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Abstract: There have been debates and a lack of understanding about the complex effects of urban-scale
urban form on air pollution. Based on the remotely sensed data of 150 cities in the Beijing-Tianjin-Hebei
agglomeration in China from 2000 to 2015, we studied the effects of urban form on fine particulate
matter (PM2.5) and nitrogen dioxide (NO2) concentrations from multiple perspectives. The panel
models show that the elastic coefficients of aggregation index and fractal dimension are the highest
among all factors for the whole region. Population density, aggregation index, and fractal dimension
have stronger influences on air pollution in small cities, while area size demonstrates the opposite
effect. Population density has a stronger impact on medium/high-elevation cities, while night light
intensity (NLI), fractal dimension, and area size show the opposite effect. Low road network density
can enlarge the influence magnitude of NLI and population density. The results of the linear regression
model with multiplicative interactions provide evidence of interactions between population density
and NLI or aggregation index. The slope of the line that captures the relationship between NLI on
PM2.5 is positive at low levels of population density, flat at medium levels of population density,
and negative at high levels of population density. The study results also show that when increasing the
population density, the air pollution in a city with low economic and low morphological aggregation
degrees will be impacted more greatly.
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1. Introduction

In recent years, in addition to tracing emissions from pollution sources and encouraging changes
in energy structure, the linkage between urban form and air quality has become a hot topic in the
context of global urbanization and urban air pollution, which are some of the largest environmental
health threats [1,2]. Urban form, which is characterized by urban scale, density, and development
level; layout concentration; border complexity; etc., has a significant impact on the physical ventilation
environment, microclimate, and traffic patterns, which then affect the emission and diffusion of
air pollutants [3–6]. Due to the high pressure of urbanization and the lock-in effect of urban form
worldwide, it has become an urgent international issue to gain insight into the complex relationship
between urban form and air pollution from multiple perspectives.

Remarkable research progress has been made on the relationship between urban form and air
pollution, but it has not solved the long-standing debates [7]. Most studies have found that larger
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cities worsen air quality, while some studies did not find any relationship [8]. Moreover, there is more
inconsistent evidence from empirical research conducted around the world. A study of 45 metropolitan
areas in the United States showed that the increase in urban density can reduce NO2 emissions by
controlling the factors of population size and temperature [6]. Another study of 111 cities in the United
States showed that higher population density (POPDEN) led to higher FINE particulate matter (PM2.5)
concentration and air quality index (AQI) values per capita [9]. A study of 83 cities around the world
showed that the decrease in NO2 caused by a 4% increase in urban continuity can offset the negative
impact of a 10% increase in population size [10,11]. However, another study based on 157 urban samples
in China showed that higher urban continuity can worsen air quality [12]. More inconsistencies can be
found in studies around the world [7].

On the one hand, the high density and high compactness of urban form enable residents to obtain
living services and work opportunities nearby, reducing the separation of work and residence, change
the means of transportation, reduce the use of private cars, promote public transport travel, and thus
reduce the emission of air pollutants [13,14]. On the other hand, the increase of POPDEN may lead to
more traffic flow, more energy consumption burden on the transportation system, and more traffic
congestion, which will worsen air quality [15–17]. The high-density buildings in high population
density cities often lead to deeper and more closed urban canyons, which reduce the efficiency of
air pollutant diffusion from canyons to the atmosphere and cause pollution accumulation [13,18,19].
These positive or negative effects are further influenced by geographical and climatic conditions as
well as urban fundamental characteristics, showing different comprehensive effects in different regions
and spatial scales.

Moreover, the conflicting conclusions are also caused by the use of different statistical models
(panel or cross-section regression) at different scales (global scale, regional scale, and case scale).
Another major obstacle to gaining deeper insights is that the existing research still lacks careful
consideration of the nonlinear relationship between urban form and air pollution, which may be
derived from the interactions among urban forms. The interaction between these urban morphology
factors has been proven to have an important impact on the urban environment [20]. The interactions
among urban form indicators imply that the influence of each of them on the urban environment
cannot be separated. However, these considerations are still lacking in the study of the relationship
between urban form and air pollution, which will hinder the adjustment of planning strategies for
cleaner air and sustainability.

To resolve these knowledge gaps, based on remote sensing inversion data, we included 150 cities
of the Beijing-Tianjin-Hebei urban agglomeration in China as the research samples to conduct an
empirical study about the impacts of urban density, development level, aggregation index (AI) and
fractal dimension (FRAC) on the concentrations of two urban pollutants (i.e., NO2 and PM2.5) at a
regional scale. First, we used the fixed effect (FE) panel model of four periods in 2000–2015 to estimate
the elastic coefficients of five urban form indicators (UFIs) and their effects on the concentrations of
NO2 and PM2.5 [21]. In this process, natural factors (wind speed (WIND) and precipitation (PREC))
were taken as the control variables. Second, we set up panel regression models of subsamples of cities
according to their elevation, area size, and road density to identify the important influencing factors of
air pollutants in different groups of cities. Third, we used the panel regression model with multiplicative
interaction to examine the interactions between urban forms [22,23]. The results can be used to quantify
and compare the effects of various factors on air pollution. Our multi-perspective analysis provides a
meaningful reference for context-dependent urban planning for cleaner air, especially in the context of
the current preference of advocating for compact cities for urban sustainability.
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2. Materials and Methods

