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Abstract: This study proposes a hybrid intelligence approach based on an extreme gradient boosting
regression and genetic algorithm, namely, the XGBR-GA model, incorporating Sentinel-2, Sentinel-1,
and ALOS-2 PALSAR-2 data to estimate the mangrove above-ground biomass (AGB), including small
and shrub mangrove patches in the Red River Delta biosphere reserve across the northern coast of
Vietnam. We used the novel extreme gradient boosting decision tree (XGBR) technique together with
genetic algorithm (GA) optimization for feature selection to construct and verify a mangrove AGB
model using data from a field survey of 105 sampling plots conducted in November and December of
2018 and incorporated the dual polarimetric (HH and HV) data of the ALOS-2 PALSAR-2 L-band and
the Sentinel-2 multispectral data combined with Sentinel-1 (C-band VV and VH) data. We employed
the root-mean-square error (RMSE) and coefficient of determination (R2) to evaluate the performance
of the proposed model. The capability of the XGBR-GA model was assessed via a comparison
with other machine-learning (ML) techniques, i.e., the CatBoost regression (CBR), gradient boosted
regression tree (GBRT), support vector regression (SVR), and random forest regression (RFR) models.
The XGBR-GA model yielded a promising result (R2 = 0.683, RMSE = 25.08 Mg·ha−1) and outperformed
the four other ML models. The XGBR-GA model retrieved a mangrove AGB ranging from 17 Mg·ha−1

to 142 Mg·ha−1 (with an average of 72.47 Mg·ha−1). Therefore, multisource optical and synthetic
aperture radar (SAR) combined with the XGBR-GA model can be used to estimate the mangrove
AGB in North Vietnam. The effectiveness of the proposed method needs to be further tested and
compared to other mangrove ecosystems in the tropics.
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1. Introduction

Intertidal mangrove forests are acknowledged as currently being one of the most important
ecosystems worldwide due to the crucial services they provide to coastal populations, including food,
fishery support, and blue carbon sequestration [1,2]. However, these forests are being lost worldwide
due to anthropogenic threats, including overexploitation and conversion to aquaculture and agriculture,
particularly in Southeast Asia and West Africa, despite multiple efforts at rehabilitation following
international conservation strategies [3,4].

Mapping the spatial distribution and estimating the above-ground biomass (AGB) of mangrove
forests and their carbon stock changes are often required to better understand and mitigate the driving
factors and global loss of mangroves [5]. An accurate mangrove AGB retrieval is often required
to assist in monitoring, reporting, and verification (MRV) schemes in climate change mitigation
strategies such as blue carbon projects and the United Nations’ Reducing Emissions from Deforestation
and Forest Degradation (REDD+) program in the tropics [6]. However, accurately mapping and
estimating mangrove AGB remain challenging due to the complex structure of mangrove ecosystems,
which consist of multiple species under different climate conditions in tropical and semi-tropical
regions [7,8]. Field-based measured AGB or forest inventory approaches can accurately measure
mangrove AGB. However, these methods include various disadvantages associated with the high
cost of field measurements, the time-consuming nature of such methods, and site selection biases [9].
Therefore, the development of timely, precise, and cost-effective models to monitor mangrove AGB is
needed to support mangrove restoration, conservation, and sustainable management.

In recent years, remote sensing-based approaches have been widely used to retrieve mangrove
AGB and map carbon stocks using various sensors ranging from optical and synthetic aperture radar
(SAR) to light detection and ranging (LiDAR) data [10–12] because such sensors provide a large
number of benefits compared to traditional field-based methods such as lower cost, faster speed, easier
repeatability, and the coverage of wider areas [13,14]. However, to date, there have been no attempts
to investigate an integration of optical and SAR sensors, such as L-band, X-band, and C-band data,
to retrieve the mangrove AGB using novel machine-learning (ML) techniques in tropical regions.
Importantly, a current literature review indicates that mangrove AGB estimations have primarily
been conducted for tall and dense mangrove forests (tree height > 2 m and diameter at breast high
(DBH) > 5 cm) and have rarely been applied to shrub and small mangrove patches, resulting in
deficiencies in total mangrove AGB estimations despite these forests being essential to coastal areas
with respect to defending the coast against tidal waves and mitigating the effects of storm surges [15].
Accordingly, this study attempts to fill this knowledge gap by retrieving the mangrove AGB in the Red
River mangrove biosphere reserve located in North Vietnam using an incorporation of Sentinel-1 and
Sentinel-2 sensors fused with ALOS-2 PALSAR-2 data and ML models. We selected a combination
of Sentinel-1 and Sentinel-2 multispectral instrument (MSI) data together with ALOS-2 PALSAR-2
because the Sentinel-1 C-band sensor may be useful to estimate small mangrove patches while the
Sentinel-2 sensor has 13 spectral bands, which can be used to indicate the forest stand volume, and the
longer L-band wavelength of the ALOS-2 PALSAR-2 sensor is able to penetrate tall mangrove canopies.

Prior studies indicate that empirical models applied to mangrove AGB estimations using remote
sensing data are usually constructed using various regression techniques ranging from simple
linear regression [16,17] and step-wise multi-linear regression models [18,19] to non-linear ML
approaches [20–22]. A wide range of ML techniques has been proven to be useful for AGB retrievals
of mangrove ecosystems using different Earth Observation (EO) data [23–25]. Non-parametric ML
models, such as the random forest (RF) model [22,26], artificial neural network (ANN) models [21],
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and support vector machine (SVM) techniques [27], have increasingly been used for mangrove AGB
retrievals with different EO datasets due to their ability to produce better prediction accuracies
than parametric models. Recently, gradient boosting decision tree (GBDT) techniques have been
shown to be powerful not only for classification but also for regression tasks, such as soil moisture
estimation [28] and forest AGB estimation [29,30]. In particular, a novel GBDT technique, extreme
gradient boosting regression (XGBR), which was proposed by Chen and Guestrin [31], outperforms
other available boosting implementations when handling various environmental issues such as the
mobility of disease [32], energy supply security [33], and lithology classification [34]. Despite its strong
predictive performance and reliable identification of relevant features, however, the XGBR algorithm
has rarely been used to retrieve mangrove AGB. Importantly, a quantitative comparison of available
boosting and bagging decision tree techniques for the AGB retrieval of mangrove ecosystems in the
biosphere reserves of Vietnam has not yet been reported in the literature.

