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Abstract: The retrieval of chlorophyll-a (Chl-a) concentrations relies on empirical or analytical
analyses, which generally experience difficulties from the diversity of inland waters in statistical
analyses and the complexity of radiative transfer equations in analytical analyses, respectively.
Previous studies proposed the utilization of artificial neural networks (ANNs) to alleviate these
problems. However, ANNs do not consider the problem of insufficient in situ samples during model
training, and they do not fully utilize the spatial and spectral information of remote sensing images
in neural networks. In this study, a two-stage training is introduced to address the problem regarding
sample insufficiency. The neural network is pretrained using the samples derived from an existing
Chl-a concentration model in the first stage, and the pretrained model is refined with in situ samples
in the second stage. A novel convolutional neural network for Chl-a concentration retrieval called
WaterNet is proposed which utilizes both spectral and spatial information of remote sensing images.
In addition, an end-to-end structure that integrates feature extraction, band expansion, and Chl-a
estimation into the neural network leads to an efficient and effective Chl-a concentration retrieval.
In experiments, Sentinel-3 images with the same acquisition days of in situ measurements over Laguna
Lake in the Philippines were used to train and evaluate WaterNet. The quantitative analyses show
that the two-stage training is more likely than the one-stage training to reach the global optimum
in the optimization, and WaterNet with two-stage training outperforms, in terms of estimation
accuracy, related ANN-based and band-combination-based Chl-a concentration models.

Keywords: chlorophyll-a concentration retrieval; artificial neural network; optical satellite image

1. Introduction

Eutrophication occurs when a water body becomes overly enriched with nutrients, e.g., phosphorus
and nitrogen. Aquaculture managers add nutrient fertilizers to increase the density and productivity
of commercial fish. However, the oversupply of nutrients might cause eutrophication, and consequently,
algal blooms which refer to excessive algal growth due to the increased availability of nutrients arise
that causes the degradation of water quality [1]. Several works reported that Europe and USA
suffer economic losses of approximately 1 billion and 100 million USD per year, respectively, due
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to eutrophication [2,3]. The avoidance of eutrophication and the monitoring of Chl-a concentrations
are thus important not only for the improvement of human health but also for the reduction
of financial losses.

Long-term water quality monitoring and measurement is necessary and has become a growing
global concern. The collection of reliable water quality data is crucial to enable administrators
to understand the types and severity of water quality impairments. The conventional approach, which
involves collecting and analyzing water samples in a professional laboratory, can accurately extract
water quality parameters, such as chlorophyll-a (Chl-a) concentration, colored dissolved organic matter
(CDOM), and total suspended sediment, at few sampling stations. However, this approach is labor
intensive and time consuming when long-term monitoring and management are required.

Several researchers proposed the utilization of optical satellite images for water quality monitoring
in the 1970s. Since then, numerous satellite images and methods have been proposed to link the spectral
information of remote sensing images and the water quality parameters, especially Chl-a concentrations
which is a measure of phytoplankton biomass and frequently used to indicate algal blooms [4].
For example, Ha et al. [5], Kown et al. [6], and Van Nguyen et al. [7] used Landsat-8 OLI sensor which
provides a moderate spatial resolution, which is 30 m × 30 m for a pixel. However, in addition to
that designed for land, the Landsat-8 image has only five spectral bands available for the purpose
of water bodies. On the other occasion, González Vilas et al. [8], Li et al. [9], and Zhang et al. [10]
utilized Medium Resolution Imaging Spectrometer (MERIS) images to assess the Chl-a concentrations
estimation. MERIS images are dedicated for water and provide a more detailed variation in spectral
resolution with 15 spectral bands available for assessing in-water parameters. MERIS images cover
300 m × 300 m in reality, better than the other water-dedicated images such as SeaWIFS, MODIS, and
NOAA. Cristina et al. [11] and Toming et al. [12] preferred to employ Sentinel-3 image which continues
the legacy of MERIS image whose operation was ended in 2012. It even has similar spatial resolution,
and Sentinel-3 provides six additional spectral bands than MERIS image and has recently become the
most advanced water-dedicated image [13]. The signals recorded at at-sensor radiance are partially
contributed from photons scattered by gases and aerosols in atmosphere. The main challenge in using
such orbital data is the removal of atmospheric effects [14]. The methods to remove atmospheric
effects, called atmospheric correction, can be classified as absolute and relative correction. The absolute
correction predicts and removes the scattering due to gases and aerosols in the atmosphere [15,16],
and several models have been proposed for water bodies [17–19]. By contrast, the relative correction
minimizes numerical differences among images using image processing techniques [20–23].

