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Abstract: The combination of Sentinel-2 derived information about sub-field heterogeneity of crop
canopy leaf area index (LAI) and SoilGrids-derived information about local soil properties might
help to improve the prediction accuracy of crop simulation models at sub-field level without prior
knowledge of detailed site characteristics. In this study, we ran a crop model using either soil texture
derived from samples that were taken spatially distributed across a field and analyzed in the lab (AS)
or SoilGrids-derived soil texture (SG) as model input in combination with different levels of LAI
assimilation. We relied on the LINTUL5 model implemented in the SIMPLACE modeling framework
to simulate winter wheat biomass development in 40 to 60 points in each field with detailed measured
soil information available, for 14 fields across France, Germany, and the Netherlands during two
growing seasons. Water stress was the only growth-limiting factor considered in the model. The
model performance was evaluated against total aboveground biomass measurements at harvest with
regard to the average per-field prediction and the simulated spatial variability within the field. Our
findings showed that a) per-field average biomass predictions of SG-based modeling approaches
were not inferior to those using AS-texture as input, but came with a greater prediction uncertainty, b)
relying on the generation of an ensemble without LAI assimilation might produce results as accurate
as simulations where LAI is assimilated, and c) sub-field heterogeneity was not reproduced well in
any of the fields, predominantly because of an inaccurate simulation of water stress in the model.
We conclude that research should be devoted to the testing of different approaches to simulate soil
moisture dynamics and to the testing in other sites, potentially using LAI products derived from
other remotely sensed imagery.

Keywords: data assimilation; leaf area index; crop modeling; SoilGrids; weighted mean; ensemble
Kalman filter; Sentinel-2

1. Introduction

A successful use of dynamic crop models at sub-field level could provide valuable information
to precision farming applications, such as detailed yield forecasts, timing of pesticide application
and estimation of potential for variable rate application of fertilizers in the field. Modern earth
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observation satellite systems with high spatial and temporal resolution in the optical domain allow
for the retrieval and monitoring of biophysical crop canopy variables [1]. The assimilation of this
information into dynamic crop simulation models could help to account for the sub-field heterogeneity
of crop growth [2] and advance the potential usage of those for precision agriculture applications.
The idea of data assimilation for dynamic crop models is to incorporate one or several observations of
model state variables during the period of crop growth. Based on these measurements, the model can
be modified and used to make predictions about the future states of the crop [3]. A range of different
observations (either field-measured or derived from remote sensing) have been assimilated into crop
models, e.g. phenology [4], soil water content [5–8], canopy cover [9], and most-prominently used, leaf
area index [2,7,8,10–15]. Defined as the total one-sided area of leaf tissue per unit ground surface area,
it is one of the key parameters in crop growth analysis because of its influence on light interception,
biomass production, plant growth, and ultimately on crop yield, and it is critical to understanding the
function of many crop management practices [16].

A variety of methods have been implemented (see review papers [17–19] for an overview) to
assimilate remotely sensed information into crop models. The updating method comprises the
continuous updating of model state variables every time a new observation becomes available (i.e.,
sequential data assimilation). Here, the assumption is that a corrected state variable at time t will
subsequently improve the succeeding simulation [17]. A number of algorithms have been tested to
update crop model state variables sequentially, such as the particle filter [8,20], the proper orthogonal
decomposition-based ensemble four-dimensional variational strategy (POD4DVar) [12,21], and the
Ensemble Kalman filter (EnKF) [5–7,10,11,14,15,22–24]. EnKF, among others, uses a Monte Carlo
approach to propagate model responses (state variables) forward in time based on a finite number of
model replicates (ensemble) and the incorporated available observations [25].

The majority of published studies that focus on the assimilation of LAI observations into dynamic
crop models rely on ensemble generation variables that provide input into the crop component of the
model (e.g., temperature sum for different phenological phases, radiation use efficiency or partition
coefficients—see e.g. [9–11] for examples). The performance of those algorithms that rely on a Monte
Carlo setup highly depends on the composition of the set of variables that are perturbed to generate
the model ensemble, with a combination of soil and crop component-based variables (i.e. soil water
content at simulation start, maximal rooting depth, and specific leaf area) possibly being a better
choice [26]. However, this presumes that spatially explicit details on soil properties necessary as model
input are available [26].

A universal approach with the ability to run a crop model for different locations across different
scales cannot rely on this given abundance of observed soil data. With SoilGrids (www.soilgrids.org),
the International Soil Reference and Information Centre (ISRIC, Wageningen, Netherlands) offers a
system that provides global predictions at 250 m resolution for standard soil properties (organic carbon,
bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at
seven standard depths (0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm, and 200 cm). About 150,000 soil
profiles worldwide and 158 remote sensing-based soil covariates served as base for the predictions [27].
The SoilGrids information is publicly available under the Open Data Base license and is accessible at
www.soilgrids.org (accessed 7 November 2019). With the given resolution, these data are, however,
not expected to provide detailed information on spatially variable soil characteristics that ultimately
cause sub-field heterogeneity of crop growth and yield [28], but may provide generalized information
about spatial patterns at larger scales [27].

Numerous papers have recently shown the suitability of the European Space Agency’s (ESA)
Sentinel-2 (S2) mission, with its freely available multispectral imagery, to retrieve crop biophysical
variables at high spatial resolution including LAI [29–31], and to map sub-field variability of crop
growth and status as a base for precision farming applications [32–34].

