spatial scales) and methods (definition of
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land cover classes, satellite sensors, spatial and temporal resolution, classification methods, and related
misclassification errors). The study in [55] found an increase in built-up areas from 8% in 1973 to 58%
in 2012 for Greater Bengaluru with a reduction in water bodies from 3.4% to less than 1%. Although,
the inspected time periods differ, we found similar change rates for the increase in built-up areas in
Greater Bengaluru (Appendix C) from 7.3% in 1965 to 52.4% in 2009, whereas our data showed a
decrease in total water body area from 3% to 2%.

The construction of the Outer Ring Road in 2000 triggered a cascading effect on LCC with the
construction of new infrastructure. Many agricultural areas were abandoned, and landowners sold or
leased their land for building projects [52]. Although it was not possible to correctly classify cropland
automatically, a visual inspection of historical Corona images revealed that cropland extension was
already high in 1965, and the total extent of cropland has since shrunk due to massive urbanization.
Cropland in the city center was abandoned or transformed into commercial, industrial or residential
areas [56,57]. Another group [52] reported that a variety of crops, including rice, ragi, and vegetables
were cultivated in the surroundings of Bellandur Lake until recently. Today, most of these fields were
either transformed into built-up areas or abandoned, and large parts of this lake are covered with
weeds. Some former agricultural land in the city periphery was transformed into permanent crops
and tree-plantations. Although agricultural intensification, instead of expansion, predominates in the
Bengaluru Urban district, agricultural expansion may play a crucial role in the watershed area of the
rural hinterland, which was not inspected in the present study.

We detected an increase in woodland from 2009 to 2014, which is mainly due to large scale
conversion of cropland and wetland to plantations of fast-growing trees and patches of parks that
were established during the last two decades in the city core area [33]. However, the high proportion
of exotic plant species, which dominate the park flora, limits the provision of ESS of these newly
established green spaces and may negatively affect native plants and habitats [12].

A very rapid growth in urban areas with new buildings, industries, and infrastructure was
detected in our study for the period from 1965 to 1988 and a relatively steady growth during the
following observation periods. In the second half of the 1980s, the information technology boom
began [60] transforming the former “City of Gardens” into the “Silicon Valley of India”. The high
immigration rates pushed population growth and led to increasing pressure on urban wetlands and
natural resources [53]. The expansion of built-up areas has mainly taken place in the outskirts of the
old city center and in the city periphery along the existing transportation axis due to land scarcity in
the city center. This occurred at the expense of croplands, green spaces, and wetlands. This was also
reported by [27,33] who found the highest landscape fragmentation and vegetation losses in the city
periphery. The former study on urban growth in the 12 largest cities in India revealed that Bengaluru’s
growth pattern shows “a transition of mono- to polycentric growth with punctual spatial growth”,
with the fastest growth taking place around multiple peripheral areas.

As in many other Indian cities, this urbanization process is barely guided by state policies and
results in complex and irregular patterns of growth, with high landscape fragmentation in the periphery,
but less urban agglomeration in the city core [27,84]. Such patterns were also found in other Asian cities,
such as in Kathmandu [85] and Beijing [86]. The largely unplanned urbanization, or city planning,
that follows rather than directs development, results in the degradation of natural ecosystems and
resources, including wetlands [27,30,32].

4.2. Wetland Losses along the Rural–Urban Gradient and Its Drivers

The detected trends in urban wetland losses are similar to those reported for other megacities in
South Asia, such as Mumbai, India [87], Kolkata, India [21], Colombo, Sri Lanka [13], and Lianyungang,
China [10], where urban wetlands were subjected to rapid human-induced modifications in the late
19th century [13].