Once the atmospheric effect is reduced, the remote sensing reflectance (Rrs) is used in Chl-a
concentration estimation. The methods to estimate the Chl-a concentration from Rrs can be classified
into empirical- and analytical-based methods. Empirical models are generally based on regression
between Chl-a concentrations and Rrs of spectral bands (e.g., single band, multiple bands, and band
combination) [24–26]. Dall’Olmo and Gitelson [27] proposed a three-band model that employs
the maximum ratio of the remote sensing reflectance of two blue (443 and 490 nm) and one green
spectral band (560 nm) to determine Chl-a concentrations. On the other occasion, Al Shehhi et al. [28]
utilized red spectral band (645 nm) instead of green (560 nm) in the three-band modelling. Researchers
converted and simplified a three-band model into a two-band model, in which the blue spectral
band at 443 nm was removed [29,30]. With respect to the appreciable information in the spectral
domain, Barnes et al. [31] utilized all available bands of the MERIS sensor in band combinations
to develop a Chl-a retrieval model, and several methods [7,10,32–34] determine important features
which are sensitive to Chl-a concentration from a pool of band combination. Take Sentinel-3 satellite
images and a two-band combination as an example. With 16 spectral bands of Sentinel-3, the number
of combinations of the two band ratio are C16

2 , which means that 120 candidates are available for Chl-a
concentration estimation. The combination can be extended to three- and even four-band combinations,
and the function in the band ratio can be altered by other functions. These changes result in a large pool
of feature candidates. In contrast to empirical methods, analytical methods [35,36] transform remote
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sensing reflectance into the inherent optical properties (IOPs) of water using the radiative transfer
equation (RTE) and further link the estimated IOPs to Chl-a concentrations. However, the accuracy
of Chl-a concentration retrieval might be unstable because of the difficulty of approximating the spectral
shapes of IOPs [37].

Artificial neural networks (ANNs) have been utilized in geospatial fields with various
applications [8,38–40]. ANN is called glorified regression because of the network’s nonlinear modeling
feature. Ioannou et al. [37,41] used ANN instead of RTE to model IOP coefficients from simulated
Rrs. The obtained IOP coefficients were then used to retrieve Chl-a concentrations. Buckton et al. [42]
proposed an ANN-based empirical model that directly links Rrs to Chl-a concentrations. A three-layer
structure, consisting of input, hidden, and output layers, was adopted in these ANN-based studies, and
the results reveal the capability of ANNs to retrieve Chl-a concentrations. Furthermore, Hafeez et al. [43]
searched for the optimal neural structure and parameters including the number of hidden layers and
neurons by using exhaustive search. The study further compared the determined optimal ANN model
with models based on other machine learning methods, including random forest, cubist regression, and
support vector regression, for Chl-a concentration estimation. The experimental results revealed that
the optimal ANN model has better performance. However, these ANN-based models are pixel-based
models, and thus, Chl-a concentrations are estimated from the variations of the remote sensing reflectance
in the spectral bands of a pixel. In other words, the models do not consider local spatial information.
In addition, ANN-based models suffer from the problem of insufficient in situ samples. Training an ANN
model requires a large set of labelled samples and good initial values for optimization. Training with
few samples will lead to overfitting problems, and unsuitable initial values will make the convergence
of the loss function to the global minimum difficult. Kown et al. [6] utilized around 90 in situ Chl-a
concentration samples in the middle of the South Sea of Korea to train a three-layered ANN. Similar
quantity was also acquired by El-habashi et al. [44]. Some researchers utilized a spectra simulation
technique, such as Hydrolight and WASI3D, to simulate the Rrs and Chl-a concentration samples for
data enrichment, and the simulated samples were further used to train the ANN models [37,41,42].
Ioannou et al. [37] reported that a slight underestimation appeared, possibly because of the simulation.

In the present study, a Chl-a concentration estimation model based on a convolutional neural
network (CNN), called WaterNet, is proposed. WaterNet is an end-to-end model that integrates feature
extraction, band expansion, and Chl-a estimation into the neural network. 3D convolutional kernels are
utilized in which both spectral and spatial information in images are adopted in the neural network.
Therefore, the proposed WaterNet can handle artificial objects in water bodies, such as aquaculture cages
and aquatic plants, and alleviate the influence of satellite instrumental errors. In addition, a two-stage
training consisting of pretraining and refinement is proposed to address sample insufficiency. WaterNet
is pretrained by utilizing the Chl-a concentrations derived from an existing Chl-a concentration model
in the first stage. Then, the in situ samples are used to refine the pretrained model in the second
stage. The proposed method provides two contributions: (1) the introduction of WaterNet, which is
an end-to-end CNN-based model; and (2) the introduction of a two-stage training that can alleviate
the problem of insufficient in situ samples.

2. Materials and Methods

2.1. Study Area and Datasets

The study area is Laguna Lake (Figure 1), which is the largest lake in the Philippines with an area
of 900 km2. The average depth is 2.8 m and the shoreline length is 220 km. The water resources
of Laguna Lake are used to provide water supply, enable the transportation of people and goods between
communities, and support the aquaculture industry [45]. The aquaculture structures occupy nearly
150 km2 (around 17%) of the total lake area and most are fish farms including 14 indigenous species and
19 exotic species [46]. The rapid growth of the population and urbanization in Manila is producing large
amounts of wastewater and inorganic materials, which threaten the water quality of Laguna Lake.
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and South Bays, and East Bay, and the samples in one region were collected in each campaign. The 
starting point and time to take samples were on a local port located in-between the West and Central 
Bays and at around 8 a.m. to match the satellite acquisition time. Completing a field survey in West 
or Central Bay requires around 5 h, excluding the installation and uninstallation of the tools on the 
boat. Going to the East Bay from the port requires 2–3 more hours, and the survey might not able to 
match the sampling and acquisition time. Therefore, no data were collected in East Bay during the 
period. 