The biophysical processor integrated in the Sentinel Application Platform (SNAP) Sentinel-2
Toolbox allows for the automated per-pixel retrieval of LAI, among other biophysical variables,
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using relevant S2 top of canopy reflectance data only, without any ancillary information needed (e.g.,
land cover or crop type) [35]. The algorithm’s estimations are therefore expected to be reasonably
well over all vegetation types, but worse than an algorithm developed for a specific surface type [35].
A number of publications report on the validation results of the Simplified Level 2 Product Prototype
Processor (i.e., a preceding version of the Biophysical Processor that produces similar results, developed
in the frame of different ESA project [35]) and found good performances in LAI estimation (RMSE
0.80-0.98) for a range of crops [36,37]. Recent studies investigated the accuracy of biophysical processor
LAI estimations in winter wheat [31,38] and durum wheat [38] and found varying results (winter
wheat: RMSE 1.16–1.53, durum wheat: RMSE 0.74). The authors of study [31], however, concluded
that the tool is applicable for versatile and rapid winter wheat parameter retrieval in areas where
ground data are not available.

The general idea of this study was to test if a crop simulation model delivers meaningful biomass
yield predictions for any given field cropped with winter wheat in any given location, where (1)
SoilGrids delivers input information about soil texture composition in different soil depth that drive
the simulation of soil-related processes (root development, soil water dynamics), and (2) S2 LAI data
assimilation delivers information about crop status development over time and space.

Therefore, we address the following research questions in this paper:

1. How does the soil texture information drawn from SoilGrids compare to detailed soil texture
derived from laboratory-analyzed soil samples taken on 14 conventionally farmed fields across
France, Germany, and the Netherlands?

2. With regard to the average total biomass of winter wheat at harvest per field: How does the crop
model prediction perform when using either analyzed soil texture (in the following: AS) or texture
extracted from SoilGrids (in the following: SG) as model input in a standard run (i.e., no ensemble
creation, no LAI assimilation), the ensemble mean (i.e., no LAI assimilation), and combined with
the assimilation of S2 LAI information based on either of two different approaches (ensemble
Kalman filter and weighted mean)?

3. Which approach, in combination with AS or SG, reproduces the measured spatial variability of
aboveground biomass at harvest within a field better?

2. Materials and Methods

2.1. Experimental Fields and Data Collection

We collected data from fourteen conventionally farmed fields across Germany, France, and the
Netherlands (seven fields during the growing season 2016/2017, another seven during the growing
season 2017/2018, see Figure A1 in the Appendix A for a map), where winter wheat was grown in the
locally practiced crop rotation. Field sizes varied between 7 hectares and 100 hectares. In 2016/2017,
one distinct commercially available cultivar was planted on at least two different dates (with field 2
being the only exception with one planting date only) in each location. In 2017/2018, two cultivars
were planted per field on the same date (with field 12 being an exception, where seeds from both
cultivars were planted on two dates). Plant protecting agents, growth regulators, and fertilizers were
applied based on best practice guidelines in accordance with local recommendations. We did not apply
any irrigation.

We drew soil samples in 40 to 60 randomly distributed points per field, and analyzed them for
texture composition (divided into the particle sizes sand, silt, clay and gravel according to the German
classification system [39]) as well as total organic carbon content in the laboratory. German fields were
sampled up to a depth of 90 cm in 30 cm intervals, and up to 60 cm on the French and Dutch fields (see
Table 1 for mean values of different soil depths per field). Because of the presence of solid gypsum in
deeper layers, some points in field 5 were sampled to a depth of 30 cm only. The minimum distance
between two sampling points was 15 m.
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Table 1. Per-field mean values for different particle sizes (gravel, sand, silt, clay) and soil depths for
soil samples analyzed in the lab (=AS) and extracted from SoilGrids (=SG) for sampling locations.
All values expressed in mass fraction in %.

Field Gravel AS Gravel SG Sand AS Sand SG Silt AS Silt SG Clay AS Clay SG

1
0–30 0.02 6.96 4.25 26.46 75.95 58.24 19.8 15.31
30–60 0.02 6.96 3.48 26.46 75.4 58.24 21.12 15.31
60–90 0.15 7.67 3.26 25.19 76.01 58.10 20.73 16.71

2
0–30 1.07 4.08 54.46 38.14 29.61 43.28 15.93 18.58
30–60 0.66 4.28 52.06 39.17 27.69 42.61 20.26 18.22
60–90 0.47 5.08 56.64 38.17 25.59 43.14 17.77 18.69

3
0–30 1.52 9.12 37.97 27.22 41.57 54.27 20.46 18.52
30–60 1.32 8.48 34.04 27.25 40.65 54.23 25.31 18.52
60–90 3.34 9 36.18 25.22 39.79 54.78 24.02 20

4
0–30 0.92 8.46 10 27.39 62.93 49.01 27.06 23.6
30–60 1.05 8.46 7.96 27.78 55.91 48.76 36.13 23.46
60–90 1.41 9.94 8.11 26.67 59.06 48.47 32.82 24.86

5
0–30 22.12 12.96 13.64 23.74 38.25 48.64 48.12 27.62
30–60 21.58 13.28 13.55 24.33 38.21 48.26 48.26 27.4

6
0–30 0.23 9.89 4.75 16.94 72.3 62.18 22.96 20.88
30–60 0.05 10.29 2.65 17.71 67.15 61.36 30.2 20.93

7
0–30 0.01 4.52 80.93 80.44 10.26 15.19 8.83 4.37
30–60 0.03 4.45 78.45 80.98 12.7 14.2 8.85 4.82

8
0–30 0.76 7.37 7.06 22.24 69.22 55.96 26.41 21.8
30–60 0.72 7.37 8.79 21.51 70.97 57.06 25.11 21.43
60–90 0.54 8.88 13.56 19.29 75.88 57.9 19.69 22.8

9
0–30 0.03 7.41 6.26 20 65.02 58.48 28.72 21.52
30–60 0.54 8 4.82 20.3 67.7 58.48 27.48 21.23
60–90 1.89 8.89 4.83 18.89 72.82 59.48 22.35 21.64

10
0–30 0.41 5.83 3.64 26.78 80.7 56.1 15.66 17.12
30–60 0 5.83 3.33 26.97 79.53 56.31 17.15 16.72
60–90 0 6.52 2.56 25 79.74 55.72 17.7 19.28