2.1. Study Area

The Beijing-Tianjin-Hebei urban agglomeration (Figure 1) is one of the most developed areas in
China in terms of economy, transportation, and industry, as well as participation in global trade and
competition. It is also one of the areas in China most affected by air pollution problems [24,25]. Most of
the region is located in the northern part of the North China Plain. It has an area of 216,000 km2 and a
residential population of approximately 111 million, which was approximately 8.1% of China’s total
population in 2015. There are a total of 69.7 million people living in the urban area (AREA), with an
urbanization rate of 62.5% [26]. This area comprises a very large number of cities due to intense urban
expansion over the past 15 years.
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Figure 1. Geographical location, air pollution level, and population distribution of the study area.

2.2. Schematic Diagram of Concept and Mechanism and the Research Framework

We first drew a schematic diagram of the urban form and impact mechanism (Figure 2a) and
outlined the overall research framework to clarify the data processing and modeling process (Figure 2b).
In Figure 2a, the diagram first shows the principal indicators of urban form. The AI is calculated from an
adjacency matrix and is used as a descriptor of desperation, interspersion, subdivision, or isolation [27].
FRAC values greater than 1 indicate a departure from Euclidean geometry and an increase in shape
complexity. This metric can be used across a range of spatial scales and thus overcomes limitations of
the straight perimeter/area ratio [28–30]. AREA, POPDEN, urban nighttime light (NTL), and nighttime
light intensity (NLI) also have close relationships with urban air pollution [31,32]. These indicators of
urban form can affect the emission of urban air pollution through the influence on transportation and
other paths. They can also affect the diffusion of air pollutants through the impact of urban microclimate
and other factors. This brief schematic diagram lays the foundation for our further empirical analysis.

As for the method flow (Figure 2b), we first quantified the urban form and air pollution indicators
based on multisource data, including land use data, air pollution grid products, night light remote
sensing images, POPDEN spatial grids, and meteorological monitored data. Based on these indicators,
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we built a variety of panel models. We used the Hausman test to determine the appropriate type of
panel model, identify individual FEs, and evaluate the overall effect of each factor on air pollution
indicators. After that, we built subsample models of all cities according to the natural and social
economic conditions of cities, such as elevation and road network density, and we compared the
differences of coefficients across models. Finally, we used the FE model with multiple interactions to
quantify the interactions between urban form factors. Brief descriptions of some variables involved are
listed in Table 1.
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Figure 2. The schematic diagram of the impact paths of urban form on air pollution (a) and the method
flow (b).

Table 1. Brief description of the variables.

Indicator Full Name Description

AREA Urban Area Size AREA indicates the area of urban expansion.

FRAC Fractal Dimension Index FRAC helps to quantify the degree of complexity of the
planar shapes.

AI Aggregation Index
AI increases as the focal patch type is increasingly aggregated and

equals 100 when the patch type is maximally aggregated into a
single, compact patch.

POPDEN Population Density POPDEN is the number of people living in each unit of area.

NLI Nighttime Light Intensity
NLI shows the lights generated from electricity. Areas of high

economic prosperity are generally the areas that are
well illuminated.
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2.3. Data Sources and Metrics

2.3.1. Air Pollution

We used the satellite remote sensing inversion data (annual near-surface PM2.5 and NO2

concentration grids) from 2000, 2005, 2010, and 2015 as the basis to extract air pollution indicators
(APIs). This method can overcome the problem of sparse spatial data recorded by air quality monitoring
stations and help to obtain long time series and spatially continuous observations. The annual PM2.5

grid data set was derived from a combination of aerosol optical depth (AOD) retrievals from the NASA
Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer
(MISR), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). The GEOS-Chem chemical transport
model and geographically weighted regression model were used to relate the AOD to the near-surface
PM2.5 concentration (https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-
misr-seawifs-aod) [33,34]. The annual ground-level NO2 grids were derived from the Global Ozone
Monitoring Experiment (GOME), Scanning Imaging Absorption SpectroMeter for Atmospheric
CHartographY (SCIAMACHY), and GOME-2 satellite retrievals. GEOS-Chem (https://sedac.ciesin.
columbia.edu/data/set/sdei-global-3-year-running-mean-no2-gome-sciamachy-gome2) was also used
to relate the tropospheric NO2 column densities and the NO2 concentrations at ground level [35]. PM2.5

and NO2 grids with original spatial resolutions of 0.01 and 0.1 degrees, respectively, were resampled
to 1 km grids for subsequent analysis (Figure 3). Due to the lack of data, we replaced the 2015 NO2

concentration with the 3-year mean of 2010–2012.
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Figure 3. Spatial pattern of PM2.5 (a) and NO2 (b) concentrations in 2015 for the Beijing-Tianjin-
Hebei region.