An along-track Chl-a data logger, Infinity-CLW ACLW2-USB produced by JFE Advantech Co., 
Ltd., was installed on a boat with a depth of 0.5 m to measure the Chl-a concentrations for each 
second, while speed of the boat was around 10 kph. The Chl-a data logger recorded around 15,000 
samples in one campaign. However, several successive samples were mapped to a pixel in the 
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resolution. Moreover, outlier removal and data aggregation were performed in data preprocessing 
to partially remove noises from the measured Chl-a concentrations. Specifically, a sample was 
removed if two successive records of Chl-a concentrations showed considerable differences or if the 
Chl-a concentrations exceeded the interquartile range of the dataset collected in one campaign. Then, 
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samples that were geographically mapped to that pixel. A total of 257 in situ samples were collected 
from the field campaigns. The statistical information of the in situ samples is summarized in Table 1. 

Table 1. Summary of field campaigns in 2019 (fourth column: number of samples; fifth column: range 
of chlorophyll-a (Chl-a) concentrations). 

Campaign Date  Region Samples # Chl-a Conc. (μg/L) 
1st January 11  West 35 11.339 ± 0.592  
2nd March 29  Center 74 7.906 ± 0.165  
3rd April 6  West 98 8.483 ± 1.230 
4th April 26  Center 22 7.254 ± 0.323  
5th April 30  West 48 9.598 ± 0.822 

Total samples 257 8.639 ± 1.538 
Sentinel-3 was launched by the European Space Agency as a part of the Copernicus Programme. 

Sentinel-3 was expected to continue the legacy of the MERIS in extracting a wide range of information 
about optically significant constituents in water bodies. Therefore, Sentinel-3 OLCI images were 
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Figure 1. Study area. Left: Laguna Lake and the routes of the five campaigns visualized by colors.
Right: aquaculture cages (white rectangles) in Laguna Lake.

Field data were collected on five different days in January–April 2019, covering up the dry season.
Completing the collection of all samples in one campaign and one day is difficult because of the huge
area of the lake. Therefore, the study area was divided into three regions: West Bay, Central and South
Bays, and East Bay, and the samples in one region were collected in each campaign. The starting
point and time to take samples were on a local port located in-between the West and Central Bays
and at around 8 a.m. to match the satellite acquisition time. Completing a field survey in West
or Central Bay requires around 5 h, excluding the installation and uninstallation of the tools on the boat.
Going to the East Bay from the port requires 2–3 more hours, and the survey might not able to match
the sampling and acquisition time. Therefore, no data were collected in East Bay during the period.

An along-track Chl-a data logger, Infinity-CLW ACLW2-USB produced by JFE Advantech Co.,
Ltd., was installed on a boat with a depth of 0.5 m to measure the Chl-a concentrations for each second,
while speed of the boat was around 10 kph. The Chl-a data logger recorded around 15,000 samples
in one campaign. However, several successive samples were mapped to a pixel in the satellite images
because of the differences between the sampling resolution and the image spatial resolution. Moreover,
outlier removal and data aggregation were performed in data preprocessing to partially remove
noises from the measured Chl-a concentrations. Specifically, a sample was removed if two successive
records of Chl-a concentrations showed considerable differences or if the Chl-a concentrations exceeded
the interquartile range of the dataset collected in one campaign. Then, the Chl-a concentration of a water
pixel was obtained by averaging the Chl-a concentrations of the samples that were geographically
mapped to that pixel. A total of 257 in situ samples were collected from the field campaigns.
The statistical information of the in situ samples is summarized in Table 1.

Table 1. Summary of field campaigns in 2019 (fourth column: number of samples; fifth column: range
of chlorophyll-a (Chl-a) concentrations).

Campaign Date Region Samples # Chl-a Conc. (µg/L)

1st January 11 West 35 11.339 ± 0.592
2nd March 29 Center 74 7.906 ± 0.165
3rd April 6 West 98 8.483 ± 1.230
4th April 26 Center 22 7.254 ± 0.323
5th April 30 West 48 9.598 ± 0.822

Total samples 257 8.639 ± 1.538

Sentinel-3 was launched by the European Space Agency as a part of the Copernicus Programme.
Sentinel-3 was expected to continue the legacy of the MERIS in extracting a wide range of information
about optically significant constituents in water bodies. Therefore, Sentinel-3 OLCI images were
selected as remote sensing images in the current work. The satellite carries seven sensors, including
Ocean and Land Color Instrument (OLCI) which contains 21 spectral bands with the wavelengths
ranging from visible to near-infrared. To avoid the atmospheric effect, this study adopts level-2 water
full-resolution (WFR) images which contain 16 atmospherically-corrected spectral bands of 300 m
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spatial resolution, including Bands 1–12, 16–17, and 20–21, and two Chl-a concentration channels
built by using the inverse radiative transfer model-neural network (IRTM-NN) [47] and OC4Me [48].
As for the other bands, Bands 13–15 and Bands 18–19 were dedicated for atmospheric correction
and were not available in level-2 WFR. Five level-2 water full-resolution (WFR) images over the study
area were utilized.