11
0–30 0 6.05 4.63 20 84.32 62.33 11.05 17.67
30–60 0 6.33 3.02 20 85.07 62 11.91 18
60–90 0 6.33 2.48 18 76.82 62.29 20.71 19.71

12
0–30 2.34 6.83 12.16 21.15 42.85 52.11 44.99 26.74
30–60 1.94 7.02 10.93 21.64 48.1 51.89 40.97 26.47
60–90 4.01 7.62 9.1 18.73 52.17 53.74 38.73 27.53

13
0–30 0.2 6.24 2.8 18.34 82.3 63.95 14.91 17.71
30–60 0 6.13 2.06 19 81.82 63.37 16.12 17.63
60–90 0 7.45 1.49 17.55 83.88 64.24 14.64 18.21

14
0–30 0.25 6.19 4.47 17.26 84.2 61.91 11.33 20.84
30–60 0 6.19 2.9 18.56 83.76 61.05 13.33 20.4
60–90 0 7.51 1.98 16.86 81.27 61.74 16.75 21.4

Daily weather data were collected from weather stations (Adcon Telemetry, Klosterneuburg,
Austria) installed adjacent to the fields (rainfall, minimum and maximum air temperature,
solar radiation, and wind speed).

Around maturity, aboveground biomass was sampled at each soil sampling point on an area of
1 m2, split into the component grain, stem, and leaves, oven dried at 105 ◦C until no further weight
loss occurred, and weighed subsequently. Average total aboveground biomass yield per field varied
between 969 g m−2 (Field 5, France) and 1959 g m−2 (Field 3, Germany), the harvest index (i.e., the ratio
of grain yield to total aboveground biomass as a measure of reproductive efficiency) varied between
0.41 (Field 2, Germany) and 0.55 (Fields 1 and 7, Germany and Netherlands). Detailed information on
the fields investigated in this study can be found in Table A1 in the Appendix A.

2.2. SoilGrids Soil Information

The SoilGrids REST (representational state transfer) application programming interface was used
to request the soil properties bulk density (BLDFIE), clay content (CLYPPT), silt content (SLTPPT), sand
content (SNDPPT), content of coarse fragments (>2 mm) (CRFVOL), and soil organic carbon content
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(ORCDRC) of every exact location where soil samples in each field were taken. SG delivered information
for seven standard depths (0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm, and 200 cm). We calculated
the weighted average of the clay and coarse fragments content using numerical integration over the
depths 0–30 cm, 30–60 cm, and 60–100 cm (as suggested by [27]) in order to compare those values to
the measured ones (see Table 1 for results).

2.3. Leaf Area Index Estimations

The Sentinel Application Platform (SNAP) Sentinel-2 Toolbox Biophysical Processor was used
to derive LAI maps for every field (with a pixel resolution of 10 m) based on Sentinel-2 imagery that
was atmospherically corrected using the Sen2Cor algorithm [40], with all bands resampled to 10 m
resolution (using the Nearest method in SNAP). The Biophysical Processor uses the Sentinel-2 top of
canopy reflectance data (coming from the bands 3-8a, 11, and 12) as input into a neural network to
calculate LAI for each pixel. The neural network implemented in the biophysical processor was trained
using PROSAIL model output—see [35] for a detailed description of the workflow implementation.

LAI values were extracted from each pixel of each image where a soil sampling point was located,
using the raster package [41] implemented in R [42], and checked for validity (magnitude of values
plus temporal consistency, data not shown). Figure 1 shows the per field acquisition dates of cloud free
S2 imagery that were used in this study.

Since we wanted to evaluate how suitable our approaches were as biomass yield predictions
tools, we decided to only assimilate LAI observations before the estimated flowering date (i.e., the
simulations ran far beyond the assimilation of the last available observation).

Data availability was better in 2018 than in 2017 (see Figure 1). In 2017, every field was covered
by at least four images within the period March to June, with a maximum of eight images (field 5).
In 2018, every field was covered by at least eleven images within the period March to June, with a
maximum of 15 images (field 11).
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2.4. Crop Model

We employed the generic LINTUL5 model implemented in the modeling framework SIMPLACE
(www.simplace.net, accessed 20 January 2020) to simulate daily leaf area and biomass development in
all fields. LINTUL5 is a crop growth simulation model developed for potential water-limited, N-limited,
and NPK-limited conditions [43], and has been used widely for crop response assessments [44–46].

www.simplace.net
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SIMPLACE (Scientific Impact Assessment and Modelling Platform for Advanced Crop and
Ecosystem Management) is a model framework that allows the solution of a modeling problem to
be modularized into a number of discrete, replaceable, and interchangeable software units (so-called
SimComponents) [47]. The solution used for this study was a combination of the SimComponents
LINTUL5, SlimRoots, SlimWater, and STMPsim.

Crop growth in LINTUL5 is a function of intercepted radiation, temperature, and radiation use
efficiency (RUE). Daily LAI is calculated as the product of the development stage-dependent specific
leaf area (SLA) and the weight of the living green leaves (WLVG).

Soil water balance was simulated using SlimWater, where the daily change in soil water content in
a multiple layered soil profile is based on the volumes of crop water uptake, soil evaporation, surface
run-off, and seepage below the root zone [48]. Root growth was simulated using the SimComponent
SlimRoots, where the daily increase in biomass of seminal and lateral roots depends on the input of
assimilated biomass from the shoot (see [47] for more information). Soil hydraulic properties based
on the measured texture and texture drawn from SoilGrids (see above) were predicted using the
database of hydraulic properties of European soils (HYPRES) [49] pedotransfer functions (PTF) for
each soil profile. The functions are based on soil hydraulic data provided by a range of institutions
from 12 European countries and are applicable to studies at European scale [49]. Research suggests
that the accuracy and reliability of pedotransfer functions may be appropriate for applications from
regional to national scale [50].