In the Bengaluru Urban district, the rural–urban land cover composition within wetlands has
changed drastically in the past five decades and, in 1965, the total area of open water bodies in
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rural landscapes was twice as high as in 2018. The pattern of wetland changes and conversion was
similar to the observed pattern of vegetation losses, with the highest losses in the city periphery [33].
The conversion of bodies of water to built-up areas mainly occurred in the urban (SSI < 0.3) and
transitional zone (SSI > 0.3 and < 0.7), where new residential and commercial areas, as well as
industrial parks, have been established. The transition from open water bodies to green spaces and
woodland mainly took place in areas with a rural character (SSI > 0.7), such as the south eastern and
northern region, where natural succession processes in drying lakes took place with the conversion of
hydrophytic vegetation stands to shrub and tree habitats (Hasaraghatta Lake, Figure 7a). Many water
bodies and wetland areas likely dried out due to disruptions in the connected hydrological drainage
network. The remaining wetlands within the city areas are threatened by pollution via domestic and
industrial waste, siltation, and the expansion of invasive weed species, which cover large swathes of the
lake [57,62,88]. Another study [89] found increasing levels of heavy metal contamination in sediment
deposits from the lake beds. Bellandur Lake, which once played a vital role in people’s livelihoods [52]
has become so loaded with organic pollutants that, in recent years, methane accumulated in it and
caused the lake to catch fire several times [90]. Water sample analysis of 305 lakes in the Bengaluru
Metropolitan Area (BMA) region revealed that nearly half (44.5%) of the water bodies were contaminated
by solid waste from domestic garbage, construction, demolition, and agricultural waste, and 29% of
the water bodies suffered from sewage influx [62]. This process of wetland degradation and pollution
resulted in irreplaceable losses of valuable ESS, such as biodiversity support, water recharge and
nutrient cycling, and contributed to a significant decrease in the city’s groundwater table [53].

A comparison of lake losses with other studies is hindered by differences in study design and
methods. For the Greater Bengaluru area, a previous study [54] found a decrease in total lake area from
159 (20 km2) in 1973 to 107 (10.8 km2) in 2002. The authors explored the water surface areas in Greater
Bengaluru using several satellite-derived water indices and supervised classification. The results of
the different analysis techniques varied between 6.3 and 8.5 km2 water surface in 2002 versus 5.1 and
7.7 km2 water surface in 2014. In contrast, we detected 13 km2 of open water bodies altogether in 2014.
These discrepancies can be mainly attributed to the different seasons inspected. Other authors [44]
used Landsat data from April, which is the hottest month at the end of the dry season, whereas this
information on the inspected season is missing in the study of [54].

The most complete field-and remote sensing-based inventory of lakes was recently conducted by
the Centre for Lake Conservation (CLC) team at the Environmental Management & Policy Research
Institute (EMPRI). They established a database of water bodies within the Bengaluru Metropolitan
Area (BMA) region (1307 km2), covering 62% of the Bengaluru Urban district. The study of 1518
water bodies revealed that 10 were created after 1995, while 99 water bodies have vanished. Although
the study was based on careful ground truth inventories, there were challenges in the definition and
identification of vanished lakes due to the pronounced seasonality of open water bodies [62].

As stated earlier, in the past, the human-made lakes and tanks in Bengaluru and their surrounding
were used for fishing, irrigation of cropland, fodder production for cattle [52], drinking water,
and domestic uses and, thus, played a key role in people’s livelihoods [91]. As a result, many were
managed and maintained by local village communities [53]. With the introduction of piped water
from the Cauvery River in the 1970s [52] and rapidly growing water extraction from borewells,
lakes lost their importance in the supply of fresh water. As a consequence, many lakes were converted
for urban land usage [63] and the extensive lake network was transformed into a few isolated and
disconnected lakes [57], leading to an increasing risk of flooding in the monsoon season [63]. There was
also a shift in people’s preferences for lake ESS, from water (irrigation and drinking) and cultural
services to recreational services. Such transformations were described in detail by [53] for Agara
Lake and by [52] for Bellandur Lake (Figure 7b). The formerly community-based management of
lakes was gradually transformed into state management and today, a large number of governmental
agencies with overlapping jurisdictions and responsibilities exist, which seem to hamper effective lake
management [53].
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Like many other cities [10,11,13,14,28], Bengaluru heavily depends on key wetland services,
such as filtering nutrients and pollutants, providing wildlife habitats and, in particular, facilitating the
regulation of floods during the monsoon season. Frequent flooding in Bengaluru as a result of the
increase in the impervious area poses a challenge [62]. Despite recent efforts to protect and restore
urban wetlands, and some positive examples of lake restoration by local neighborhood initiatives [92],
many lakes continue to be heavily polluted and degraded and/or encroached upon by invasive
species [93], whereby the resilience of urban ecosystems heavily depends on the governance of
social–ecological system resources as a result [94]. Weak governance is certainly another important
driver of wetland change, next to activities including infrastructural development, construction
activities, and industrial and agricultural use [10]. However, climatic and environmental conditions
are similarly important and hamper the investigation into human-induced wetland changes, especially
as many lakes are seasonal with the existence of open water bodies being restricted to half the year.
Our time series analysis also highlights the lake dynamics in space and time due to fluctuations in
water levels and inundation, which have varied substantially through time in response to precipitation
and evapotranspiration.