Non-water pixels, including the pixels belonging to land and clouds, did not have information
about Chl-a concentrations. In addition, the remote sensing reflectance of some water pixels are
outside the normal range (0–1 sr−1) possibly because of the existence of cloud shadows or the low
acquisition quality. In addition to WFR, the OLCI global vegetation index in land full-resolution
(LFR) level-2 images was utilized in the classification. Using the WFR and LFR of Sentinel-3 level-2
images, the images were classified as water, land, cloud, cloud shadow, and low-quality water pixels.
A classification based on a decision tree was adopted. The classification results for the tested Sentinel-3
images are displayed in Figure 2.
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Figure 2. Image classification results using water full-resolution (WFR) and land full-resolution (LFR)
of Sentinel-3 level-2 images. Five Sentinel-3 images acquired on January 11, March 29, April 6, 26,
and 30, 2019, were tested.

2.2. CNN-Based Chl-a Concentration Model

In this section, the data preprocessing and normalization (Section 2.2.1), WaterNet network
structure (Section 2.2.2), and proposed two-stage training (Section 2.2.3) are introduced and discussed.

2.2.1. Data Preprocessing and Normalization

WaterNet adopts a 3D convolution kernel, which utilizes the spatial and spectral information
of images in modeling instead of pixel-based structure and spectral information. The input to WaterNet
is a volume of the size 7× 7× 16. The volume covers a small patch centered at a water pixel. The selection
of 7× 7 spatial coverage for WaterNet input is because of the padding effect that arises from convolutional
processes. Each pixel in the patch contains the normalized remote sensing reflectance of the 16 spectral
bands of Sentinel-3 WFR level-2 images. The output of WaterNet is the estimated normalized Chl-a
concentration at the center pixel of the input patch.

During data preprocessing, the cloud- and shadow-free water pixels are extracted from the images,
and patching is performed to create a local patch with a size of 7× 7 for each pixel. To provide a roughly
estimated Chl-a concentration for each patch, we used the Chl-a concentrations at the center pixel
of a patch estimated by IRTM-NN and OC4Me. Table 2 summarizes the number of image patches, those
with non-water pixels are excluded, mapped to the cloud- and shadow-free water samples in the campaigns,
as well as the Chl-a concentration at the patch center pixel estimated by IRTM-NN and OC4Me.
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Table 2. Image patch summary with corresponding image-based Chl-a conc. estimations on
each campaign.

Campaign # # of Patches
Chl-a Conc. (µg/L) at Center Pixel

IRTM-NN OC4Me

1st 1008 1.348 ± 0.034 0.983 ± 0.052
2nd 4715 1.321 ± 0.022 0.993 ± 0.069
3rd 5681 1.327 ± 0.039 0.987 ± 0.104
4th 1809 1.236 ± 0.060 1.138 ± 0.156
5th 2582 1.210 ± 0.082 1.095 ± 0.176

All samples 20,565 1.299 ± 0.072 1.055 ± 0.106

After the preprocessing, a set of patches with roughly estimated Chl-a concentrations can
be obtained, that is,

{
(Patch1, c1), · · · ,

(
Patchnp , cnp

)}
, where np denotes the number of patches,

Patchi =
{
ri

1, · · · , ri
49

}
represents the remote sensing reflectance set of the 49 pixels in the ith patch,

and ci denotes the Chl-a concentration of the center pixel in the ith patch calculated with IRTM-NN
or OC4Me. In addition, a small set of patches with in situ Chl-a measurements from field campaigns are
utilized:

{(
Patchm(1), ism(1)

)
, · · · ,

(
Patchm(nis)

, ism(nis)

)}
, where nis denotes the number of in situ samples,

m(.) is the mapping function between the indexes of the in situ samples and the samples with estimated
Chl-a concentrations, and ism( j) is the measured Chl-a concentration in jth in situ sample. The Chl-a
concentrations of the patches are normalized to the range [0, 1] using the following equations for model
training stabilization:

n_ci = (ci −min(chla))/(max(chla) −min(chla)) (1)

n_ism( j) =
(
ism( j) −min(chla)

)
/(max(chla) −min(chla)) (2)

where n_ci and n_ism( j) denote the normalized ci and ism( j), respectively; max(chla) and min(chla)
represent the maximal and minimal values of the roughly estimated or in situ Chl-a concentrations,
respectively. Similarly, the pixel remote sensing reflectance is rescaled to the range [0, 1] as

n_ri = (ri −min(R))/(max(R) −min(R)) (3)

where n_ri is the normalized remote sensing reflectance of spectral bands ri, max(R) and min(R) represent
the maximal and minimal values of the remote sensing reflectance at each wavelength, respectively,
and R ∈ R16×np is the set of the remote sensing reflectance of all pixels. After the preprocessing, two
normalized sample sets, namely,

{
(n_Patchi, n_ci)

}np

i=1 and
{(

n_Patchm( j), n_ism( j)

)}nis

j=1
, can be obtained

and used in the model training, where n_Patchi =
{
n_ri

1, · · · , n_ri
49

}
represents the set of normalized

pixels in patch i.

2.2.2. Network Structure of WaterNet

Figure 3 illustrates the network structure of WaterNet, which consists of three phases: band
expansion, feature extraction, and Chl-a estimation. WaterNet contains one 3D convolution layer in the first
phase, two 3D convolution layers in the second phase, and two fully connected layers in the third
phase. The three phases are described below.