The layered soil profile consisting of the measured data was extended to 200 cm soil depth,
assuming the same in situ texture present as in the 60–90 cm layer.

We assumed no occurrence of disease stress and optimal nutrient supply at all times, as all
fields were conventionally managed in accordance with local recommendations. Thus, water stress
was the only growth-limiting factor considered in the model. In our SIMPLACE <LINTUL5,SLIM>

solution, water stress was imposed on biomass production if the calculated actual transpiration of
the crop dropped below the calculated potential transpiration because of the insufficient levels of
transpirable soil water in the root layer. Evapotranspiration was estimated based on the Applied
Penman approach [43].

SIMPLACE <LINTUL5, SLIM> ran in daily time steps. Daily phenology data were provided by a
xarvioTM in-house developed, commercial growth stage model that estimated cultivar-specific BBCH
stages of winter wheat based on the accumulated thermal temperature, vernalization, and photoperiod.
The growth stage model was developed for better estimation of fungicide application timing, and has
been validated with roughly 30,000 records in Germany. The BBCH stages were transformed into the
LINTUL-internal development stages (DVS) based on a lookup-table, and linked to all SimComponents
that required DVS information. For all winter wheat-specific variables beyond phenology, we used
the generic values (i.e., no calibration of cultivar specifics). Daily meteorological data needed in the
simulation model was taken from the data provided by the weather stations.

2.5. Data Assimilation

We implemented two approaches to assimilate LAI values into SIMPLACE <LINTUL5, SLIM>: The
ensemble Kalman filter (EnKF) and the weighted mean (WM) approach. EnKF has gained popularity
in the scientific community because of its simple conceptual formulation and ease of implementation,
plus its low computational requirements [51]. It combines an ensemble forecast and the Kalman
filter to calculate the prediction error covariance using the Monte Carlo method [19]. State variables
are updated sequentially, taking the uncertainties of the simulation results and observations into
account [52]. We refer to other publications for detailed information about EnKF [3,51]. The integration
into SIMPLACE<LINTUL5, SLIM> was done in R [42] using the SIMPLACE R wrapper [53], relying
on the EnKF implementation provided by Stefan Gelissen (http://blogs2.datall-analyse.nl/2016/06/08/

rcode_ensemble_kalman_filter/, accessed 9 November 2019). The workflow constituted as follows:
First, the ensemble members were randomly generated based on the chosen initial values and variance.

http://blogs2.datall-analyse.nl/2016/06/08/rcode_ensemble_kalman_filter/
http://blogs2.datall-analyse.nl/2016/06/08/rcode_ensemble_kalman_filter/
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Second, model runs using the sets of variables as input were invoked. Simulations run until the first S2
LAI observation became available. This interrupted each model run, EnKF updated the LAI value
accordingly, and the runs were re-invoked until the next observation became available.

The WM approach relies on a model ensemble that runs from simulation start to simulation end
without compromising the consistency and integrity of the state variables in the ensemble runs. It is
based on the attribution of weights to the model ensemble members depending on their proximity
between simulation and observation at the first date of LAI observation. These weights are then
updated at the subsequent observation dates and used in the calculation of the ensemble mean at each
model time step. The efficiency is comparable to those of updating methods. Methodology and test
results are documented in detail in our publication (currently under review) [54].

Both approaches (EnKF and WM) relied on the generation of a model ensemble. We chose a set
consisting of soil and crop components (SCC) that comprised the combination of three variables that
scaled (1) the soil water content at simulation start (SoilWaterInit), (2) the maximal rooting depth that
could be reached by the plants (MaximalRootDepth), and (3) a scaling factor for the DVS-dependent
specific leaf area (ScaleFactorSLA). By perturbing the first two variables at initialization, the model
induced water stress (by modification of the transpiration reduction factor TRANRF) at varying points
in time during the growing season, thereby expanding the range of LAI values at any given point
in time in the ensemble. We did not alter both parameters after initialization for reasons of model
consistency. ScaleFactorSLA scaled all predefined DVS-dependent SLA values uniformly and showed
high impact on LAI dynamics and biomass accumulation in the model, and was included as to cover
influences of possible hidden factors (such as nutrient stress).

The initial soil water content SoilWaterInit in soil layer k was calculated as

SoilWaterInitk = ScalingFactor ∗VolumetricWaterContent33to1500k + VolumetricWaterContent1500k, (1)

where VolumetricWaterContent33to1500 describes the volumetric soil water content between field
capacity and wilting point (i.e., plant available water), and VolumetricWaterContent1500 the volumetric
soil water content at permanent wilting point. Both values were returned by the pedotransfer function
(see above), based on the measured soil texture.

We chose a uniform parameter distribution for the WM approach, with defined minimum
and maximum values (SoilWaterInit 0.3-1, MaximalRootDepth 0.5-2, ScalingFactorSLA 0.75-1.25).
EnKF creates a model ensemble using a randomly generated Gaussian distribution of the variables
(mean values for the distribution: SoilWaterInit 0.65, MaximalRootDepth 1.25, ScalingFactorSLA 1.25).

To achieve a maximum effect of the varying initial soil conditions on crop development, simulation
start was set to the day preceding sowing. The LAI error was assumed 0.3.

2.6. Model Run and Evaluation

We decided to compare the two SG and AS derived soil texture fractions “clay” and “gravel,”
as differences generally impact the soil moisture dynamics in the simulated soil profile. We calculated
the Pearson correlation coefficient (r), the root mean squared error (RMSE), and the bias for each field
and soil fraction, comparing each soil layer (0–30 cm, 30–60 cm, and 60–90 (-100 for SG) cm) accordingly.
Additionally, we also included the absolute average available water content (AWC, 0–90 cm) calculated
by the HYPRES pedotransfer function.