2.3.2. Urban Form Indicators

We used land use data with a 30 m resolution to extract urban extent and calculate urban geometric
indicators. The data were derived from the Resource and Environment Data Cloud Platform, Chinese
Academy of Sciences (CAS) (http://www.resdc.cn/DataList.aspx). First, we took 2015 as a reference
year for the identification of city samples and their boundaries. We selected the urban patches in 2015
according to the land use classification and merged the connected urban patches into one city sample
since some cities may grow beyond their administrative boundaries. In this way, we obtained 150

https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod
https://sedac.ciesin.columbia.edu/data/set/sdei-global-3-year-running-mean-no2-gome-sciamachy-gome2
https://sedac.ciesin.columbia.edu/data/set/sdei-global-3-year-running-mean-no2-gome-sciamachy-gome2
http://www.resdc.cn/DataList.aspx
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independent urban units. Then, based upon the boundaries of the 150 urban units and the land use maps
in different years, we calculated the landscape metrics AREA, AI, and FRAC for each urban unit in each
year. The POPDEN dataset was obtained from the Center for International Earth Science Information
Network at Columbia University (available at https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-
population-count-rev10). The Defense Meteorological Satellite Program (DMSP) Operational Line-scan
System (OLS) night time light (NLT) version 4 stable average visible data were obtained from the NOAA,
National Geophysical Data Center (http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html),
and then the NTL data were calibrated via the ridgeline sampling regression method to obtain a
consistent NLI time series [36]. Due to the lack of NLI data in 2015, we used the data in 2013 as a
replacement. The calculations of FRAC and AI were performed in FRAGSTATS 4.2 software developed
and supported by Dr. McGarigal and Dr. Cushman.

2.3.3. Control Variables

We further took meteorological and vegetation factors as control variables. The annual average
WIND and PREC data were based on the existing Princeton reanalysis data, GLDAS (Global Land
Data Assimilation System) data, GEWEX-SRB (Global Energy and Water Cycle Experiment—Surface
Radiation Budget) radiation data, and TRMM (Tropical Rainfall Measuring Mission) PREC data as the
background field, which are integrated with the records from meteorological stations in China [37].
The meteorological data with a spatial resolution of 0.1 degrees were resampled to 1 km for the zonal
statistics. The normalized difference vegetation index (NDVI) was obtained from MODIS datasets
(MOD13Q1) with a spatial resolution of 250 m. We used the growing season data as the annual
measurement of urban vegetation coverage.

2.4. Statistical Methods

2.4.1. Econometric Models

A panel data model for the period 2000–2015 was utilized in this study. The panel model has
several major advantages over conventional cross-sectional or time series models [38,39]: It usually
has high-power control of individual heterogeneity and can help reduce the effects of multicollinearity
among the variables and increase the degrees of freedom [38]. We used two methods for estimating
unobserved effect panel data models, namely, the FE estimator and the random effect estimator.
Let APIij be the air pollution indicator of the tth year (t = 2000, 2005, 2010, 2015) in the ith city
(I = 1, 2, . . . , 150). We modeled the relationships between APIs and UFIs:

ln(APIit) = µ+ β ln(UFIit) + Ui + εit (1)

where APIit is the air pollution indicator of the tth year at the ith urban unit; µ is a scalar coefficient;
β is a vector of the parameters; Ui denotes the individual effect of the ith urban unit, capturing the
idiosyncratic characteristics of each urban unit; εit denotes the random error of the tth year at the ith
urban unit; and UFIit is a vector of the urban form factors.

Before conducting the panel data model, we used the Hausman test to decide whether the FE
model or random effect model should be used [40]. We applied the natural logarithm transformation
to all the independent variables to avoid nonstationarity and heteroskedasticity phenomena in the
time series [41]. A log transformation was applied for APIs, and then the elastic estimation coefficient
was obtained.

2.4.2. Subsample Modeling for City in the Context of Various Natural and Social Conditions

To gain insight into the differences in the relationship between urban form and air pollution in
the context of various natural and social conditions, we regrouped the cities from three perspectives
and modeled them separately. First, we classified the cities according to their built-up areas as of

https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev10
https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev10
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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2015, using the criteria proposed in a previous study [42]. According to urban area size [42,43],
these cities were divided into two categories of different sizes, including small-sized cites (≤50 km2)
and medium/large-sized cities (>50 km2). Then, we divided all cities into two categories according to
their elevation [44], including low-elevation cities (<500 m above sea level) and medium/high-elevation
cities (≥500 m). Finally, we calculated the road density based on the road network obtained from
the Baidu Map data of 2015, taking into account all levels from national roads to township roads.
We divided the cities into low road density cities and high road density cities using the classification
criteria determined according to the natural breakpoint of the road density of all cities.