Band expansion phase. In line with the works of [5,49,50], who utilized band combinations
as feature candidates in Chl-a concentration modeling, this phase aims to enrich the spectral information
using band combination. The filter’s kernel size used in this phase is 1 × 1 × 3, indicating that
the convolution is performed in the spectral domain and that spectral enrichment is achieved using
linear band combination. A rectified linear unit function is used as an activation function, followed
by batch normalization. This phase involves three filters and 24 unknown parameters. Half of these
parameters are weights and biases in the filter masks while the others include means, standard
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deviations, shifts, and scaling in batch normalization. Moreover, no padding is adopted during
filtering, and the output of the layer is a 7× 7× 42 feature volume, where 7× 7 is the spatial size and 42
is the spectral size.

Feature extraction phase. This phase involves two 3D convolutional layers that extract the features
that are sensitive to Chl-a concentration. In the first layer, 10 filter kernels with a size of 3× 3× 42 are
utilized to produce 10 feature maps. The spatial size of the feature maps in the first convolutional layer
is 5× 5 because of the absence of padding during filtering. The second convolutional layer utilizes five
filter kernels with a size of 3× 3× 10. The output of this layer is a 3× 3× 5 feature volume. In total,
this phase involves 4305 unknown parameters, including 3830 in the first convolutional layer and
475 unknowns in the second one.

Chl-a estimation phase. The Chl-a estimation phase involves reshaping a 3D volume into a 1D
vector by flattening and two fully connected layers. The length of the reshaped vector is 45 because
the size of the output from the second phase is 3 × 3 × 5. The vector is fully connected to a hidden
layer with nine neurons and is further fully connected to an output layer with one neuron representing
the normalized Chl-a concentration at the patch center pixel. A sigmoid function is used as an activation
function in the fully connected layers. A total of 424 unknown parameters are involved in this phase.
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Several studies on remote sensing using ANN conducted experiments to search for the optimal
neural network structure and parameters, including filter sizes, number of filters, number of layers,
number of neurons, and even activation functions. This process is generally trial-and-error
and time-consuming. In addition, searching for the optimal neural structure with optimal parameters
is sometimes not suitable because of the limited in-situ samples and overfitting problem. Therefore,
this study addresses the design of the phrases in neural structures instead of the optimal parameters.

2.2.3. Two-Stage Training

WaterNet containing 4753 unknown parameters requires a large number of in situ samples
for training to reach global optimization. However, in situ sample collection is costly, and only 257 in
situ samples were obtained from the field campaigns in this work. The number of in situ samples for
training is much less than the number of unknowns in WaterNet. Training with insufficient samples
will increase the probability of generalization errors and overfitting. In addition, setting the initial
values for the unknown parameters in the optimizer is crucial, especially when the training samples are
insufficient. To solve this problem, this work introduces a two-stage training consisting of pretraining
and refinement. In the former, WaterNet is pretrained using the samples with Chl-a concentrations
derived from an existing retrieval model (i.e.,

{
(n_Patchi, n_ci)

}np

i=1). The pretrained model is refined
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with the in situ samples in the latter stage (i.e.,
{(

n_Patchm( j), n_ism( j)

)}nis

j=1
). The concept of the two-stage

training is illustrated in Figure 4. The main idea is to obtain a suitable initial value through a pretraining
process with the labeled samples obtained from an existing Chl-a model. In other words, a set of patch
samples with roughly estimated Chl-a concentrations are generated by using an estimation model.
The calculated loss values, however, may exhibit large deviations because the sample labels and Chl-a
concentrations are not as accurate as the in situ measurements. Nevertheless, the pretraining result
is closer to the real optimum compared with the initial values. The pretraining result is thus used
as the new initial value in the refinement stage. Using in situ samples as training samples with the
new initial values has a higher probability to reach the global optimum, compared with one-stage
training, i.e., training using samples from an existing model or from in situ measurements. In this way,
the requirement of large in situ sample sets can be reduced because of the two-stage training strategy.
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Two candidates of Chl-a concentrations are provided in Sentinel-3 WFR products, namely, Chl-a
concentrations from IRTM-NN and OC4Me. IRTM-NN is an analytical-based method that replaces RTE
with an ANN with 10 spectral bands in the input layer, and OC4Me is a two-band model [51]. These
two candidates are compared with the in situ Chl-a concentrations, and the one with better accuracy
in terms of root mean square error (RMSE) is utilized to generate labeled samples. On the basis
of the comparisons shown in Table 3, the estimated Chl-a concentrations from IRTM-NN are slightly
better than those from OC4Me. Therefore, IRTM-NN is selected and used to generate the labeled
sample

{
(n_Patchi, n_ci)

}np

i=1 for the pretraining.
In optimization, the Adam optimizer which utilizes adaptive learning rate and moment is

employed [52], and the MSE is used as the loss function. Given the labeled samples
{
n_c1, · · · , n_cnp

}
and the corresponding predictions

{
predi1, · · · , predinp

}
from the model, the loss function is defined as

L =
1
np

∑np

i=1
(predii − n_ci)

2 (4)

Overfitting is alleviated by adopting the commonly used dropout and L2 regularization.
The dropout temporally removes several neurons when computing the loss function for model
convergence monitoring, whereas the L2 regularization penalizes large weights by adding the Frobenius
norm of parameters to the loss function (Equation (3)) during error backpropagation for weights
tuning. In training, the number of epochs is set to 30, and the training process stores the parameters
of the epoch with the minimal loss value. These values, along with the network structure, are used
to estimate Chl-a concentrations.
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Table 3. Comparison of Chl-a concentration estimations between inverse radiative transfer model-neural
network (IRTM-NN) and OC4Me.