In the present study, we propose a hybrid intelligence approach based on XGBR and the genetic
algorithm (GA), namely, the XGBR-GA model, to estimate the mangrove AGB in the Red River Delta
biosphere reserve (RRDBR) located in North Vietnam for the first time using ALOS-2 PALSAR-2
imagery together with an integration of Sentinel-1 and Sentinel-2 data. In addition, the performance of
the XGBR model when retrieving the mangrove AGB is compared to that of other GBDT algorithms,
i.e., the CatBoost regression (CBR) and gradient boosted regression tree (GBRT) algorithms, as well as
two well-known ML algorithms, the support vector regression (SVR) and random forest regression (RFR)
models. Our results show the potential use of the XGBR-GA-based model for mangrove AGB retrieval
using an incorporation of Sentinel-1 and Sentinel-2 data combined with ALOS-2 PALSAR-2 data to
improve the prediction accuracy of mangrove AGB estimations in biosphere reserves including small
and shrub mangroves in the tropics to better support sustainable conservation and the management
of mangroves.

2. Materials and Methods

2.1. Study Site

The present study was conducted in three different mangrove ecosystems across the northern
coast of Vietnam, which consists of three coastal provinces, Nam Dinh, Thai Binh, and Hai Phong.
The geographical coordinates of the region are 20◦00′–21◦04′ N and 106◦01′–106◦50′ E. The study area
is located on the western coastal zone of the Gulf of Tonkin and lies in the Red River Delta (Figure 1),
which was adopted as a biosphere reserve by the United Nations Educational, Scientific, and Cultural
Organization in 2004. Of the three coastal regions in the Red River Delta, the Xuan Thuy National
Park is located in Nam Dinh Province and was the first Ramsar site designated in Vietnam in 1982 [35].
The climate of the study area consists of a sub-tropical and semi-tropical monsoon with two seasons.
The dry season starts in October and ends in the following March, whereas the rainy season begins in
April and lasts until September. The average temperature is approximately 23 ◦C, the annual rainfall
is roughly 1300–1400 mm, and the humidity is approximately 80% [36]. The mangrove ecosystems
of the Red River Delta are diverse and are distributed between zones I and II of the four Vietnamese
mangrove zones [37] and consist of the second largest mangrove forest in the country (Figure 1).
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Figure 1. Location map of the mangrove study areas.

The mangrove ecosystems consist of the intertidal mangrove forests and their adjacent areas,
which form a transitional zone between the aquatic and terrestrial regions. There are approximately
10 mangrove species found in the coastal zones, of which the most dominant species are Rhizophora
stylosa, Kandelia obovata, Aegiceras corniculatum, Bruguiera gymnorrhiza, Avicennia marina, and Sonneratia
caseolaris [38].

2.2. EO and Field Survey Data Collection

2.2.1. Satellite Remotely Sensed Data

We employed data from three different EO sensors including the Advanced Land Observing
Satellite-2 Phased Array type L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) Level 2.1 with
highly sensitive dual polarimetric modes at the horizontal transmitting and horizontal receiving (HH)
and the horizontal transmitting and vertical receiving (HV) polarizations and the Sentinel-2 (S-2)
Level 1C MSI together with the Sentinel-1 (S-1) Level-1 Ground Range Detected (GRD) product with
C-band (Vertical transmit-Vertical receiving (VV) and Vertical transmit-Horizontal receiving (VH)
dual polarization) data to estimate the mangrove AGB at mangrove areas in the RRDBR. The ALOS-2
PALSAR-2 imagery was acquired on October 18, 2018, whereas the S-2 MSI and S-1 SAR data were
acquired on November 2 and 5, 2018, respectively (Table 1). The eleven multispectral bands of the
S-2 with spatial resolutions ranging from 10 to 20 m were used, including coastal band 1 (443 nm)
together with three visible bands, i.e., Blue (492 nm), Green (560 nm), and Red (665 nm), near-infrared
(NIR) (832 nm), narrow-NIR (865 nm), three red-edge bands (704 nm, 740 nm, 783 nm), and two
short-wavelength infrared (SWIR) bands (1614 nm–2202 nm) [39].

The S-1 dual polarimetric C-band in high resolution for the Interferometric Wide Swath (IW, 250 km
swath width) for the VV and VH polarization data Level 1 GRD mode and the S-2 MSI Level 1C
data were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu) run by

https://scihub.copernicus.eu
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the European Space Agency (ESA), whereas the ALOS-2 PALSAR-2 data for the HH and HV dual
polarimetric data Level 2.1 were acquired from the Japan Aerospace Exploration Agency (JAXA).

Table 1. The EO remotely sensed data used in this study.

EO Sensor Scene ID Acquisition Date
(Year/Month/Day) Processing Level Spatial

Resolution (m)
Spectral/

Polarizations Used

S-2 MSI S2A_MSI_T48QXH 2018/11/02 Level-1C 10–20 11 multispectral bands

S-1 SAR S1A-IW_02AE1F 2018/11/05 Level-1 GRD 20 C-band (VV and
VH polarizations)

ALOS-2
PALSAR-2

ALOS2206940200 2018/10/18 Level 2.1 6
L-band (HH and
HV polarizations)ALOS2206940190

Sources: ESA and JAXA, 2019.

2.2.2. Data Collection from the Mangrove Inventory

We conducted a mangrove forest inventory with permission from the local authorities during
the lowest tidal levels in November and December 2018, similar to remote sensing data acquisitions
during the dry season in North Vietnam. A total of 105 plots were measured using a stratified random
sampling approach, in which each sampling plot was defined using an initial survey and the support of
locals to guarantee that the AGB ranges would be usable for the all of the mangrove ecosystems across
the RRDBR. In each plot, we measured different biophysical parameters, including the tree height
(H), DBH, canopy diameter (CD), and diameter at 30 cm above the root system (D30) for Rhizophora
stylosa as suggested by Clough and Scott [40]. The biophysical parameters of all the mangrove forest
stands, including small and shrub mangrove patches, in a sampling plot within 10 m × 10 m (0.01 ha)
were measured.

We measured the crown diameter of a shrub mangrove tree using Equation (1) since its crown
area was considered to be a circle or an ellipse.

Crown diameter =
w1 + w2

2
(1)

where W1 is the widest length of the tree canopy through its center, and W2 is the canopy width
perpendicular to W1.

We used a Garmin eTreX global positioning system with an accuracy of ±2 m to record the location
of the sampling plot. Figure 2 shows the techniques used to measure the biophysical parameters of the
different mangrove species.
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Figure 2. Mangrove AGB measurements of different species in the biosphere reserve: (a,b) biophysical
parameter measurements (DBH and H) of tall mangroves and (c,d) crown diameter (CD) measurements
of shrub mangrove patches. (Photos were taken by T.D. Pham in November and December of 2018.).