2.4.3. Linear Regression Model with Multiplicative Interaction

Because POPDEN has led to one of the most important debates on compact city issues, we used
the linear regression model with multiplicative interaction terms to estimate the conditional marginal
effect of POPDEN on air pollution concentrations across different levels of NLI, AI, and FRAC. At the
same time, the conditional marginal effect of NLI, AI, or FRAC on air pollution concentrations across
different levels of POPDEN were also obtained.

The linear regression model with multiplicative interaction terms is a common model for examining
whether the relationship between an outcome Y and a key independent variable D varies with the levels
of a moderator X, which is often used to capture the differences in the context [22,45]. For example,
the effect of D on Y may grow with higher levels of X. Such conditional hypotheses are ubiquitous in
many social and natural sciences, and linear regression models with multiplicative interaction terms
are the most widely used framework for testing these conditional hypotheses in applied work [45].
The corresponding formula of this model is as follows:

ln(APIit) = µ+ β1 ln(UFIit) + β2 ln(Dit) ln(Xit) + Ui + εit (2)

where APIit is the API of the tth year at the ith urban unit; µ is a scalar coefficient; β is a vector of
the parameters; Ui denotes the individual effect of the ith urban unit, capturing the idiosyncratic
characteristics of each urban unit; εit denotes the random error of the tth year at the ith urban unit;
and UFIit is a vector of the urban form factors. Dit and Xit denote a key independent variable and a
moderator variable of the tth year at the ith urban unit, respectively. To verify the robustness of the
evaluation of the interaction, we also added the interaction item into the pooled sectional model as
a comparison.

Moreover, we used linear interaction diagnostic (LID) plots to illustrate the marginal effect of D
on Y. In LID plots, the horizontal axis is X, and the vertical axis is the estimated regression coefficient
of D and Y. We further calculated the confidence intervals and binning estimator for comparison
and verification, that is, the estimation results based on the regression of subgroups with high (H),
medium (M), and low (L) values of the indicators. The graph was drawn using the ‘Interflex’ package
of Stata 16 [46].

3. Results

3.1. Change Trends in Air Pollution Level and Urban Form Indicators

From 2000 to 2015, the concentrations of NO2 and PM2.5 in cities showed an upward trend
(Figure 4a–c), especially in the central and eastern regions. Urban land expansion was significant,
especially from 2010 to 2015, which led to dramatic changes in urban form. The probability density
function (PDF) plots (Figure 4d,e) showed that from 2000 to 2015, the average concentrations of
NO2 and PM2.5 increased. However, the peak density of NO2 decreased each year, and the density
curve became low and fat, indicating that the number of heavily polluted cities increased. The trends
in the AI and FRAC were concave curve and convex curve with inflection trends, respectively
(Figure 4f). Other indicators of urban morphology, including NLI, AREA, and POPDEN, displayed
rising trends. The change in NDVI showed fluctuations. These results showed that the urban form of
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the Beijing-Tianjin-Hebei urban agglomeration produced an uncertain trend in terms of expansion
mode and urban greening, which may be related to the lack of unified macro planning guidance.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 21 
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of the urban form indicators (UFIs) from 2000 to 2015. The darker color of the boxplot means that the
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3.2. Panel Data Model Estimations

The results of the F test and Hausman test showed that it was reasonable to add individual FEs to
the panel model (Table 2). The results showed that the combination of AREA, geometry, vegetation,
and meteorological factors well fitted the PM2.5 and NO2 concentrations in the individual FE model,
and the corresponding R2 values were up to 0.63 and 0.69, respectively (Table 2). The significant
estimation coefficients of the influence of all urban morphology indexes on the concentrations of the
two pollutants were obtained by FE regression (Table 3). The results showed that the increases in
NLI, AREA, POPDEN, AI, and FRAC increased PM2.5 and NO2 concentrations. The increase in WIND
significantly reduced the concentrations of the two pollutants. PREC showed a greater effect on PM2.5

concentration but no significant effect on NO2. In contrast, the NDVI showed a greater impact on NO2

than on PM2.5. More significantly, the coefficients (0.1–0.9 for PM2.5 and 0.6–2.2 for NO2) of the three
indexes of NLI, AREA, and POPDEN were much lower than those of the two geometric shape indexes
(1.8–5.1 for PM2.5 and 5.2–9.7 for NO2), which suggests that the change in AI or FRAC with the same
proportion plays a much greater role in air pollution than other UFIs.

Table 2. Results of the fixed effect (FE) model and individual effect test.

Fitness (FE) F Test Hausman Test
R2 Adj R2 F Value p Value Chi-Squared p Value

PM2.5 0.6338 0.5037 37.37 <0.001 22.38 <0.01
NO2 0.6919 0.5824 19.69 <0.001 24.32 <0.01

Table 3. Estimations of the FE models.