Campaign
In Situ Samples (µg/L) RMSE (µg/L)

# of Samples Chl-a Conc. IRTM-NNOC4Me

1st 35 11.339 ± 0.592 10.008 10.361
2nd 74 7.906 ± 0.165 6.591 6.917
3rd 98 8.483 ± 1.230 7.251 7.613
4th 22 7.254 ± 0.323 6.109 5.856
5th 48 9.598 ± 0.822 8.420 8.538

Average 8.639 ± 1.538 7.676 7.857

2.2.4. Postprocessing of WaterNet

The output of WaterNet is the estimated normalized Chl-a concentration. Therefore, postprocessing
is performed to transform the normalized Chl-a concentration back to the original range using
the maximal and minimal values of the Chl-a concentrations in Equation (1). The recalling is defined as

ˆchl_ai = n_ ˆchl_ai(max(chl_a) −min(chl_a)) + min(chl_a) (5)

where n_ ˆchl_ai represents the estimated normalized Chl-a concentration from WaterNet, and ˆchl_ai is
the estimated Chl-a concentration after rescaling.

3. Experimental Results

To evaluate the performance of WaterNet, we adopted the k-fold cross-validation, in which k is set
to 10 and all samples from the campaigns were uniformly partitioned into 10 folds. Table 4 shows
the statistical analysis of the Chl-a concentrations in each fold. WaterNet was evaluated and compared
with other related methods using cross-validation. The evaluations are elaborated in this section.
Moreover, the comparison of WaterNet with other neural structures is described in Section 4.1, whereas
that with related Chl-a retrieval models is discussed in Section 4.2.

Table 4. Chl-a concentration distribution in each fold.

Fold ID
Chl-a Conc. (µg/L)

Mean Std. Max. Min.

1 9.134 1.617 12.463 6.753
2 9.043 1.532 12.150 6.840
3 8.936 1.389 11.586 6.932
4 8.980 1.399 11.692 7.079
5 8.980 1.354 11.552 7.139
6 8.956 1.348 11.488 7.099
7 8.968 1.362 11.847 7.099
8 8.928 1.446 11.916 6.738
9 8.939 1.401 11.756 6.731

10 8.996 1.435 11.654 6.741

WaterNet Performance Evaluation

WaterNet was pretrained and refined through the proposed two-stage training, which employs
the Chl-a concentrations from IRTM-NN and in situ measurements. To evaluate the feasibility
and performance of the proposed method, we compared the two-stage training with one-stage trainings,
including the first and second stages. The first stage trains the neural network using the patch samples{
(n_Patchi, n_ci)

}np

i=1, whereas the second stage refines the neural network by utilizing the in situ samples{(
n_Patchm( j), n_ism( j)

)}nis

j=1
. The comparisons are presented in Table 5 and Figure 5. The results show

that the two-stage training is better than the one-stage training that implements the second stage
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only (i.e., second-stage training). The range of RMSE decreases from 0.716–2.181 to 0.509–0.975 µg/L,
and the average value is improved from 1.298 to 0.752 µg/L. This finding implies that the former
has a higher possibility to converge to a better loss value compared with the latter using insufficient
in situ samples. The results also show that the two-stage training is better than the first-stage training.
The range of RMSE decreases from 2.189–2.492 to 0.509–0.975 µg/L, and the average value is improved
from 2.365 to 0.752 µg/L. This result means that the first-stage training cannot reach the global optimum
because the labels of the samples are not from in situ measurements. Nevertheless, the first-stage
training can provide good initial values of the unknown parameters for the second-stage training. The
comparisons of the optimization convergences between WaterNet with and without two-stage training
are presented in Figure 5. Using the initial values from the first-stage training, the two-stage training
can converge more efficiently (less than 10 epochs) than the second-stage training (around 25 epochs).
In conclusion, the pretraining stage can provide an initial value that increases the possibility of reaching
the global optimum in the second stage with few in situ samples.

Table 5. Training comparison. Comparison between two-stage training and one-stage trainings,
including the first and second stage only, in WaterNet. “Ave.” and “Std.”, respectively, represent the
average and standard deviation of root mean square errors (RMSEs) in each fold.

Fold No.
RMSE (µg/L) of WaterNet

Two-Stage Training First Stage Only Second Stage Only

1 0.837 2.396 1.219
2 0.975 2.390 1.709
3 0.522 2.396 1.643
4 0.509 2.357 0.962
5 0.691 2.189 0.962
6 0.937 2.316 2.181
7 0.858 2.355 1.410
8 0.588 2.406 0.716
9 0.844 2.492 1.214

10 0.755 2.354 0.968

Ave. 0.752 2.365 1.298
Std. 0.168 0.078 0.443
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Figure 5. Comparison of training convergence. The curves represent the loss value at each
during training and testing.

The trained WaterNet was applied to Sentinel-3 images, and the generated Chl-a concentration
maps are shown in Figure 6. The Chl-a concentrations are visualized by colors ranging from 6 (yellow)
to 12 µg/L (red).
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Figure 6. Chl-a concentration maps using WaterNet with the proposed two-stage training. The Sentinel-3
images were acquired in 2019.