The dry AGB for each mangrove species was calculated using the allometric equations.
The allometric methods are non-destructive approaches, which have been widely used to estimate
mangrove AGB, involving the establishment of a relationship between the mangrove biomass and
several biophysical parameters shown in Table 2 [40–42]. We also measured all shrub and small
mangrove stands with DBH values of less than 5 cm and tree heights of less than 2 m to calculate their
AGB using the appropriate allometric equations (Table 2).

Table 2. Allometric equations for each mangrove species in the study area.

No. Mangrove Species Biomass Allometric Equation Parameter Reference

1 Sonneratia caseolaris Biomass (kg) = 0.251× ρ ×DBH2.46 (R2 = 0.98)
Biomass root (kg) = 0.199 × ρ × 0.899 × DBH2.22 DBH, H [41]

2 Bruguiera gymnorrhiza Biomass (kg) = 0.168 × DBH2.31 (R2 = 0.99) DBH, H [40]

3 Kandelia obovata Biomass (kg) = 2.5904 × CD2
× H (R2 = 0.89)

Biomass (kg) = 0.251 × ρ × DBH2.46 (R2 = 0.98)
Canopy diameter, H (DBH < 5 cm)

DBH, H (DBH > 5 cm)
[42]
[41]

4 Avicennia marina Biomass (kg) = 1.8247× CD2
× H (R2 = 0.97) Canopy diameter, H [42]

5 Aegiceras corniculatum Biomass (kg) = 3.1253 × CD2
× H (R2 = 0.99) Canopy diameter, H [42]

6 Rhizophora stylosa Biomass (kg) = 0.168 × D2.42 + Biomass stilt (kg)
= 0.0209 × D2.55 (R2 = 0.99)

D30, H [40]

Note: AGB is the above-ground biomass of a tree in kilograms (kg); DBH is the diameter at breast height (1.3 m) in
centimeters (cm); ρ is the wood density (tons of dry matter per m3 fresh volume); H is the tree height; CD is the
canopy diameter; and D30 is the diameter at 30 cm above the highest prop root for a stilt-rooted tree.

3. Methods

We propose a novel framework using an advanced ML technique combined with multiple source
EO data for mangrove AGB estimations; our technique consists of the following steps: (1) pre-processing
and processing of multiple source EO data (SAR and optical data); (2) integrating the ground truth
collected from field surveys with EO data extraction to create training and testing datasets; (3) testing
and comparing the ML model performances using all the features; and (4) selecting the optimal
variables and optimizing the hyperparameters using GA based on cross-validation and re-evaluating
the results using the optimal variables for mangrove AGB estimations in the RRDBR (Figure 3).
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3.1. Satellite Image Processing

The ALOS-2 PALSAR-2 Level 2.1 dual polarization data during the dry season in North Vietnam
from JAXA were converted to the backscattering coefficient using Equation (2):

σ0 [dB] = 10 × log10 (DN)2 + CF (2)

where DN is the digital number of the amplitude image; σ0 is the backscattering coefficient; and CF
is the calibration factor. Note that CF = −83 dB was applied for the dual polarimetric SAR data [43].
The DN of each pixel was converted to σ0 in decibel (dB) units.

The S-2 Level-1C and the S-1 GRD products for the study area during the dry season were
downloaded from the Copernicus Open Access Hub, ESA. The top-of-atmosphere reflectance of S-2 [39]
was converted to the Level 2A bottom-of-atmospheric reflectance after geometric and atmospheric
corrections using the ESA Sen2Cor algorithm [44]. The S-1 C-band image intensities at the VV and
VH polarizations were processed in multiple steps, including thermal noise removal, calibration,
despeckling, terrain correction, and finally conversion to the normalized radar σ0 in decibel (dB)
units [45]. Then, the S-2 data were co-registered with the S-1 and ALOS-2 PALSAR-2 data in the
UTM/WGS84 coordinate system at the zone 48N projection. Since the three sensors acquire data at
different spatial resolutions (Table 1), we resampled all data to a ground sampling distance (GSD) of
10 m to match the size of a sampling plot of 100 m2. The three sensors were resampled during the
pre-processing step before co-registering three sensors (Figure 3). The SNAP toolbox was used to
process the S-1, S-2, and ALOS-2 PALSAR-2 data.

3.2. Image Transformation of the S-2 Multispectral and ALOS-2 PALSAR-2 Imagery

Image transformations for optical and SAR data have commonly been applied in mangrove AGB
retrievals in previous studies [7,11,19]. In this study, we employed an SAR image transformation
for the ALOS-2 PALSAR-2 imagery consisting of a combination of multi-polarizations [21] and used
eight vegetation indices (VIs) of the S-2 MSI data, as shown in Table 3, because each index is sensitive
to the mangrove structure and biomass [29,46,47]. For instance, the ratio vegetation index (RVI) is
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effective for retrieval of the mangrove structure [48]. The normalized difference vegetation index
(NDVI) has been widely used for mangrove AGB as it is strongly correlated with mangrove biophysical
parameters [49]. Further, enhanced vegetation index-2 (EVI-2) is relatively sensitive to mangrove
AGB [50,51]. Additionally, the soil-adjusted vegetation index (SAVI) was also computed in this study
because soil brightness at low vegetation cover is correlated with forest structure [52,53]. Importantly,
some potential vegetation indices derived from the red-edge bands of S-2, such as the normalized
difference index using bands 4 & 5 of S-2 (NDI45), inverted red-edge chlorophyll index (IRECl),
and modified chlorophyll absorption in reflectance index (MCARI), have been frequently used for
forest AGB estimation in recent studies because of their excellent explanations of the relationship
between biophysical parameters and forest AGB [54,55].

Table 3. List of the vegetation indices used in the current study.

Vegetation Index Acronyms S-2 Band Wavelengths Used References

Ratio Vegetation Index RVI NIR
Red [56]

Normalized Difference
Vegetation Index NDVI NIR−Red

NIR+Red [57]

Green Normalized
Difference Vegetation Index GNDVI NIR−Green

NIR+Green [58]

Enhanced Vegetation Index-2 EVI-2 2.5
(

NIR−Red
NIR+2.4 Red+1

)
[59]

Normalized Difference Index
using Bands 4 & 5 of S-2 NDI45 RE1−Red

B5+Red [60]

Soil-Adjusted Vegetation Index SAVI (1 + L)
(

NIR−Red
NIR+Red+L

)
L = 0.5 in most conditions

[61]

Inverted Red-Edge
Chlorophyll Index IRECl RE3−Red

RE1/RE2 [54]

Modified Chlorophyll
Absorption in Reflectance Index MCARI [(RE1 − Red) − 0.2 × (RE1 − Green)]

× (RE1 − NIR) [62]

Note: Band wavelengths of S-2: B3: Green (560 nm), B4: Red (665 nm), B5: Red-edge 1 (RE1) (704 nm), B6: Red-edge
2 (RE2) (740 nm), B7: Red-edge 3 (RE3) (783 nm), B8: near-infrared (NIR) (833 nm), B8A: Narrow-NIR (865 nm), B11:
short-wavelength infrared (SWIR1) (1614 nm), and B12: SWIR2 (2202 nm).