PM2.5 NO2
Estimate Std. Error Statistic p Estimate Std. Error Statistic p

ln(NLI) 0.27 0.03 10.38 0.000 0.47 0.05 8.76 0.000
ln(POPDEN) 0.90 0.10 8.65 0.000 2.19 0.21 10.38 0.000

ln(AI) 5.06 1.57 3.21 0.001 9.69 3.18 3.04 0.002
ln(FRAC) 1.85 0.49 3.77 0.000 5.17 0.99 5.21 0.000
ln(AREA) 0.13 0.04 3.57 0.000 0.59 0.08 7.78 0.000
ln(WIND) −0.07 0.04 −1.72 0.086 −0.25 0.08 −3.07 0.003
ln(PREC) 0.09 0.03 2.91 0.004 −0.07 0.06 −1.21 0.292
ln(NDVI) 0.04 0.05 0.74 0.457 −0.24 0.10 −2.41 0.018

3.3. The Relationships between Air Pollution and Urban Form Factors in Cities with Different Conditions

The classification of cities showed that cities below 500 m were mainly located in the North China
Plain, while those above 500 m were mainly located in the Bashang Plateau [47] (Figure 5a). Medium
and large cities, i.e., cities with an area of more than 50 km2, had relatively scattered geographical
distribution (Figure 5b), which was similar to the distribution of cities with higher road network
density (Figure 5c). According to the violin charts of PM2.5 and NO2 concentrations in the cities with
different scales, elevations and road network densities from 2000 to 2015 (Figure 5d), there were change
patterns of the air pollution. The air pollution level in low-elevation and medium/large cities was
higher and changed faster. In contrast, cities with sparse road networks had more serious air pollution
levels and the most rapidly increased trends.
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Figure 5. The locations of cities with different elevations (a), area scales (b), and road network densities
(c) and their respective statistical distribution of air pollution levels (d).

The results of sub panel models showed that the coefficients of most factors were similar to the
coefficients of the whole regional scale regression (Table A1). However, the effects of various factors on
air pollution differed between cities with different elevations, city sizes, and road network densities.
In general, the regression R-square of cities with medium/large size, medium/high elevation, and low
road network density is higher than that of small cities, cities with low elevation, and high road
network density, respectively. As Figure 6 shows, from the perspective of urban scale, in the PM2.5

model, the elasticity coefficients of POPDEN, AI, FRAC, and WIND are significant, and their absolute
values are larger in small cities, whereas AREA has a greater impact on air pollution in larger cities.
From the perspective of elevation, in the PM2.5 model, POPDEN and PREC have a greater impact on
the PM2.5 of the medium/high- elevation cities, while NLI, FRAC, AREA, and WIND have the opposite
effect. The difference in the regression coefficient of the NO2 model is consistent with that of the PM2.5

model except for NLI and POPDEN. From the perspective of road network density, NLI and POPDEN
have a greater impact on cities with a low road network density, while AREA has a greater impact on
cities with a high road network density.
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3.4. The Internal Interactions of Urban Form Factors

In the FE model and pooled sectional linear model, the multiplicative interaction terms including
POPDEN were added, and the regression estimation results are shown in Table 4. In the FE model,
only in models A1 and B1, the main effect items and interaction items are statistically significant
synchronously, while in the pooled sectional linear model, the interaction items are mostly significant.
However, adding the interaction terms of POPDEN and NLI/AI/FRAC significantly increased the
R-square of the FE model by approximately 0.06, while the improvement of the pooled sectional model
is relatively small or even opposite.

We focused on the analysis of models A1 and A2 with significant interaction terms and obtained
the LID plots shown in Figure 7a–d. As a contrast, we also present the results derived from pooled
sectional models, as shown in Figure 7e–h. The results of the binning estimator are also shown
on all plots. Figure 7 shows that the positive or negative marginal effects of the binding estimator,
the FE model, and the pooled sectional model are consistent, while the binning estimators have wider
confidence intervals. There is also clear evidence of an interaction as the slope of the line that captures
the relationship between NLI on PM2.5 is positive at low levels of POPDEN, flat at medium levels
of POPDEN, and negative at high levels of POPDEN. Figure 7b,d show that when the POPDEN
increases, the air pollution in the cities with a low economic development level and low morphological
compactness will be impacted more greatly.
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Table 4. Estimations of the FE panel models with different interaction items.

PM2.5 NO2
FE Panel Model Pooled Sectional Linear Model FE Panel Model Pooled Sectional Linear Model

Model_A1 Model_A2 Model_A3 Model_B1 Model_B2 Model_B3 Model_C1 Model_C2 Model_C3 Model_D1 Model_D2 Model_D3