The assessment of the crop model biomass predictions with regard to AS, SG, and the combination
of the two different assimilation approaches was based on the comparison of measured and simulated
total aboveground biomass at harvest day. For this, SIMPLACE<LINTUL5, SLIM> ran in daily time
steps for every sampling point in every field that was part of this study, once using AS and once using
SG as input. All available Sentinel-2 LAI estimations for every sampling point were assimilated into
the model using the approaches EnKF and WM in combination with the SCC ensemble generation set.
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Other studies have shown that crop growth simulation model predictions improve if LAI, observed
over several growth stages, is assimilated [12,14].

To evaluate the potential benefit of data assimilation, we also included the ensemble mean (EM,
i.e., no data assimilation, run with measured and SoilGrids extracted soil texture data using the same
ensemble generation method as the WM approach) and the model’s standard runs (SR) (i.e., no data
assimilation, no ensemble creation, run with single point input from AS and SG using the standard
configuration) in the analysis. A workflow for all setups is provided in Figure 2.
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We calculated the three metric RMSE, mean absolute percentage error (MAPE), and the bias.
RMSE indicated the magnitude of error in the unit of measurement with symmetry provided; MAPE
showed the average absolute percent difference between measured and predicted values, the bias
computed the amount by which the measured values were greater or smaller than the predicted ones.
We assumed that the crop model simulated spatial heterogeneity of biomass yield well if the value of
each metric was close to zero.

3. Results

3.1. Comparison of Measured Soil Texture Data and Texture Data from SoilGrids

The results of the comparison of measured soil texture data and SoilGrids texture data per field
are presented in Table 2. A strong positive agreement (r > 0.8) could only be seen for the clay content
in field 11, while other fields showed weak to no agreement at all (r~0) (e.g., fields 1, 5, 12), and some
even showed negative agreements (r < 0, e.g., field 8). RMSE values ranged between 4.01% (field 13)
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and 17.61% (field 5) mass fraction for clay content, and between 4.3% (field 7) and 12.05% (field 3)
mass fraction for gravel content. For the most part, SoilGrids data underestimated the clay content
and overestimated the gravel content in the field (positive bias values indicate overestimation by the
SoilGrids data). Altogether, it was obvious that the SoilGrids data did not predict the measured soil
texture well in any of the fields.

The analysis of the PTF-derived plant-available water content (AWC, i.e., volumetric soil water
content at field capacity to wilting point pF2.5) showed no strong relationship in any of the fields; some
fields show moderately strong relationships (e.g., fields 3, 11, 12), others no relationship (fields 7, 14),
some more even negative relationships (fields 1, 2, 9). The average calculated AWC is lower in the SG
data than in the AS data in most fields (except fields 2, 7, and 12).

Table 2. Per-field results of comparison of measured soil texture data and texture data extracted from
SoilGrids as well as plant-available water content derived from the HYPRES pedotransfer functions.
R: Pearson correlation coefficient, RMSE: root mean squared error, AS: analyzed soil texture, SG:
SoilGrids-extracted soil texture, AWC: available water content. RMSE and bias in mass fraction in %.
All values show mean values per field. Positive bias values indicate overestimation by SoilGrids.

Clay Content Gravel Content Plant-Available Water Content

Field R RMSE Bias R RMSE Bias R RMSE Bias AWC AS (%) AWC SG (%)

1 −0.05 5.14 −2.27 −0.01 9.58 9.39 −0.21 0.03 −0.03 0.17 0.14
2 0.49 5.27 0.81 −0.22 5.16 4.95 −0.22 0.01 −0.01 0.124 0.133
3 0.45 5.67 −2.59 0.16 12.05 10.42 0.53 0.01 0 0.133 0.13
4 0.24 11.65 −5.93 −0.02 10.70 10.37 −0.12 0.02 −0.01 0.135 0.122
5 0.00 17.61 −16.25 −0.05 8.91 −7.28 0.22 0.05 0.05 0.184 0.112
6 0.67 6.17 −4.87 0.05 9.94 9.92 0.27 0.02 −0.02 0.15 0.134
7 −0.17 5.13 −4.07 0.03 4.30 4.28 0.09 0.04 0.04 0.106 0.145
8 −0.60 4.75 0.67 −0.21 10.26 10.04 0.34 0.03 −0.03 0.157 0.13
9 −0.53 6.08 −2.38 0.55 10.13 9.99 −0.11 0.02 −0.02 0.152 0.133

10 0.31 4.44 3.77 −0.53 8.39 8.18 0.27 0.04 −0.04 0.177 0.138
11 0.84 7.40 6.66 NA 9.83 9.52 0.52 0.04 −0.04 0.184 0.142
12 −0.04 14.16 −13.20 0.27 7.09 6.64 0.71 0.02 0.02 0.107 0.123
13 0.33 4.01 3.80 −0.63 8.38 8.27 0.60 0.04 −0.04 0.183 0.142
14 0.59 8.14 7.89 −0.53 7.95 7.89 −0.01 0.05 −0.05 0.186 0.135

3.2. Comparison of Simulated vs. Measured Aboveground Biomass

Figure 3 shows the mean RMSE and standard deviation of total aboveground biomass across all
fields for the tested approaches. The highest RMSE was produced by SR AS (532.39 g m−2) with a
standard deviation of 158.12 g m−2, the lowest by EM SG (246.63 g m−2) with a standard deviation of
123.84 g m−2. However, it is noticeable that all approaches but the standard runs show, on average,
similar performances with a mean value of about 250 g m−2.

The lowest MAPE, averaged across all fields, was produced by EnKF AS (0.14 with a standard
deviation of 0.06) and WM AS (0.14 with a standard deviation of 0.07), the highest by SR AS (0.35 with
a standard deviation of 0.14) and SR SG (0.25 with a standard deviation of 0.23). The SoilGrids-based
approaches showed higher standard deviations than the analyzed soil texture-based approaches,
with similar mean values, however (Figure 4).
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Figure 4. Mean and standard deviation of total aboveground biomass mean absolute percentage
error (MAPE in decimal-%) for tested approaches. SR: standard run, EnKF: ensemble Kalman filter,
EM: ensemble mean, WM: weighted mean, AS: analyzed soil texture used as model input, SG:
SoilGrids-derived soil texture as model input.