We chose a total of 26 predictor features consisting of 11 multispectral bands of S-2 and 8 VIs
derived from S-2, 5 variables (HH, HV, HH/HV, HV/HH, and HH-HV) derived from the ALOS-2
PALSAR-2 data and two backscattering coefficients (VV and VH) from S-1 (Table 3) to generate inputs
for the mangrove AGB estimation model. All of the predictor variables were normalized using the
normalization function in the Scikit-learn library in the Python environment [63].

3.3. Machine Learning Models Used

In this study, we present a hybrid approach based on XGBR and GA to estimate the mangrove
AGB in the RRDBR. To confirm the effectiveness of the proposed model for mangrove AGB estimation,
the predictive performance of the model was compared to other existing state-of-the-art GBDT
models, i.e., CBR and GBR, and the RFR and SVR models as baselines. The SVR model was selected
because it produced the best prediction performance of the various ML techniques when retrieving
the mangrove AGB in a coastal area in North Vietnam [8]; the RF model was selected because it
outperformed other techniques for mapping and modeling the mangrove AGB change in South
Vietnam [22]. The other GBDT models represent the most widely used methods for robust regression
problems in several fields, as reported in recent studies [32,64,65]. In the current study, we determined
the optimal hyperparameters of each ML algorithm using the grid search with a 5-fold CV in the
Python environment.
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3.3.1. Gradient Boosting Decision Tree (GBDT) Algorithms

GBDT is a popular ML algorithm using the ensemble-based decision tree method, which was
developed by Friedman [66]. The GBDT model first builds decision trees from original data with equal
weights. Then, the result is assessed, giving a higher weight to variables that are difficult to classify
and a lower weight to variables that are easy to classify. The GBDT model improves the accuracy
of the prediction using additional subsequent trees and evaluates the accuracy using a loss function.
Importantly, the GBDT algorithm optimizes the loss function and makes a prediction from a weak
supervised learner (decision tree) and then adds new decision trees to minimize the loss function [67].
GBDT models can handle mixed types of data for both classification and regression tasks. These
techniques often perform feature selection and are robust against outliers [68]. GBDT models, however,
have not been widely applied to mangrove AGB retrieval. Therefore, we employed several different
state-of-the-art GBDT techniques, i.e., the XGBR, GBRT, and CBR algorithms, for the mangrove AGB
estimation in the current study.

1. Extreme Gradient Boosting Regression (XGBR)

The XGB algorithm is a relatively new technique that belongs to the gradient boosting machine
family, which was proposed by Chen and Guestrin [31]. This algorithm can handle both classification
and regression tasks for weak supervised learning in machine learning via additive training strategies.
The XGB technique aims to overcome the overfitting problem and optimize performance and has
recently won multiple ML competitions [69].

In the XGB benchmark, the process of additive learning is divided into two phases. The first
learning phase is fitted to the entire input dataset, whereas the second phase is fitted to the residuals to
resolve the drawbacks of weak supervised learning. The fitting process is repeated multiple times until
the stopping criteria are achieved. The XGB algorithm requires a large number of hyperparameters
that must be selected and tuned beforehand. Therefore, in the present study, we used a GA to automate
the tuning of the hyperparameters and optimal feature selection to improve the model performance.

2. Gradient boosting regression trees (GBRT)

The gradient boosting machine (GBR) algorithm was first introduced by Friedman [67]. The GBRT
technique, which belongs to the stochastic gradient boosting family, can fit different types of data
distributions, such as Gaussian, Poisson, Bernoulli, or binomial. GBRT models can handle interactions
and automatically generate the feature importance and are robust to various correlated and irrelevant
predictor variables, as well as outliers [70]. In the GBRT technique, a predictor variable is selected for
splitting and then weighted in the model a certain number of times by the squared increment. Then,
the contribution or relative importance of each variable is scaled and assigned to a number, where
higher numbers reflect a stronger influence on the model [67].

3. CatBoost regression (CBR)

CBR is a novel gradient boosting technique that was recently developed by Dorogush, et al. [71].
This algorithm can handle both classification and regression problems and has been released in a new
open-source gradient boosting library [71,72]. The CBR model uses the decision tree as the base weak
learner and gradient boosting to iteratively fit a sequence of such trees. In the CBR model, the random
permutations of the training dataset and the gradients used for choosing an optimal tree structure are
generated to enhance the robustness of the algorithm and prevent overfitting [71].

Note that the learning efficiency of the CBR algorithm is controlled by its model hyperparameters,
including max_depth, learning_rate, and the number of iterations. The selection of the optimal
hyperparameters is a challenging task and may be time-consuming depending on the user’s experience.
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3.3.2. Support Vector Regression (SVR)

The SVM algorithm is a supervised learning technique based on statistical learning theory, which
was developed by Vapnik [73]. This method is widely used for classification and forecasting in data
analysis, computer vision, and pattern recognition. SVR belongs to the SVM algorithm family and
is commonly used for solving regression problems. The performance of the SVR model is highly
influenced by the choice of the various kernel functions. To minimize the bias, the radial basis function
(RBF) kernel was used in the current study because it has been applied to forest biophysical parameter
retrievals in prior studies [11,47].

The quality of the mangrove AGB retrieval can be evaluated by the ε insensitive loss function
developed by Vapnik [73]. In the SVR model, three parameters are often needed to configure a model
with an RBF kernel: (1) the regularization parameter (C), which makes the trade-off between the model
complexity and the training errors; (2) ε, which defines the allowed errors for each training data sample;
and (3) γ, which is a parameter of the RBF kernel.