4. Discussion

4.1. Comparison Between WaterNet and Feedforward Neural Networks

WaterNet is also compared with feedforward neural network, which is a commonly used
pixel-based neural structure for Chl-a concentration estimation [41,42]. Three feedforward neural
networks containing one, two, and three hidden layers with sigmoid activation functions are used
for comparison. To obtain fair comparisons, we set the numbers of unknown parameters in WaterNet
and the feedforward neural networks to be almost the same. The number of neurons in the input,
hidden, and output layers of the three feedforward networks are (16, 264, 1), (16, 70, 50, 1), and (16,
44, 44, 44, 1), respectively; whereas the numbers of unknowns are 4753, 4791, and 4753, respectively,
as shown in Table 6. The proposed two-stage training is applied to WaterNet and the feedforward
neural networks for a fair comparison. The results in Table 6 show that WaterNet (Avg. RMSE: 0.752
µg/L) outperforms the feedforward neural networks (Avg. RMSE: 1.369, 1.429, and 1.374 µg/L) in terms
of accuracy of Chl-a concentration estimation. This phenomenon can be attributed to the efficient
network connection of WaterNet due to the weight sharing in the convolution layers. In addition,
the information of the neighboring pixels in WaterNet allows the elimination of instrumental errors
and the handling of man-made objects in the water bodies during Chl-a concentration estimation.

Table 6. Performance comparison between WaterNet and feedforward neural networks.

WaterNet
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4.2. Comparison of WaterNet and Related Chl-a Concentration Models

Five commonly used Chl-a concentration models based on band combination, namely, two-band
model [30], three-band model [29], normalized different chlorophyll index (NDCI) [53], NASA
fluorescence line height (FLH) model [54], and NASA OC3E model, were compared with WaterNet.
The compared models were defined on the basis of that the difference of two reciprocal spectral
reflectance is small such that the absorption by suspended solids and CDOM can be omitted, the total
absorption of Chl-a, CDOM, and total suspended solids is nearly zero, and the back-scattering coefficient
of Chl-a is spectrally invariant. The five retrieval models were then defined using the available spectral
bands in Sentinel-3. The model features for Sentinel-3 are listed in Table 7. The features were further
calibrated by a linear regression to convert to the Chl-a concentration, except the OC3E model which
was performed by using the fourth-polynomial of the feature as the exponent of power of 10.

Table 7. Related Chl-a concentration retrieval models.

Model Name Chl-a Retrieval Model Feature

Three-band model [29]
{[

R−1
rs (665) −R−1

rs (709)
]
×Rrs(754)

}
Two-band model [30]

{
[Rrs(709) ÷Rrs(665)]

}
NDCI [53]

{[
R−1

rs (665) −R−1
rs (709)

]
÷

[
R−1

rs (665) + R−1
rs (709)

]}
FLH [54]

{
Rrs(681) − [Rrs(709) + (Rrs(665) −Rrs(709)) × (λ(709) − λ(681)) ÷ (λ(709) − λ(665))]

}
OC3E

{
log[Rrs(443) > Rrs(490) ÷Rrs(560)]

}
The comparison results in Figure 7 indicate that the five models exhibit similar performances.

The RMSEs of the estimated Chl-a concentrations range from 1.28 to 1.62 µg/L, which might be
due to similar definitions of the models. In addition, WaterNet demonstrates a more satisfactory
performance than the five models. The RMSEs of the estimated Chl-a concentrations decrease
to 0.509–0.975 µg/L. In addition to the quantitative analyses, a qualitative comparison using the Chl-a
concentration maps for an image acquired on 6 April 2019 was conducted. The results are shown
in Figure 8. The Chl-a map generated by WaterNet has a larger Chl-a concentration range than those
generated by the five models. In addition, the west region of the West Bay of Laguna Lake, which is
close to Manila with a high population density, has a higher Chl-a concentration than the other regions.
Moreover, higher Chl-a concentration was also found in the East Bay. This was in line with the study
of Herrera et al. [45] which showed similar pattern with the estimation using WaterNet. This visually
demonstrates the reasonability of the Chl-a concentration map generated by WaterNet.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 16 

 

4.2. Comparison of WaterNet and Related Chl-a Concentration Models 

Five commonly used Chl-a concentration models based on band combination, namely, two-band 
model [30], three-band model [29], normalized different chlorophyll index (NDCI) [53], NASA 
fluorescence line height (FLH) model [54], and NASA OC3E model, were compared with WaterNet. 
The compared models were defined on the basis of that the difference of two reciprocal spectral 
reflectance is small such that the absorption by suspended solids and CDOM can be omitted, the total 
absorption of Chl-a, CDOM, and total suspended solids is nearly zero, and the back-scattering 
coefficient of Chl-a is spectrally invariant. The five retrieval models were then defined using the 
available spectral bands in Sentinel-3. The model features for Sentinel-3 are listed in Table 7. The 
features were further calibrated by a linear regression to convert to the Chl-a concentration, except 
the OC3E model which was performed by using the fourth-polynomial of the feature as the exponent 
of power of 10.  

Table 7. Related Chl-a concentration retrieval models. 