ln(NLI) 0.754 *** 0.257 *** 0.262 *** 2.212 *** 0.166 ** 0.175 ** 0.179 0.429 *** 0.435 *** 2.915 *** 0.171 * 0.165
ln(POPDEN) 2.087 *** 14.03 * 1.429 *** 2.639 *** 81.74 *** 0.189 2.487 *** 22.76 2.734 *** 3.580 *** 119.6 *** 0.520 **
ln(AI) 3.994 ** 23.09 * 4.319 ** 14.07 *** 134.5 *** 15.46 *** 8.426 ** 37.96 8.072 ** 8.815 184.9 *** 12.35 *
ln(FRAC) 1.502 *** 1.444 ** 2.948 0.941 0.534 5.659 4.804 *** 4.709 *** -0.369 2.057 1.442 21.50 *
ln(AREA) 0.0971 ** 0.0972 ** 0.101 ** 0.262 *** 0.234 *** 0.141 * 0.496 *** 0.485 *** 0.500 *** 0.460 *** 0.435 *** 0.317 **
ln(WIND) 0.731 *** 0.711 *** 0.717 *** −0.243 −0.417 *** −0.387 ** 1.026 *** 1.022 *** 1.038 *** 0.122 −0.114 −0.0445
ln(PREC) 0.0268 *** 0.0263 *** 0.0269 *** 0.00275 0.00208 0.00184 0.0436 *** 0.0431 *** 0.0428 *** −0.0673 ** −0.0682 ** −0.0671 **
ln(NDVI) 0.0460 0.0509 0.0460 0.840 *** 0.925 *** 0.982 *** −0.343 *** −0.339 *** −0.337 *** 0.890 *** 0.995 *** 1.041 ***
ln(POPDEN) × ln(NLI) −0.0754 ** −0.312*** 0.0395 −0.418 ***
ln(POPDEN) × ln(AI) −2.747 * −17.80 *** −4.330 −26.05 ***
ln(POPDEN) ×
ln(FRAC) −0.204 −0.625 0.731 −2.638 *
Cons. −33.93 *** −117.1 ** −31.08 *** −86.00 *** −621.8 *** −77.11 *** −59.98 *** −198.1 * −60.01 *** −71.90 *** −857.2 *** −68.90 **

R2 0.6969 0.6939 0.6914 0.4225 0.443 0.3841 0.7192 0.7202 0.7192 0.3512 0.3775 0.3238
R2(without interation
item) 0.6338 0.6338 0.6338 0.4225 0.4225 0.4225 0.6919 0.6919 0.6919 0.3512 0.3512 0.3512

Signif codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘.’ 1.
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Figure 7. Linear interaction diagnostic plots. The above plots examine the marginal effects plot,
marginal effects estimate from the model (blue line) and the binning estimator (red dots). H, M, and L
represent subgroups with high-, medium-, and low-level indicators, respectively. (a–d) illustrate the
interactions in the FE model, while (e–h) illustrate the interactions in the pooled sectional model.
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4. Discussion

4.1. The Influence of Urban Form on Air Pollution

The rise in AI and FRAC show a negative impact on air quality. Our results regarding AI are
consistent with the findings of Yupeng Liu on Chinese cities at the national scale [48,49] and the findings
of Qiannan She of the Yangtze River Delta in China [50]. However, these results are inconsistent with
the findings of Bereitschaft and Debbage [51] in the United States and the findings of Shi et al. [42] in
Chinese cities. Note that the latter used the urban continuity index and percentage of like adjacencies
index to represent the urban agglomeration degree. In contrast, our FRAC results are consistent with
most of the existing studies [51]. Considering that we set control variables in the regression and used
a reliable FE panel model [21], our results provide a reliable reference for understanding the role of
urban morphology at the regional scale.

AI represents the dispersion or aggregation distribution of multiple patches, which is closely
related to the traffic flow inside and between cities, further affecting the air pollutant emissions caused
by traffic [5,52]. On the one hand, the separated leapfrog urban form corresponding to low AI leads to
an increase in long-distance travel flow between urban patches, which has been suggested to have a
negative impact on urban air quality. On the other hand, the high AI corresponding with an aggregated
and monocentric urban form has a negative impact on ventilation and convective efficiency in the city.
In addition, the high concentration of corresponding social and economic resources will increase local
traffic flow and cause traffic congestion, and the low-efficiency vehicle driving conditions will increase
the emissions of NO2 and PM2.5 and accelerate the generation of secondary particles. The negative
impact of high AI seems to be more significant in the Beijing-Tianjin-Hebei urban agglomeration than
in other regions.

High FRAC can better represent disordered urban sprawl development, and the extra traffic
burden it causes can be better correlated with the increase in air pollution emissions. Fragmented
cities with highly convoluted, irregular boundaries are expected to have higher nonpoint emissions
(primarily from automotive sources) [51], as well as higher secondary aerosol contributions (e.g., NO2

and SO2) to particulate matter (PM) pollution [53]. Although the confirmation of this positive or
negative relationship is consistent with the existing research, the relatively larger coefficients of FRAC
and AI that we obtained suggest the interesting potential impact of minor changes in urban geometry.

4.2. The Influences of Natural Conditions and Urban Characteristics and Their Implications for Urban Planning

The results of the sub panel models show that planning strategies should be adjusted for cities
with different geographical environments and urbanization characteristics. This is consistent with
or conflicting with the conclusions of the existing studies based on sub panel or cross-sectional
models. For example, for small size cities, the population density and morphological sprawl need
to be well managed. This is similar to Bechle et al.’s research results based on 1274 global cities [11],
whose study showed that the impact of morphological compactness on the concentration of NO2 in
small-population sized cities is significantly higher than that in large-scale cities, and the value of
the regression coefficient of the small-scale compactness index is more than twice the value of the
global scale regression coefficient. However, our conclusion is inconsistent with that of one research
based on 830 cities in East Asia [54]. Larkin et al. found that the impact of urban sprawl index on NO2

concentration is greater in large sized cities, while the impact on PM2.5 concentration is the largest in
medium-sized cities. It is worth noting that these two studies used a cross-sectional rather than panel
data research design, which might be one important reason for the inconsistent results.