On average across all fields, the greatest bias was produced by SR AS (484.52 g m−2 with a
standard deviation of 168.51 g m−2), the lowest by EM SG (15.37 g m−2 with a standard deviation
of 229.77 g m−2) and EnKF SG (−32.66 g m−2 with a standard deviation of 269.24 g m−2) (Figure 5).
Those approaches using SG as model input tended to produce a lower bias with a higher standard
deviation in comparison with those approaches using measured soil texture as model input (which
produced higher bias values with lower standard deviations).
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Figure 5. Average bias and standard deviation of total aboveground biomass for tested approaches. SR:
standard run, EM: ensemble mean, EnKF: ensemble Kalman filter, WM: weighted mean, AS: analyzed
soil texture used as model input, SG: SoilGrids-derived texture as model input. All values in g m−2.

3.3. Assessment of Reproduction of Sub-Field Variability

Our assessment of the sub-field reproduction of our approaches is based on the analysis of the
metrics RMSE, MAPE, and bias, assuming that values closer to 0 show a greater agreement with
field-measured biomass at harvest day. We decided to exclude the approaches SR AS and SR SG from
further analysis because of their inferior average performances (see previous section). Figures 6–8
show the per-field results of RMSE, MAPE, and bias for EM (a), EnKF (b), and WM (c) approaches,
either using analyzed soil or SoilGrids-derived texture as model input.
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Figure 6. RMSE calculated from measured vs. predicted biomass in all sampling points per field, for
analyzed soil texture (AS) as model input and SoilGrids-extracted (SG) soil texture as model input.
(a) Results for ensemble mean (EM); (b) results for ensemble Kalman filter (EnKF); (c) results for
weighted mean (WM). All values in g m−2.
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Figure 7. Mean absolute percentage error (MAPE, in decimal-%) calculated from measured vs.
predicted biomass in all sampling points per field, for analyzed soil texture (AS) as model input and
SoilGrids-extracted (SG) soil texture as model input. (a) Results for ensemble mean (EM); (b) results for
ensemble Kalman filter (EnKF); (c) results for weighted mean (WM).

It is obvious in all three figures that performances of both AS and SG were highly variable between
fields and between approaches (EM, EnKF, and WM), as well as per field. No single approach stood
out, and neither AS or SG showed a systematically better performance across all fields.
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analyzed soil texture (AS) as model input and SoilGrids-extracted (SG) soil texture as model input.
(a) Results for ensemble mean (EM); (b) results for ensemble Kalman filter (EnKF); (c) results for
weighted mean (WM). All values in g m−2. Positive values indicate overestimation of measured
biomass by the model.

4. Discussion

4.1. Results of the SoilGrids vs. Measured Soil Texture Comparison

With regard to research question 1, the analysis of the SoilGrids vs. analyzed soil texture showed
that (1) SG did not predict the field-measured soil texture well (clay content was largely underestimated
and gravel content was largely overestimated) across the soil profiles down to 90 cm soil depth, and (2)
the plant-available soil water volumetric content derived from the PTFs was substantially lower for
SG in most of the fields than for AS. A number of studies have been reported on the limitations of
the SoilGrids system [55–57], and the authors themselves advise on their homepage to, if national
or local scales are targeted, compare the predictions with soil maps derived from national and local
soil databases, since they are usually based on more detailed input soil information and therefore
exhibit greater accuracy (www.soilgrids.org, accessed 19 November 2019). Combining local and global
predictions could be a promising possibility, as well as the creation of SoilGrids at higher spatial
resolution based on state-of-the-art remote sensing products that are relevant for soil mapping [27].
Currently, SoilGrids show the highest accuracy and resolution among the soil datasets covering the
world [58], and was therefore our information source of choice.

www.soilgrids.org
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4.2. Results of the Crop Modeling Excersises

The SoilGrids system generally provides worldwide soil property predictions at 250 m
resolution [27]. Soil information for each field was therefore provided by few grid cells only, and thus
identical estimated soil texture information was assigned to all sampling points located inside one
corresponding grid cell. Spatial heterogeneity in the biomass predictions of the SG-based assimilation
approaches could therefore only be induced by a) the differences in soil texture information if the field
stretched over more than one grid cell (for SR), and/or b) the assimilation of S2-derived LAI information
(for EM, EnKF, and WM) that was extracted from 10 m resolution pixels, because all other input
variables were identical in the model for each point in the field (weather data, crop specific variables).
Contrary to this, spatial heterogeneity in the biomass predictions of the AS-based approaches was a
mixed effect of individual soil properties (for SR and EM) and assimilated S2-derived LAI (for EnKF
and WM).

Given these limitations, our expectations with regards to the research questions 2 and 3 therefore
were that 1) the performance of the crop model biomass predictions with SG-based approaches will be
worse because of inaccurate soil texture information, leading to inaccurate modeling of soil moisture
and root growth dynamics that ultimately affect the biomass production; 2) those approaches that
rely on the assimilation of S2-derived LAI into the crop model will perform better in predicting
biomass yield than those approaches without assimilation, because potential model inaccuracies will
be corrected for; and 3) spatial heterogeneity of biomass yield in the SG-based approaches will not
be as accurately reproduced as in the AS-based approaches because processes that influence biomass
production after flowering are not accurately accounted for because of inaccurate soil information.