4.3. Methods Used for the Identification of Wetland Changes

The complexity of the human-made landscapes in and around megacities with highly variable
spectral signatures in space and time leads to several challenges in remote sensing-based time series
analysis [32], particularly for the long-term monitoring of wetland cover [20,42]. Within the Bengaluru
Urban district, the extension of lake wetlands is highly variable, resulting from alternating wet and
dry periods and varying water permanency (ephemeral, temporal, seasonal, semi-permanent, and
permanent [62]. As a consequence, these “transitional” habitats may rapidly shift from one ecological
state to another irrespective of climatic conditions and land use activities affecting the water regime.
Our results (Figure 1) show a relation between the open water area detected in the satellite images and
the precipitation around the observation date. Seasonal fluctuations are often accompanied by a gradual
transformation from aquatic lake ecosystems to terrestrial ecosystems due to drying and the lack of
water inflow [8]. Both processes, seasonal fluctuations and autogenic, as well as allogenic, successions,
hamper the documentation of human-induced long-term changes in wetlands. Further constraints in
satellite-based time series analysis are (i) fluctuating water levels and the accompanied changes in the
spectral reflectance of vegetation, (ii) confusion caused by periphyton, which can form large floating
vegetation masses, especially during the dry season, and (iii) difficulties in separating overlapping
signatures with other (upland) land cover types [42]. These challenges increase misclassification errors,
which may accumulate in time series analyses [95,96]. We tried to overcome some of these challenges
by using simplified land cover categories and placed the focus on changes in open water bodies and
green space in defined potential wetland areas.

Although our classification technique, based on OBIA and using an improved water index (AWEI)
as the ancillary information, resulted in relatively high overall accuracies (> 90%), several constraints
hindered effective image classification. One directly refers to the limitations of the accuracy assessment
of the 1965–2009 images in the current study due a lack of historical ground surveys and geographical
reference data, such as high-resolution images or aerial photographs. Furthermore, there is always
an interpreter uncertainty in the reference classification; however, this is very difficult to estimate for
historical datasets, for which a “gold standard” of truth is lacking [80]. We, therefore, need to take into
account the fact that such errors may lead to error accumulation within a post-classification comparison
approach [96]. However, due to the simplified land cover categories that we used in classification,
the study’s interpreter bias is likely low.

During post-processing, visual on-screen interpretation was necessary for the classified 1965
image to reclassify the water, barren land, and urban areas. Urban areas were easy to detect on
the high-resolution Corona image due their textural characteristic, whereas reasonable thresholds
between water areas and barren land were difficult to define due to their spectral similarities and their
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homogenous texture. Consequently, some of the observed wetland and land cover changes may be
over and/or underestimated, especially between 1965 and 1988. Although the visual change detection
is hampered by the interpreter bias and may be difficult to replicate [80,96], it is also known that
visual interpretations frequently result in a more accurate image interpretation compared to automatic
classification approaches, due to the simultaneous processing of texture, color tones, and geometric
features [97].

Further constraints in image classification resulted from the complexity of natural wetland
conditions on the ground. Many wetlands are only flooded at certain times during the year and a
careful selection of the study season is, therefore, a critical issue in time series analysis. To better
identify (temporary) lake wetlands, it is recommended to use satellite images acquired at peak water
level [42]. However, due to a lack of cloud-free data for the monsoon season, we selected Landsat
datasets depicting the beginning of the dry season. In this way, we minimized the impact of seasonal
variation and tried to make sure that water levels in lakes were still relatively high. Nevertheless,
the significant seasonality of the lake’s inundation area hampered detection of lake losses, as well as a
comparison with other remote sensing-based studies on wetland changes in Bengaluru. Inconsistencies
in estimated wetland and lake areas and their change rates in different reports and scientific studies
may be attributed to these issues. Reliable estimations on lake disappearance will need to be validated
with high-resolution satellite data and verified during ground visits. In addition, the actual dynamics
(changes in size) of individual lakes and wetlands in response to rainfall patterns at a finer time
resolution would merit further investigation. This should be accompanied by vegetation surveys to
investigate the degree of succession and assess if possible regime shifts from an aquatic ecosystem to a
terrestrial vegetation type are irreversible or not.