For medium/large cities, it is more important to prevent excessive urban area expansion. This is
consistent with the conclusion of another study based on sub panel models, whose results show that
urban expansion had more significant positive impacts on PM2.5 concentration in medium/large-sized
cites (>50 km2). For the plain cities at low elevation, the control of social economic intensity plays an
important role in clean air, but for the cities at medium/high elevation, the control of POPDEN has a
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profound impact. The influence of elevation on the relationship between urban form and air pollution is
closely related to meteorological conditions. The low-elevation areas of the Beijing-Tianjin-Hebei region
are mainly located on the North China Plain, which is bordered on the north by the Yanshan Mountains
and on the west by the Taihang Mountains’ edge of the Shanxi Plateau [55]. This terrain causes the
North China Plain to be dominated by a cold high pressure system with low surface wind speeds,
sometimes also accompanied by surface temperature inversion [55]. Therefore, the air pollutants
produced by socio-economic activities are favorable for the formation of haze or fog, and usually lead to
high levels of pollutants concentration due to weak mixing and dispersion [55,56], and thus the larger
regression coefficient corresponding to the variable of NLI. For cities with low road network density,
NLI and POPDEN have a greater impact, implying that the improvement of traffic efficiency brought
by the construction of adequate traffic infrastructure can effectively reduce the impact of POPDEN and
economic growth on air pollution, and possibly a reduction of per capita air pollutant emissions.

4.3. Implications of Interactions among Urban Form Indicators for Urban Planning

In most previous studies, the effect of each urban form indicator was considered separately,
without consideration of their interactions. Our research shows that the increase of POPDEN has
an overall improvement on the air pollution of the cities in the Beijing-Tian-Hebei region. However,
the results of interaction analysis reveal that this effect is context-dependent, which is regulated by
social and economic conditions (represented by NLI) and morphological aggregation.

The analysis of the interaction between NLI and POPDEN shows that social and economic
development will reduce the impact of population growth density. According to the Environmental
Kuznets curve, the development of cities can reduce pollutant emissions through industrial upgrading
and the strengthening of clean policies [10,57], which will further restrain the negative impact of
POPDEN. Therefore, giving priority to areas with higher economic development levels for the increase
of POPDEN, or giving priority to the economic development in areas with more dense populations,
may be effective measures to reduce air pollution on the regional scale.

Previous studies suggested that more concentrated cities have great benefits to help control
pollutant emissions, heat island effect, carbon emissions, etc. [5,10,41,58]. However, from the perspective
of cleaner air, for cities with low population density in the Beijing-Tianjin-Hebei region, the aggregated
urban form is not a good choice. What is more informative is that aggregated urban form can inhibit
the effect of POPDEN on urban air quality deterioration. That is, more aggregated cities can greatly
reduce the negative impact of POPDEN. This is because a more compact city can effectively reduce the
average travel distance and travel mode choice of the population on the urban scale, thus affecting
the overall pollution emissions. This role can have a greater impact in more densely populated areas.
Therefore, in more densely populated areas, it is more urgent to maintain aggregated distribution.
At the same time, excessive urban sprawl should be avoided, since it is difficult to reverse urban
geometry once it has been built and has a lock-in effect on the city [59,60].

The existence of interactions means that the expansion and development of cities will have a
greater joint effect with the evolution of urban forms, which cannot be measured only according to their
respective independent functions. The estimated coefficients from traditional linear models should
be considered more carefully because interactions will lead to the formation of a complex nonlinear
relationship between urban form factors and air pollution indicators and thus not be robust.

5. Conclusions

In this paper, we studied the role of urban form in air pollution based on a panel data model
from multiple perspectives, including elevation, area size, and road density. The results show that
the expansion of AREA, the increase in NLI, high POPDEN, an aggregated layout, and a disordered
sprawl aggravate air pollution. Among the urban form factors, the elastic coefficients of the urban
AI and FRAC are highest at the regional scale. However, NLI, POPDEN, AI, and FRAC are all more
influential in small cities, while AREA has the opposite trend. POPDEN has a greater impact on
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medium/high-elevation cities, while NLI and FRAC have a greater impact on low-elevation cities.
NLI and POPDEN have a greater impact on low-density road network cities, while AREA does not.

The result of the linear regression model with multiplicative interaction provides evidence of
interactions between POPDEN and NLI or AI as the slope of the line that captures the relationship
between NLI on PM2.5 is positive at low levels of POPDEN, flat at medium levels of POPDEN,
and negative at high levels of POPDEN. When the POPDEN increases, the air pollution in a city
with low economic development level and low aggregation degree will be impacted more greatly.
The results imply that in the process of urban development or expansion, urban form optimization and
context-dependent adjustment are urgent.