3.3.3. Random Forest Regression (RFR)

RF [74] is currently the most common bagging method in use; RF uses ensemble decision trees and
works effectively for both classification and regression problems. The RF algorithm creates multiple
uncorrelated trees for the training, using a random subset of two-thirds of the total sample, and leaves
one-third of the total sample (out-of-bag (OOB)) for the validation. The samples are randomly collected
with a replacement of the samples in the collection numbers. A tree is grown using in-bag samples
with m variables to define the optimal split for each node. A tree can be grown to its largest extent in
the case where no pruning is applied. The model produces the OOB error and the variable importance
to assess the prediction accuracy and indicate the contribution of each variable. The RFR model is
a well-known method that has been widely used in forest AGB estimations in previous studies [22,75].

In an RFR model, two parameters, the number of trees and the number of features used for the
split, need to be determined.

3.4. Model Configuration, Implementation, and Assessment

3.4.1. Model Configuration and Training

The configuration and training of the five ML models were conducted using a training dataset in
Python 3.7. A total of 105 sampling plots were divided such that 80% were included in the training set
and 20% were included in the testing set to assess the performance of the models using the Scikit-learn
library [63]. We used a median filter with a moving window size of 7 × 7 pixels in the SciPy library [76]
to reduce the effect of the SAR, such as the ALOS-2 PALSAR and S-1 images, and the optical noise,
as suggested by previous studies [21,47].

3.4.2. Hyperparameter Tuning of XGBR, CBR, GBRT, RFR, and SVR.

Table 4 shows the optimal hyperparameter values of each ML model using all the features derived
from S-1, S-2, and ALOS-2 PALSAR-2.

Table 4. Prior hyperparameter tuning using a grid search with a 5-fold CV for the different
ML techniques.

Algorithm Learning_Rate/Epsilon (
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We first tested the ML models with all features (predictor variables) with applied hyperparameter
tuning using a grid search with a 5-fold CV (Table 4). Based on the highest predictive performance,
i.e., the lowest root-mean-square error (RMSE), we selected the best model. Then, we used the GA with
the highest predictive model to select the optimal features using different combinations (scenarios)
derived from the S-1, S-2, VI, and ALOS-2 PALSAR-2 data for the mangrove AGB estimation in terms
of the coefficient of determination (R2) and the RMSE. Finally, we tested all selected ML models with
the optimal features for comparison.

3.4.3. GA for Feature Selection

Optimal feature selection using the GA was implemented to automatically identify the optimal
variables for AGB retrieval in the RRDBR. The GA uses the idea from the Darwinian theory for natural
selection in evolution by employing the computer capacity to automate the tuning of a number of
parameters in an ML model [77]. The most important concept of GA is the chromosome, which consists
of ML model parameters that define a solution (called an individual).

The basic operation performed during the training of the machine learning model consists of the
following steps: (1) a total number of 105 samples (individuals) are initialized to form a population,
(2) individuals with the best fitness values are selected to generate a mating pool, (3) from the mating
pool, parents are selected by either sequential or random selection methods, and (4) several operators
called crossover and mutation operators are then applied to each pair of parents to generate their
offspring. This process retains high-quality individuals to generate more individuals, therefore evolving
the solutions to obtain the desired solutions. We implemented the GA in the Python 3.7 environment to
select the optimal features together with the hyperparameters in terms of RMSE and R2 using a 5-fold
CV technique.

3.4.4. Model Evaluation

We employed RMSE and R2 to evaluate and compare the model performances of the five ML
algorithms used in this study because these statistical measures are commonly used in modeling forest
AGB. These indices are often employed to evaluate the differences between the measured AGB and
the predicted AGB data [47] because RMSE (Equation (3)) and R2 (Equation (4)) are standard criteria
used to measure statistical errors in regression models. Higher R2 and lower RMSE values indicate
better performance for an ML model [11,16]. We employed Scikit-learn in Python 3.7 to evaluate the
performances of all the ML models in the current study [78].

RMSE =

√√
n∑
1

(yei − ymi)
2

n
(3)

R2 =

∑n
i=1 (yei − ye)(ymi − ym)√∑n
i=1 (yei − ye)2(ymi − ym)2

(4)

where yei is the estimated mangrove AGB value from the ML model, ymi is the measured mangrove
AGB value obtained from the field survey, n is the total number of sampling plots, and ye and ym are
the mean values of the estimated mangrove AGB and the measured mangrove AGB, respectively.

4. Results

4.1. Mangrove Tree Characteristics in the RRDBR

All mangrove forest stands, including small and shrub mangrove patches, were measured
in 105 sampling plots in mangrove areas across three coastal districts of the RRDBR (Figure 1).
The characteristics of the mangrove trees are described in Table 5 and show mangrove AGB values
ranging from 2.71 Mg·ha−1 to 257.08 Mg·ha−1. The mean AGB values range between 51.58 Mg·ha−1
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and 79.90 Mg·ha−1. Of the three coastal provinces in the RRDBR, the mean mangrove AGB values
measured in Thai Binh and Hai Phong provinces were slightly higher than those measured in Nam
Dinh Province. The mangrove heights in Nam Dinh varied from 0.6 m to 7.5 m, and their DBHs ranged
from 2.2 cm to 11.5 cm, whereas these corresponding numbers were relatively higher, varying from
1.1 m to 14.8 m with the mangrove heights and from 2.7 cm to 23.8 cm with their DBHs in Thai Binh and
Hai Phong. The mangrove tree densities in Nam Dinh ranged from 315 to 8285 tree·ha−1, which were
much higher than those in Hai Phong and Thai Binh provinces, ranging from 198 to 6434 tree·ha−1.

Table 5. Characteristics of the mangrove trees in the RRDBR.

Tree Density
(stems ha−1)

Stem
DBH
(cm)

Stem
H

(m)

AGB min
(Mg·ha−1)

AGB max
(Mg·ha−1)

Mean
(Mg·ha−1)

Standard
Deviation
(Mg·ha−1)

Nam Dinh
(n = 55) 315–8285 2.2–11.5 0.6–7.5 2.71 157.41 51.58 34.06

Thai Binh
(n = 30) 265–6434 2.7–15.5 1.1–9.8 11.41 157.45 79.90 39.64

Hai Phong
(n = 20) 198–5596 3.5–23.8 1.5–14.8 9.57 257.08 72.31 44.04

4.2. Modeling Results, Assessment, and Comparison

Table 6 shows the performances of the five ML techniques using all the features derived from S-1,
S-2, the VIs, and ALOS-2 PALSAR-2. It can clearly be seen that the XGBR model yielded the highest
predictive performance in the testing phase (R2 = 0.622 and RMSE = 27.39 Mg·ha−1), followed by the
GBRT model (R2 = 0.563 and RMSE = 33.75 Mg·ha−1). Conversely, the RFR model produced the lowest
performance (R2 = 0.426 and RMSE = 33.75 Mg·ha−1).