Visualizing the wetland dynamics as a function of the SSI is a novel approach to analyzig and
depicting the interrelations between the described land cover changes and other rural–urban transition
processes and their impact on specific ecosystem services. Few studies actually define and quantify
parameters related to this nexus. In an earlier example [98], researchers explored biodiversity within
21 pre-defined wetland areas in the Netherlands, measured as the number of endangered bird and
angiosperm species in the context of rural–urban landscape characteristics. The authors used indicators
such as areas of built-up land, population density, road density, open water area, agricultural land use,
intensity of fertilizer use, and distance to the city of Amsterdam. They showed significant co-variance
between these urbanization-related parameters as well as negative effects of increasing urbanization
on plant biodiversity, but not on bird biodiversity. They further concluded that agriculture and
urbanization could not be separated as causal agents of wetland transformations, but that a distinct
gradient in population density was superimposed with two other separate gradients, thus creating a
more complex spatial pattern and multi-causal variability. The SSI used in the present study integrates
some of the same parameters, thus allowing us to better correlate the observed wetland dynamics with
non-linear rural–urban transition patterns.

Another comprehensive approach allowed researchers to map, quantify, and characterize wetlands
in the metropolitan area of Sydney, Australia [14]. Here, the land in the area surrounding the wetlands
was used as a proxy for a rural–urban gradient, assuming a succession from native ecosystems,
to agricultural and then urban landscapes. Based on data pooled from 1999 to 2006 (and covering
ca. 5000 water bodies in three size classes, from less than 1000 to more than 2000 m2) they showed a
discontinuous distribution in the size, density and shape of wetlands, with typical features for rural,
transitional and urban areas, which resonates with the conclusions drawn in our paper (Figure 5).

5. Conclusions

Our findings yield important insights into the dynamics of lake wetlands in the rural–urban
interface of Bengaluru using a combination of OBIA based on spectral bands and an improved water
index as ancillary information to detect lakes and wetland areas with high precision and the SSI
approach to analyze and depict the interrelations between the described land cover changes and other
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rural–urban transitions. Despite increasing efforts to protect and restore urban wetlands, many continue
to be used as dumpsters, a process that particularly affects the city periphery, which has been undergoing
rapid urbanization in recent decades due to land scarcity in the city center. The large-scale urbanization and
continued losses of green space and water bodies poses a great challenge for city planning in Bengaluru,
especially for the future availability of water, which is going to be an increasingly important factor
affecting city development. The analysis presented in our paper highlights the potential for integrated
approaches to understand the consequences of rural–urban transformation on sustainable development
of an Indian megacity. It is, thus, equally important for policy makers and conservation environmentalists
to understand these consequences as well. To identify effective options in urban wetland management,
city planners may need to monitor and assess the effectiveness of current and past practices and pay
attention to the spatial allocation of restoration activities in the social–ecological context that governs the
past, present, and future of each lake.

In the past five decades, in Bengaluru, regime shifts in the use of urban wetlands were accompanied
by considerable changes in ESS benefits and people’s valuations of ESS. A major contributor to this
was the change from community-based wetland management to centralized management under
state control. The related failures in wetland governance have aggravated the already alarming
environmental situation. To restore and optimize key wetland functions and services, there is an urgent
need for further research on the resilience of wetland ecosystems, combining the different ecological,
socio-economic, cultural, and institutional components of the complex urban social–ecological systems
governing them.
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Appendix A Accuracy Assessment

Summary of the accuracy assessment of the Landsat images used to examine LCC in the Bangalore
Urban district (S-India). Users’ accuracy (UA) (%), producers’ accuracy (%).
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Land Cover Class
2018 2014 2009 2004 1999 1993 1988 1965

UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA

Water 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 77.8 100.0 100.0 88.9 100.0
Hydrophytic vegetation 100.0 100.0 100.0 88.9 100.0 100.0 100.0 100.0 100.0 66.7 100.0 100.0 100.0 100.0 100.0 100.0
Built-up 100.0 93.1 95.6 91.7 95.8 100.0 100.0 100.0 84.6 100.0 81.8 100.0 66.7 100.0 100.0 100.0
Woodland 100.0 71.4 80.0 85.7 94.1 88.9 93.8 93.8 90.0 100.0 95.8 88.5 90.0 90.0 88.9 88.9
Crop–shrub mosaic 92.9 100.0 96.8 95.2 96.8 96.8 98.5 96.9 98.7 96.3 95.8 97.2 96.1 93.7 95.8 95.8
Barren land 100.0 100.0 81.8 100.0 100.0 100.0 92.8 100.0 100.0 100.0 85.7 100.0 100.0 100.0 100.0 83.3

Overall accuracy (%) 95.1 93.5 96.4 97.3 95.9 94.3 93.5 94.3
Quantity disagreement (%) 4.9 2.4 0.8 0.8 3.3 3.2 1.6 0.8
Allocation disagreement (%) 0 4.1 2.4 1.6 0.8 2.4 4.9 4.9
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Error matrices of the land use classes for 2018, 2014, 2009, 2004, 1999, 1993 and 1988 in the
Bangalore Urban district (S-India). The standard error of area estimates (km2) and 95% confidence
interval were calculated as proposed by Olofsson et al. (2014) based on an area-based error matrix.
Class abbreviations: 1= water; 2 = hydrophytic vegetation; 3 = built-up, 4 = woodland, 5 = crop–shrub
mosaic, 6 = barren land.

Error matrix for 2018

Classfied 1 2 3 4 5 6 SUM
Total
Area

(km2)

Stratum
Weight

(WI)

1 9 0 1 0 0 0 10 48.0 0.022
2 0 10 0 0 0 0 10 6.8 0.003
3 0 0 27 0 0 0 27 592.6 0.272
4 0 0 0 10 0 0 10 160.6 0.074
5 0 0 0 4 52 0 56 1222.7 0.560
6 0 0 1 0 0 9 10 151.6 0.069

SUM 9 10 29 14 52 9 123 2182.34 1.000

Standard error of
area estimates (km2)

4.8 0.0 19.5 36.8 42.5 15.2

95% Confidence
interval (km2)

9.4 0.0 38.2 72.1 83.2 29.7

Error matrix for 2014

Classfied 1 2 3 4 5 6 SUM
Total
Area

(km2)

Stratum
Weight

(WI)

1 4 0 0 0 0 0 4 27.6 0.013
2 0 8 0 0 0 0 8 18.9 0.009
3 0 0 22 0 1 0 23 449.5 0.206
4 0 1 0 12 2 0 15 235.4 0.108
5 0 0 0 2 60 0 62 1302.4 0.596
6 0 0 2 0 0 9 11 149.0 0.068

SUM 4 9 24 14 63 9 123 2182.3 1.000

Standard error of
area estimates (km2)

0.0 6.3 28.5 35.9 43.1 18.2

95% Confidence
Interval in km2 0.0 12.3 56.05 70.4 84.5 35.6
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Error matrix for 2009

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 7 0 0 0 0 0 7 36.1 0.017
2 0 5 0 0 0 0 5 8.8 0.004
3 0 0 23 0 1 0 24 455.3 0.209
4 0 0 0 16 1 0 17 167.0 0.077
5 0 0 0 2 60 0 62 1412.0 0.647
6 0 0 0 0 0 8 8 103.1 0.047

SUM 7 5 23 18 62 8 123 2182.3 1.000

Standard error of
area estimates (km2)

0.0 0.0 18.8 23.3 39.3 0.0

95% Confidence
Interval in km2 0.0 0.0 37.2 45.7 79.7 0.0

Error matrix for 2004

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 8 0 0 0 0 0 8 40.2 0.018
2 0 4 0 0 0 0 4 6.3 0.003
3 0 0 16 0 0 0 16 329.0 0.151
4 0 0 0 15 1 0 16 229.1 0.105
5 0 0 0 1 64 0 65 1410.3 0.646
6 0 0 0 0 1 13 14 167.4 0.077

SUM 8 4 16 16 66 13 123 2182.3 1.000

Standard error of
area estimates (km2)