The first limitation of our study is that most of the urban samples used were small and medium-
sized cities, and more samples are needed to confirm the patterns in medium/large cities. Second,
the relationship between urban form and air pollution may change with season [49], but we did not
consider seasonal variations. Third, this work focused on the regional scale. Although more accurate
assessment can be obtained for these cities, larger-scale observations are necessary because of the strong
heterogeneity of the background characteristics of global cities. Finally, our linear regression model
with multiplicative interaction maintained an important assumption: that the interaction effect is linear.
The linear interaction effect assumption often fails in empirical settings because many interaction
effects are not linear, and some may not even be monotonic. In future studies, it will be meaningful if
the complex interaction among more variables can be included based on a machine learning algorithm
(such as random forest, Gradient Boosting model, or corresponding multi-objective learning model),
which will further deepen the insight into the impact of multi-perspective urban form on air pollution.
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Appendix A

Table A1. Estimations of the FE models of different sizes, elevations, and road densities.

Model of PM2.5 Model of NO2
Area Size Elevation Road Density Area Size Elevation Road Density

Small Medium/Large Low Medium/High Low High Small Medium/Large Low Medium/High Low High

ln(NLI) 0.268 *** 0.556 * 0.245 *** 0.165 0.325 *** 0.187 *** 0.440 *** 0.968 0.551 *** −0.0936 0.496 *** 0.326 ***
(9.47) (2.36) (9.56) (1.76) (8.63) (4.95) (8.03) (1.73) (9.23) (-0.67) (6.99) (4.26)

ln(POPDEN) 0.932 *** 0.451 * 1.032 *** 6.921 *** 1.301 *** 0.673 *** 2.522 *** 0.651 2.260 *** 10.90 *** 4.306 *** 1.186 ***
(7.58) (2.14) (10.98) (3.83) (6.76) (5.29) (10.58) (1.30) (10.32) (4.02) (11.90) (4.60)

ln(AI) 5.031 ** 6.050 2.872 5.243 5.643 * 4.344 * 10.56 ** −4.887 8.875 * 12.72 7.047 12.41 **
(3.03) (0.95) (1.93) (0.91) (2.53) (2.01) (3.27) (−0.32) (2.56) (1.47) (1.68) (2.83)

ln(FRAC) 1.842 *** 3.607 1.222 ** 3.511 1.914 ** 1.419 * 5.352 *** 7.690 5.151 *** 1.264 3.906 ** 4.869 ***
(3.51) (1.84) (2.73) (1.62) (2.77) (2.06) (5.25) (1.65) (4.94) (0.39) (3.01) (3.48)

ln(AREA) 0.149 *** 0.644 ** 0.0981 ** 0.188 0.0740 0.245 *** 0.642 *** 2.031 *** 0.533 *** 0.705 * 0.310 *** 0.981 ***
(3.43) (3.37) (2.91) (0.95) (1.52) (4.09) (7.61) (4.47) (6.78) (2.38) (3.39) (8.05)

ln(WIND) −0.0943 * −0.0271 −0.112 ** 0.162 −0.137 * −0.00764 −0.308 *** −0.313 −0.298 *** −0.433 −0.368 *** −0.170
(−2.16) (−0.28) (−3.10) (0.80) (−2.50) (-0.13) (−3.64) (−1.34) (-3.54) (-1.43) (−3.59) (−1.47)

ln(PREC) 0.0915 ** 0.0421 0.0588 * −0.272 * 0.0868 * 0.0758 −0.0501 −0.324 −0.0942 −0.127 −0.0802 −0.109
(2.81) (0.50) (2.07) (−2.09) (2.09) (1.74) (−0.79) (−1.63) (−1.42) (−0.65) (−1.03) (−1.23)

ln(NDVI) 0.0450 0.0124 0.0151 0.310 0.0196 0.117 −0.184 0.192 −0.266 * 0.142 −0.255 * −0.00773
(0.85) (0.09) (0.34) (1.71) (0.31) (1.51) (−1.79) (0.58) (−2.54) (0.52) (−2.16) (−0.05)

Cons. −28.18 *** −33.87 −18.58 ** −71.02 * −33.81 ** −23.50 * −67.62 *** 3.172 −58.63 *** −129.3 ** −63.67 ** −68.26 ***
(−3.72) (−1.19) (−2.76) (−2.41) (−3.31) (−2.40) (−4.60) (0.05) (−3.73) (−2.93) (−3.31) (−3.44)

N 546 54 516 84 328 272 546 54 516 84 328 272
R2 0.623 0.854 0.660 0.783 0.654 0.647 0.714 0.831 0.709 0.753 0.751 0.713

Note: In parentheses are the t statistics corresponding to the coefficients. The t statistics in parentheses = “* p < 0.05, ** p < 0.01, *** p < 0.001”.
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