Table 6. ML technique performance using all the features for the mangrove AGB retrieval in this study.

No. ML Model R2 Testing
(20%)

RMSE
(Mg·ha−1)

1 CatBoost regression (CBR) 0.492 31.75
2 Extreme boosting regression (XGBR) 0.622 * 27.39 *
3 Gradient boosted regression tree (GBRT) 0.563 29.44
4 Random forest regression (RFR) 0.426 33.75
5 Support vector regression (SVR) 0.596 28.31

* the best performance.

The results in Table 6 reveal that, of the five ML models, the best predictive performance was
observed for the XGBR algorithm (Table 6) using all the features derived from a combination of the S-2
(11 MS bands), S-1 (2 bands), ALOS- 2 PALSAR-2 (5 bands), and VI (8 bands) data (Table 7). The XGBR
model yielded a good R2 of 0.622 for the testing set and an RMSE of 27.39 Mg·ha−1. The RMSE achieved
by the XGBR model is much lower than the average standard deviation obtained from the AGB
field-based measurement (37.96 Mg·ha−1), reflecting a goodness-of-fit between the model estimation
and the actual field survey measurements.

We also computed six scenarios (SCs) using different combinations derived from the S-2, S-1,
ALOS-2 PALSAR-2, and VIs datasets to test the performance of the XGBR model for mangrove AGB
retrieval. The performance of each scenario is shown in Table 7.
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Table 7. Performance of the XGBR model with different numbers of features.

Scenario
(SC) Number of Input Variables R2 Testing

(20%)
RMSE

(Mg·ha−1)

SC1 7 features from ALOS-2 PALSAR-2 and S-1 0.302 37.20

SC2 11 features from the MS bands of S-2 0.301 34.14

SC3 13 features from the MS bands of S-2 and S-1 0.487 27.10

SC4 19 features from the MS bands and VIs from S-2 0.378 48.24

SC5
19 optimal features from feature selection using
GA (8 MS bands, 5 VIs, 4 bands from ALOS-2

PALSAR-2, and 2 bands from S-1)
0.683 * 25.08 *

SC6 26 features (11 MS bands, 8 VIs, 5 bands from
ALOS-2 PALSAR-2, and 2 bands from S-1) 0.622 27.39

* the best performance.

It can be clearly seen in Table 7 that the XGBR-based model produced the highest accuracy using
the 19 selected features in SC5 optimized by the GA. The 19 optimal features consist of eight MS
bands (bands 1, 4, 5, 6, 7, 8, 11, and 12) from S-2, 5 VIs (NDVI, NDI45, SAVI, EVI-2, and IRECl),
four bands from ALOS-2 PALSAR-2 (HV, HH/HV, HV/HH, and HH-HV), and two bands from S-1
(VV and VH). The XGBR model achieved a promising result with R2 values of 0.990 and 0.683 for the
training and testing sets, respectively, and an RMSE of 25.08 Mg·ha−1. In addition, the result using the
19 optimal features was relatively better than that using all the features (the 26 predictor variables),
with an increase of 0.061 for R2 during the testing phase and a decrease of 2.31 Mg·ha−1 for RMSE.
Contrastingly, a combination of just the S-2 and VI datasets had the lowest performance (R2 = 0.378 in
the testing set and RMSE = 48.24 Mg·ha−1), followed by combinations of only the ALOS-2 PALSAR-2
and S-1 datasets (R2 = 0.302 in the testing set and RMSE = 37.20 Mg·ha−1) and the S-2 dataset alone
(R2 = 0.301 in the testing set and RMSE = 34.14 Mg·ha−1).

The data from SC5 were used to re-evaluate the performances of the XGBR, CBR, GBRT, SVR,
and RFR models. Our results indicate an improvement in the R2 and a reduction in the RMSE
with respect to the XGBR-GA model (Table 8). Noticeably, the three GBDT algorithms (XGBR, GBRT,
and CBR) showed acceptable results in mangrove AGB retrieval with R2 values ranging from 0.587 to
0.683 in the testing set and RMSE values ranging from 25.08 Mg·ha−1 to 28.62 Mg·ha−1, which was
significantly lower than the standard deviation of 37.96 Mg·ha−1 observed by the AGB field-based
measurement (Table 3), showing that the GBDT algorithms work well and outperform the SVR and
RFR algorithms for mangrove AGB retrieval in the study area.

Table 8. Comparison of the model performances using new predictor variables based on the GA.

No. ML Model R2 Testing
(20%)

RMSE
(Mg·ha−1)

1 CatBoost regression (CBR) 0.587 28.62
2 Extreme boosting regression (XGBR) 0.683 * 25.08 *
3 Gradient boosted regression trees (GBRT) 0.596 28.30
4 Random forest regression (RFR) 0.529 30.58
5 Support vector regression (SVR) 0.488 31.86

* the best performance.

In SC5, a combination of the 19 optimal features derived from the S-2 MSI (involving the VI bands)
and S-1 together with the ALOS-2 PALSAR-2 data boosted the R2 value to 0.683 with a lower RMSE of
25.08 Mg·ha−1. The results in the testing phase (Figure 4) indicate a better predictive performance with
a higher R2 and a lower RMSE observed for the mangrove AGB estimation. Overall, the XGBR-GA
model produced the best performance for the mangrove AGB estimation in the study area.



Remote Sens. 2020, 12, 1334 14 of 24
Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 24 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4. Comparison of the predictive performances of the ML methods for mangrove AGB 
estimations using multi-sensors in the testing phase. (a) CBR, (b) XGBR, (c) GBRT, (d) RFR, (e) SVR. 

4.3. Variable Importance 

The results in Figure 5 reveal that, of the eight multispectral bands of S-2 MSI selected by the GA 
algorithm, the shortwave infrared (SWIR-1) band (band 11 at 1610 nm) and the NIR spectrum (band 
8 at 845 nm) were the most sensitive to mangrove AGB, followed by the SWIR-2 band (band 12 at 
2202 nm) and two red-edge-1 and -2 spectra (band 5 at 704 nm and band 6 at 740 nm). These results 
indicate that the VIs derived from the NIR and the RED reflectance, such as NDVI and EVI-2, play a 
less important role in mangrove AGB retrieval than the polarization computed from ALOS-2 
PALSAR-2 imagery such as HH-HV. Interestingly, we found that, of the VI indices, the inverted red-
edge chlorophyll index (IRECl) and the normalized difference index (NDI45) using bands 4 and 5 of 
S-2 were strongly correlated with the mangrove AGB in the study area. This study also indicates that 
the band ratios derived from the incorporation of dual polarimetric SAR data from ALOS-2 PALSAR-
2 imagery such as HH/HV and HV/HH were relatively important for estimating the mangrove AGB 
in the biosphere reserve. Of the four polarimetric modes of S-1 and ALOS-2 PALSAR-2, backscatter 
coefficients derived from cross-polarization HV were found to be the most sensitive to mangrove 

Figure 4. Comparison of the predictive performances of the ML methods for mangrove AGB estimations
using multi-sensors in the testing phase. (a) CBR, (b) XGBR, (c) GBRT, (d) RFR, (e) SVR.