0.0 0.0 0.0 22.7 31.8 11.9

95% Confidence
Interval in km2 0.0 0.0 0.0 44.6 62.4 23.4

Error matrix for 1999

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 8 0 0 0 0 0 8 53.0 0.024
2 0 2 0 0 0 0 2 5.0 0.003
3 0 0 11 0 1 1 13 243.4 0.112
4 0 0 0 18 2 0 20 321.9 0.148
5 0 1 0 0 77 0 78 1504.2 0.688
6 0 0 0 0 0 2 2 55.8 0.026

SUM 8 3 11 18 80 2 123 2182.3 1.000

Standard error of
area estimates (km2)

0.0 7.6 25.6 22.2 36.2 22.5

95% Confidence
Interval in km2 0.0 14.9 50.2 43.4 70.9 44.2
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Error matrix for 1993

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 7 0 0 0 0 0 7 42.9 0.020
2 0 2 0 0 0 0 2 4.1 0.002
3 1 0 9 0 1 0 11 171.4 0.079
4 0 0 0 23 1 0 24 349.2 0.160
5 0 0 0 3 69 0 72 1595.7 0.731
6 1 0 0 0 0 6 7 19.0 0.009

SUM 9 2 9 26 71 6 123 2182.3 1.000

Standard error of
area estimates (km2)

10.7 0.0 20.9 34.1 45.6 2.7

95% Confidence
Interval in km2 21.0 0.0 41.0 66.9 89.4 5.3

Error matrix for 1988

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 6 0 0 0 0 0 6 46.9 0.022
2 0 2 0 0 0 0 2 2.3 0.001
3 0 0 4 0 2 0 6 126.4 0.058
4 0 0 0 27 3 0 30 360.0 0.165
5 0 0 0 3 74 0 77 1628.7 0.747
6 0 0 0 0 0 2 2 16.0 0.007

SUM 6 2 4 30 79 2 123 2182.3 1.000

Standard error of
area estimates (km2)

0.0 0.0 26.6 34.0 51.7 0.0

95% Confidence
Interval in km2 0.0 0.0 52.2 66.7 101.3 0.0

Error matrix for 1965

Classfied 1 2 3 4 5 6 SUM
Total
area

(km2)

Stratum
Weight

(WI)

1 8 0 0 0 0 1 9 62.2 0.029
2 0 4 0 0 0 0 4 2.1 0.001
3 0 0 6 0 0 0 6 52.0 0.024
4 0 0 0 24 3 0 27 328.3 0.150
5 0 0 0 3 69 0 72 1590.0 0.729
6 0 0 0 0 0 5 5 147.7 0.068

SUM 8 4 6 27 72 6 123 2182.3 1.000

Standard error of
area estimates (km2)

6.9 0.0 0.0 34.8 45.7 11.0

95% Confidence
Interval in km2 13.5 0.0 0.0 68.1 89.6 21.5

Appendix B Land Cover Maps from 2018, 2014, 2009, 2004, 1999, 1993, 1988 and 1965 for the
District Bengaluru Urban, S-India
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Appendix C Land Cover Changes (Area in km2 and Proportion in %) from 1965 to 2018 in Greater Bangalore, S-India

Year
Water Built-up Woodland Crop–shrub mosaic Barren land

Hydrophytic
vegetation

km2 % km2 % km2 % km2 % km2 % km2 %

1965 20.8 2.9 51.2 7.3 85.5 12.1 481.2 68.2 67.8 9.6 1.1 0.2
1988 15.7 2.2 112.3 15.9 106.2 15.0 463.3 65.8 7.7 1.1 1.9 0.3
1993 17.8 2.5 146.0 20.7 94.8 13.4 442.7 62.7 5.1 0.7 3.4 0.5
1999 14.8 2.1 214.7 30.4 91.0 12.9 356.2 50.4 24.9 3.5 4.7 0.7
2004 14.1 2.0 287.6 40.7 58.3 8.3 296.1 41.9 44.9 6.4 5.2 0.7
2009 11.6 1.6 372.1 52.4 51.3 7.3 229.8 32.5 34.7 4.9 6.8 0.9
2014 10.6 1.5 372.5 52.7 60.9 8.6 178.7 25.3 39.2 5.6 10.4 1.5
2018 12.5 1.8 446.3 63.2 55.0 7.8 161.1 22.8 26.5 3.8 4.7 0.7
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