The analysis of the results showed that:

1. Mean values of the calculated metrics (RMSE, MAPE, Bias) across all fields did not substantially
differ between ensemble-based SG and AS approaches (i.e., EM, EnKF, WM), but standard
deviations were greater for SG-based approaches. The model’s standard runs (SR, i.e., no
assimilation, no ensemble generation), performed worse, and biomass yield was largely
overestimated as indicated by the positive bias.These findings show that the average biomass
prediction performance based on SG soil information was not inferior to AS soil information
prediction performance, but came with a greater prediction uncertainty.

2. The simulated sub-field heterogeneity of biomass at harvest did not accurately match the measured
one in any of the sites, as no approach showed a congruent performance for any of the metrics.
AS-based approaches did not outperform SG-based approaches concerning the reproduction of
heterogeneity. The performance of the assimilation approaches were largely site-specific, as we
saw the approaches performing differently in the different sites, with no clear approach standing
out. To our surprise, EM did not perform substantially worse.

Water stress was the only stress (i.e., biomass growth inhibiting) factor that we considered in our
SIMPLACE <LINTUL5,SLIM> model solution. Differences between AS and SG approaches with the
same setup could therefore only be caused by differences in soil water dynamics and/or root growth
simulations that cause diverging levels of water stress. The SLIM components of the model failed to
simulate soil-related processes adequately, as the setups without data assimilation using field-measured
soil texture (SR AS and EM AS) overestimated, on average, biomass yield to a larger extent than the SR
SG and EM AS using SoilGrids-derived soil texture (as indicated by the bias). The assimilation of LAI
information, however, alleviated this effect (as the mean bias of EnKF AS and EnKF SG as well as WM
AS and WM SG are similar).

The methods of simulating soil water dynamics vary between crop simulation models,
with different approaches for soil water movement (e.g., tipping bucket or Richard’s approach),
different degrees of resolution (e.g., number of soil layers) and weather variables (e.g., approaches for
the calculation of evapotranspiration) [59]. While there is probably no single approach that works best
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in all cases, we encourage a comparative study to investigate the effects of different soil water dynamic
simulation approaches on the results of our methodology.

4.3. Limitations of Input Data

The pedotransfer functions developed from the HYPRS database allow for the assignment of
hydraulic properties to soils in Europe that show similar textural compositions. Thus, those functions
should not be used to derive hydraulic properties outside Europe, as the lack of data suggests a risky
extrapolation [49]. This means that, currently, our model solution is limited to an application in Europe
only. Scientists in other parts of the world are therefore encouraged to rely only on predictions made
for soils that were inside the range of soils used to derive the pedotransfer functions.

The aboveground biomass measurements at harvest comprised one measurement per sampling
point only (i.e., no repetitive measurements). The values could therefore be prone to measurement
errors. This uncertainty should be considered when interpreting the results based on simulated vs.
observed results. Furthermore, differences in phenology were the only cultivar-specific properties we
considered in this study. The model was not calibrated for other variables (e.g., SLA, RUE) that could
have influenced the results positively.

4.4. Sentinel-2 LAI Estimations

In this study, LAI estimations were obtained directly through the SNAP Sentinel-2 Toolbox
Biophysical Processor. The algorithm is based on a set of strong assumptions associated with the
underlying PROSAIL radiative transfer model (regarding leaf optical properties, canopy structure and
background reflectance, see [35]). Violations of those assumptions may generally lead to differences
with ground truth measurements, but could be corrected for with a custom correction accounting for
the specificities of the given type of canopy [35]. Given this, we decided to forgo a validation exercise.

We are currently not aware of any other tool that provides automated LAI estimates at Sentinel-2
or greater spatial resolution (i.e., at resolutions that are of interest for precision farming applications).
Arguably, this approach offers great opportunities for crop modelers, as LAI estimations can be
derived without much effort. We encourage the implementation for other multispectral satellites (e.g.,
Landsat-8, PlanetScope).

Contrary to other studies, we cannot confirm that assimilating S2-derived LAI into a crop model
improves the general prediction accuracy. Our results suggested that relying on an EM approach
might lead to satisfactory results, comparable to those that were produced with the help of LAI
assimilation. Furthermore, despite its shown inaccuracy at small scale, SoilGrids data proved not to
provide information that lead to totally diverging results from those that used analyzed soil information
as model input. However, the reader should keep in mind that, among all sites, none of the approaches
showed an outstanding performance. This means that, if one approach works fine for one site, it might
not perform well for another site.

Ref [13] assimilated Sentinel-2 derived LAI into the EPIC (Environmental Policy Integrated
Climate) model to estimate winter wheat grain yield on Austrian experimental fields under four
fertilization management strategies over the course of two growing seasons, using field-measured soil
characteristics as model input. They found that assimilation via recalibration of parameters defining
the LAI curve improved the model’s performance notably during the first year (RMSE 317 kg ha−1,
RRMSE 6% compared to RMSE 572 kg ha−1, RRMSE 11% without assimilation), but only slightly
during the second year (RMSE 1961 kg ha−1, RRMSE 55% compared to RMSE 2019 kg ha−1, no RRMSE
reported), with a strong underestimation of the observed yield. They attribute this underestimation
to (a) rainfall possibly not representative of the site as weather data from a station 30 km away
was used, (b) non-representative model default parameters for the specific year, and (c) erroneously
modelled water stress conditions. [7] assimilated Sentinel-2-derived LAI into the WOFOST (World
Food Studies) model for winter wheat grain yield prediction at field scale in the North China Plain, with
soil information extracted from the 1:1,000,000 China Soil Database used as model input. The authors
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found that the assimilation, relying on EnKF, decreased the RMSE by 69 kg ha−1 to 404 kg ha−1 (MRE
4.32%). They furthermore found that the joint assimilation of LAI and soil moisture estimations showed
superior performance in estimating crop yield, but concluded that soil moisture assimilation may not
be necessary under very wet conditions [7]. [2] used LAI data derived from Landsat-8, Landsat-7,
and Sentinel-2A images to correct the WARM rice model via automatic recalibration of crop parameters
at sub-field resolution for 40 paddy fields in northern Italy. They found that assimilating LAI increased
the overall accuracy (MAE 0.66 t ha−1, RRMSE 13.8%), and that sub-field yield variability, in most
cases, was well reproduced. Occurring inconsistencies were attributed to possibly erroneous LAI data
or factors that were not considered by the model, such as effects of previous cover crop or extreme
weather events [2].