4.3. Variable Importance

The results in Figure 5 reveal that, of the eight multispectral bands of S-2 MSI selected by the GA
algorithm, the shortwave infrared (SWIR-1) band (band 11 at 1610 nm) and the NIR spectrum (band 8 at
845 nm) were the most sensitive to mangrove AGB, followed by the SWIR-2 band (band 12 at 2202 nm)
and two red-edge-1 and -2 spectra (band 5 at 704 nm and band 6 at 740 nm). These results indicate that
the VIs derived from the NIR and the RED reflectance, such as NDVI and EVI-2, play a less important
role in mangrove AGB retrieval than the polarization computed from ALOS-2 PALSAR-2 imagery
such as HH-HV. Interestingly, we found that, of the VI indices, the inverted red-edge chlorophyll
index (IRECl) and the normalized difference index (NDI45) using bands 4 and 5 of S-2 were strongly
correlated with the mangrove AGB in the study area. This study also indicates that the band ratios
derived from the incorporation of dual polarimetric SAR data from ALOS-2 PALSAR-2 imagery such
as HH/HV and HV/HH were relatively important for estimating the mangrove AGB in the biosphere
reserve. Of the four polarimetric modes of S-1 and ALOS-2 PALSAR-2, backscatter coefficients derived
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from cross-polarization HV were found to be the most sensitive to mangrove AGB at the study site.
Two backscatter coefficients of the S-1 sensor were selected in the final XBGR model. However, their
contributions were much smaller than those of the ALOS-2 PALSAR-2 imagery.
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4.4. Generation of Mangrove AGB Maps in the Study Area

Because the XGBR-GA model produced the best prediction performance and outperformed the
remaining ML algorithms using data fusion derived from S-1, S-2, the VIs, and the ALOS-2 PALSAR-2
sensors in the RRDBR, this model was chosen for mangrove AGB retrieval in the current study. The final
results were converted to raster GeoTIFF format and then visualized in QGIS for each coastal province
in North Vietnam. The mangrove AGB map was interpreted according to six classes (Figure 6), ranging
from 17 Mg·ha−1 to 142 Mg·ha−1 (with an average of 72.47 Mg·ha−1).

Figure 6 shows the mangrove AGB maps with the spatial distribution patterns in the three studied
coastal zones of the RRDBR. As can be seen from Figure 6, the highest biomass value was found
in the core zone of the biosphere reserve, primarily at the Ramsar site, and in the deltas of the Red
and Thai Binh rivers, whereas the lowest biomass values were observed next to the sea. Despite the
goodness-of-fit between the mangrove AGB values generated by the XGBR-GA model and the actual
measured mean values, the mean estimated mangrove AGB value (72.47 Mg·ha−1) was higher than the
actual mean field-based measurement (62.75 Mg·ha−1) (Table 3).
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5. Discussion

Over the past 10 years, various attempts have been made to obtain mangrove AGB estimations
using simple linear regression [79] and multi-linear regression [18,19,80]; these attempts resulted in
low performance with R2 values ranging from 0.43 to 0.65. In recent years, ML algorithms such as
Gaussian process regression, multi-layer perception neural networks, SVR, and RFR techniques have
been employed to retrieve mangrove AGB, as reported in a number of published case studies [8,20–22].
ML techniques often achieve better predictive performances compared to conventional parametric
methods for mangrove AGB retrievals [20,81]. However, to date, an estimation of mangrove AGB
including shrub and small mangrove patches has not been reported in the literature, indicating
a need to propose an alternative and new approach to mangrove AGB estimation to support MRV
and blue carbon projects. Here, we proposed a hybrid approach based on the XGBR-GA model
using an incorporation of ALOS-2 PALSAR-2, S-1, and S-2, and VI data and achieved a satisfactory
result (R2 = 0.683, RMSE = 25.08 Mg·ha−1) for forest AGB retrieval in the RRDBR across three coastal
provinces in North Vietnam. The modeling results of the mangrove AGB retrieval in the RRDBR
using the different ML techniques (XGBR, CBR, GBRT, SVR, and RFR) revealed that the XGBR-GA
model had the highest predictive performance and outperformed the other ML models with R2 and
RMSE values of 0.683 and 25.08 Mg·ha−1, respectively (Table 8). Using the GA for the XGBR model
in this study, the performance improved with an R2 increase of 0.061. Conversely, the SVR model
showed the lowest performance with R2 and RMSE values of 0.488 and 31.86 Mg·ha−1, respectively.
Note that the CBR model (R2 = 0.587) and the GBRT model (R2 = 0.596) are relatively good predictors
for mangrove AGB retrieval, indicating that the GBDT algorithms work well in the study area, where



Remote Sens. 2020, 12, 1334 18 of 24

the mangrove AGB and carbon stock values are much lower than those in other mangrove forests in the
Mekong River Delta located in South Vietnam [22,82]. It can be concluded that the XGBR-GA model
with the incorporation of S-1, S-2, VI, and ALOS-2 data yielded the best performance for mangrove
AGB retrieval in the RRDBR. Further studies using the proposed approach should be encouraged for
mangrove AGB estimations in other mangrove ecosystems with shrubs and small patches in intertidal
mangrove forest areas in the tropics.