5. Conclusions

The objectives of this study were to: (1) Compare detailed soil texture measurements from 14 fields
across France, Germany, and the Netherlands to soil texture information drawn from SoilGrids for the
exact same locations; (2) investigate the performance of the crop model solution SIMPLACE<LINTUL5,
SLIM> in those locations when using either analyzed or SoilGrids texture as model input in a range
of setups in- and excluding the assimilation of Sentinel-2 estimated LAI with regard to average total
biomass of winter wheat at harvest; and (3) investigate which approach, in combination with the
provided soil texture information, reproduced spatial variability of aboveground biomass at harvest
within the fields better.

Despite the inaccurate soil texture information provided by SoilGrids for the locations of the
sampling points in the fourteen fields (clay content was largely underestimated, and gravel content
was largely overestimated), the mean results of the performance of the SG-based model runs did not
differ substantially from the AS-based model runs, for all ensemble-based approaches. We therefore
reasoned not to advise against using this source of soil information as crop model input; the user
should, however, be aware of greater uncertainty in the prediction (we found a higher standard error
with similar mean values for the SG-based approaches). We furthermore concluded that, contrary
to other studies, the assimilation of S2-derived LAI (using EnKF and WM) into the crop model did
not improve the general prediction accuracy (average over all field), as the results of the EM runs
(i.e., without assimilation) were similar. Sub-field variability of aboveground biomass at harvest was
not reproduced accurately in any of the fields, because of inaccurate simulation of water stress that
influences biomass accumulation dynamic in the crop model.

Based on the findings and discussed limitations of this study, we encourage future researchers to (1)
evaluate the performance of other crop models that rely on different approaches to simulate soil moisture
dynamics (e.g., Richards approach) and evapotranspiration (Penman–Monteith, Priestley–Taylor, Turc,
. . . ) when using either measured or SoilGrids-estimated soil texture as input in combination with
assimilated LAI to see if water stress is simulated more accurately; (2) test our approaches in other
cropping sites around the globe and/or for other crops to investigate if our findings can be confirmed
in different environmental conditions and a variable availability of cloud free satellite imagery; (3) use
different sets of remote sensing data to see the effect of variable spatial resolutions; and (4) include
further stresses that might alter biomass production (e.g., nutrient stress, heat stress).
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Appendix A

Table A1. List of study fields and their respective locations. BMY: average total aboveground
biomass yield (g m-2), GY: average grain yield (g m-2), HI: harvest index, DE: Germany, FR: France,
NL: Netherlands.

Country Growing
Season Field Location Cultivar

Grown Planting Date BMY GY HI

DE 2016/2017 1 Central Saxony Benchmark
2016-10-19

1645 912 0.552016-11-30

DE 2016/2017 2 Southern
Northrine-Westphalia Jonny 2016-10-25 1455 597 0.41

DE 2016/2017 3 Northern Hesse Julius 2016-10-04
1959 1023 0.522016-10-28

DE 2016/2017 4 Northern Bavaria RGT Reform
2016-10-05

1737 905 0.542016-10-19

FR 2016/2017 5 Northwestern
Charente

Bologna 2016-10-29
969 434 0.442016-11-15

FR 2016/2017 6 Northern Oise Lyrik 2016-10-03
1579 868 0.542016-10-18

NL 2016/2017 7 Eastern Drenthe RGT Reform
2016-10-19

1573 876 0.552016-11-03
2016-11-14

DE 2017/2018 8
Northern Bavaria

RGT Reform
2017-11-03 1451 773 0.53JB Asano

DE 2017/2018 9
RGT Reform

2017-11-16 1640 809 0.49JB Asano

DE 2017/2018 10
Central Saxony

RGT Reform
2017-09-21 1889 1008 0.53JB Asano

DE 2017/2018 11
RGT Reform

2017-10-16 1882 954 0.50JB Asano

DE 2017/2018 12 Central Thuringia JB Asano 2017-09-19,
2017-10-19

1242 527 0.42RGT Reform

DE 2017/2018 13 Central Lower
Saxony

RGT Reform
2017-11-03 1451 808 0.55JB Asano

DE 2017/2018 14
RGT Reform

2017-10-17 1795 889 0.49JB Asano
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Rumbaur, C.; Takáč, J.; et al. Simulation of winter wheat yield and its variability in different climates of
Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0016-7061(98)00132-3
http://dx.doi.org/10.1016/S0022-1694(01)00464-4
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1016/j.agrformet.2019.01.023
https://r-forge.r-project.org/projects/simplace/
http://dx.doi.org/10.1016/j.apsoil.2015.06.018
http://dx.doi.org/10.1016/j.geoderma.2015.08.035
http://dx.doi.org/10.1002/2017GB005678
http://dx.doi.org/10.5194/soil-5-137-2019
http://dx.doi.org/10.1016/j.eja.2011.05.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Fields and Data Collection 
	SoilGrids Soil Information 
	Leaf Area Index Estimations 
	Crop Model 
	Data Assimilation 
	Model Run and Evaluation 

	Results 
	Comparison of Measured Soil Texture Data and Texture Data from SoilGrids 
	Comparison of Simulated vs. Measured Aboveground Biomass 
	Assessment of Reproduction of Sub-Field Variability 

	Discussion 
	Results of the SoilGrids vs. Measured Soil Texture Comparison 
	Results of the Crop Modeling Excersises 
	Limitations of Input Data 
	Sentinel-2 LAI Estimations 

	Conclusions 
	
	References