Previous studies have reported that longer wavelengths of SAR sensors, for example, the L- and
P-bands, show the best correlation with the mangrove forest biomass, of which HV-polarized is the
most sensitive to the biophysical parameters of mangroves [83]. The results of the variable importance
in Figure 5 confirm the contribution of the HV backscatter coefficients in the prediction model. Note that
mangrove biosphere reserves each have their own stand structures and complex mix of species, leading
to different data saturation issues in both SAR and multispectral data. Regarding multispectral data,
such as Landsat TM, ETM+, OLI, and S-2, data saturation has caused weak prediction performance
at high AGB values and dense forest canopy densities [84–86]. Optical sensors may be saturated at
approximately 100–150 Mg·ha−1 in complex tropical forests and at approximately 152–159 Mg·ha−1 in
mixed forests [83,87]. For SAR sensors, several prior attempts have shown that the use of SAR data
would be limited for mangrove AGB retrievals at less than 100–150 Mg·ha−1 due to the tidal inundation
level and complex root systems of different mangrove communities in tropical and sub-tropical areas,
resulting in a saturation level for the use of SAR sensors [18,19,21]. Recent studies have also indicated
that the radar backscatters in the HH and HV polarizations of ALOS-2 PALSAR-2 are possibly saturated
at high biomass values below 150 Mg·ha−1 [19], whereas the corresponding figures in the VV and VH
dual polarizations of S-1 are likely saturated at less than 20 Mg·ha−1 [7,11]. This could be explained by
the increased extinction of radar signals due to the mangrove canopy density [88].

The variable importance results in Figure 5 show that the SWIR bands 11 and 12 of the S-2 sensor
play an important role in mangrove AGB retrieval in the study area. This finding is consistent with
recent studies reported by Wang, et al. [89]. In addition, two vegetation red-edge bands (bands 5
and 6) were found to be sensitive to mangrove AGB in the biosphere reserve. This is most likely
due to the complex mangrove species compositions in the biosphere reserve; this is similar to the
case study conducted on Hainan Island in China [16]. Of the eight vegetation indices, NDI45 and
IRECl derived from the S-2 data were the most important features, reflecting the potential use of the
S-2 sensor for quantitative predictions of mangrove AGB in biosphere reserves. This is likely due to
the strong relationship between the mangrove canopy chlorophyll content and the mangrove AGB.
A similar observation was made by Frampton, Dash, Watmough, and Milton [54] when assessing the
capability of S-2 for biophysical parameter estimations. Of the three sensors, the variables derived from
ALOS-2 PALSAR-2 play crucial roles in retrieving mangrove AGB; in particular, the HH-HV image
transformation and the band ratios HH/HV and HV/HH are well correlated with the mangrove AGB.
This finding is consistent with the results reported by [8] (see Figure 5). This study also found that S-1
imagery at the C-band (the VV and VH polarizations) plays a less important role in the mangrove
AGB estimation at the biosphere reserve. This might be explained by the data saturation level of the
C-band sensor, which is less than 30 Mg·ha−1. Our results suggest that a particular combination of
S-2, VIs, and ALOS-2 PALSAR-2, for example, SC5, which consists of 19 features, may be the best
solution for estimating mangrove AGB in deltas or biosphere reserves in tropical areas where small and
shrub mangrove patches are often present (see Table 7). The present study also found that the band
ratios derived from the dual-polarization (HH and HH) from the ALOS-2 PALSAR-2 imagery played
an important role in the mangrove AGB estimation in the biosphere reserve compared to those derived
from the S-2 data. This finding is in line with the results reported by [21] and is similar to the results
reported by Jachowski, Quak, Friess, Duangnamon, Webb, and Ziegler [20] and Liu, et al. [90]. Further
in-depth studies conducted in different biosphere reserves are recommended to better understand
the effectiveness of other image transformations such as VIs derived from the reflectance of the
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red-edge bands or the SWIR of the S-2 data [91] and other multi-polarization transformations using
full polarimetric ALOS-2 PALSAR-2 or Gaofeng-3 (HH, HV, VH, and VV) data in a biosphere reserve.

The present study also indicated that the XGBR-GA-based model likely under-estimates the
mangrove AGB at high observed values exceeding 140 Mg·ha−1 and over-estimates the AGB at low
values less than 40 Mg·ha−1. This possibly occurs due to the saturation levels of the S-2, L-band ALOS-2
PALSAR-2, and C-band S-1 sensors when retrieving the mangrove AGB. This may explain why the
errors occur at very high biomass values of over 140 Mg·ha−1 and at low biomass values of less than
40 Mg·ha−1. The canopy penetration by the C-band S-1 sensor is relatively insensitive to mangrove
AGB below 40 Mg·ha−1, and the spectral similarity of S-2 between green canopies above mangrove
biomass results in a saturation when the AGB values exceeds 140 Mg·ha−1 (Figures 4b and 6). Despite
these limitations, our results demonstrate that an incorporation of certain features derived from the S-1
and S-2 data combined with the ALOS-2 PALSAR-2 data has the potential to make mangrove AGB
estimations exceeding 140 Mg·ha−1 in biosphere reserves with small mangrove patches. Despite the
good prediction from the XGBR-GA model, the differences in R2 in the training and testing phases
are relatively significant (Table 8). In this case, the mixed and small shrub mangrove species in the
RRDBR and the geographic location of the different numbers of sampling plots may significantly
influence the performance of the model, resulting in the observed difference during the training and
testing phases. Note that the RRDBR or any other mangrove biosphere reserve often consists of a wide
number of mangrove species, not only large dense and tall trees, such as S. caseolaris and R. stylosa,
but also high-density small and shrub mangrove patches, such as A. corniculatum and A. marina. In
order to produce a more accurate AGB map, the integration of certain features of different EO sensors
and the advantages of novel GBDT techniques, different feature selection optimization algorithms,
and multi-sensor data fusion using multispectral data and different wavelengths of SAR sensors should
be investigated for other biosphere reserves and geographical locations.

6. Conclusions

This work was a first attempt at investigating S-1, S-2, and ALOS-2 PALSAR-2 data combined
with a novel boosting technique, i.e., the XGBR model and GA, to estimate mangrove AGB including
small and shrub mangrove patches in the RRDBR in North Vietnam. Our findings indicated that the
XGBR-GA model performs well and outperforms other ML techniques in estimations of the mangrove
AGB. Importantly, the three GBDT models (XGBR, CBR, and GBRT) show satisfactory performance
in terms of R2 and RMSE and produce better prediction results than the SVR and RFR models in the
study area. This study also showed that a combination of S-1, S-2, and ALOS-2 PALSAR-2 data can
estimate the mangrove AGB with promising accuracy (R2 = 0.683, RMSE = 25.08 Mg·ha−1). The ALOS-2
PALSAR-2 sensor makes a more important contribution than the other sensors to the estimation of the
mangrove AGB. The new VIs derived from S-2, such as NDI45 and IRECl, were found to be sensitive to
the mangrove AGB. The vegetation red-edge bands of the S-2 sensor and the SWIR bands were strongly
correlated with the AGB of the mangrove ecosystem in the biosphere reserve. Further investigations
applying the proposed method to other mangrove areas including small mangrove patches should be
made and compared at large scales and under different geographical conditions.
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