Model Name  Chl-a Retrieval Model Feature 
Three-band model 

[29] 
൛ሾܴ௦ିଵ(665) − ܴ௦ିଵ(709)ሿ × ܴ௦(754)ൟ 

Two-band model 
[30] 

൛ൣܴ௦(709) ൊ ܴ௦(665)൧ൟ 

NDCI [53] ሼሾܴ௦ିଵ(665) − ܴ௦ିଵ(709)ሿ ൊ ሾܴ௦ିଵ(665) + ܴ௦ିଵ(709)ሿሽ 

FLH [54] 
൛ܴ௦(681) − ൣܴ௦(709) + ൫ܴ௦(665) − ܴ௦(709)൯ × (709)ߣ) − ൊ((681)ߣ (709)ߣ) −  ൧ൟ((665)ߣ

OC3E ൛݈ܴൣ݃௦(443)  ܴ௦(490) ൊ ܴ௦(560)൧ൟ 
The comparison results in Figure 7 indicate that the five models exhibit similar performances. 

The RMSEs of the estimated Chl-a concentrations range from 1.28 to 1.62 μg/L, which might be due 
to similar definitions of the models. In addition, WaterNet demonstrates a more satisfactory 
performance than the five models. The RMSEs of the estimated Chl-a concentrations decrease to 
0.509–0.975 μg/L. In addition to the quantitative analyses, a qualitative comparison using the Chl-a 
concentration maps for an image acquired on 6 April 2019 was conducted. The results are shown in 
Figure 8. The Chl-a map generated by WaterNet has a larger Chl-a concentration range than those 
generated by the five models. In addition, the west region of the West Bay of Laguna Lake, which is 
close to Manila with a high population density, has a higher Chl-a concentration than the other 
regions. Moreover, higher Chl-a concentration was also found in the East Bay. This was in line with 
the study of Herrera et al. [45] which showed similar pattern with the estimation using WaterNet. 
This visually demonstrates the reasonability of the Chl-a concentration map generated by WaterNet. 

 

Figure 7. Comparison of the Chl-a concentration retrieval performances of WaterNet and the five Chl-
a estimation models (three-band, two-band, normalized different chlorophyll index (NDCI), 
fluorescence line height (FLH), and OC3E models). 

Figure 7. Comparison of the Chl-a concentration retrieval performances of WaterNet and the five Chl-a
estimation models (three-band, two-band, normalized different chlorophyll index (NDCI), fluorescence
line height (FLH), and OC3E models).



Remote Sens. 2020, 12, 1966 13 of 16
Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16 

 

 
Figure 8. Chl-a concentration maps generated by WaterNet and the three-band, two-band, NDCI, 
FLH, and OC3E models. The Sentinel image acquired on April 6, 2019 was tested. 

5. Conclusions and Future Works 

In this study, a novel patch- and CNN-based model called WaterNet was proposed for Chl-a 
concentration estimation. Instead of a pixel-based neural structure, a 3D convolutional neural 
structure was used to consider the spectral and spatial information of images in the neural network. 
In addition, a two-stage training was proposed to overcome the challenge of insufficient in situ Chl-
a samples. In the two-stage training, the use of Chl-a concentration from IRTM-NN proved effective 
in providing good initial values in the refinement training stage. The qualitative and quantitative 
comparisons revealed that WaterNet outperformed the related Chl-a concentration models and the 
feedforward neural network. We conclude that WaterNet can properly model the nonlinear 
relationships between the remote sensing reflectance of spectral bands in optical satellite images and 
the Chl-a concentrations in inland water bodies. Due to the limited in situ Chl-a samples, the testing 
of WaterNet was difficult in the current study. In the future, more in situ samples will be collected 
from different water bodies. A further testing will be conducted to evaluate the sensitivity of 
WaterNet to different water bodies, or a site-independence WaterNet will be developed. In addition, 
other water quality parameters, such as turbidity, will be integrated into WaterNet, and WaterNet 
will be further applied to other optical satellite images, such as Landsat 8 and Sentinel-2 imagery. 

Author Contributions: Conceptualization, M.A.S. and C.-H.L.; Data curation, M.A.S.; Formal analysis, M.A.S., 
M.V.N., L.M.J. and A.C.B.; Funding acquisition, C.-H.L.; Investigation, M.A.S., M.V.N., L.M.J. and A.C.B.; 
Methodology, M.A.S.; Project administration, C.-H.L.; Software, M.A.S.; Supervision, C.-H.L., L.M.J. and A.C.B.; 
Validation, M.A.S. and M.V.N.; Visualization, M.A.S.; Writing—original draft, M.A.S., C.-H.L. and M.V.N.; 
Writing—review and editing, M.A.S. and C.-H.L.. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research was partially funded by Ministry of Science and Technology, Taiwan (grant numbers 
MOST 106-2923-M-006 -003 -MY3 and 109-2923-M-006 -001 -MY3), and partially funded by DOST, Philippines. 

Acknowledgments: We would like to thank the anonymous reviewers for their valuable comments. We would 
also like to thank the Laguna Lake Development Authority (LLDA) of Philippines for the collection of water 
quality samples and Bank SinoPac of Taiwan for the supporting fund.  

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Francis, G. Poisonous Australian lake. Nature 1878, 18, 11–12, doi:10.1038/018011d0. 
2. Shumwey, S.E. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 

Figure 8. Chl-a concentration maps generated by WaterNet and the three-band, two-band, NDCI, FLH,
and OC3E models. The Sentinel image acquired on April 6, 2019 was tested.

5. Conclusions and Future Works

In this study, a novel patch- and CNN-based model called WaterNet was proposed for Chl-a
concentration estimation. Instead of a pixel-based neural structure, a 3D convolutional neural structure
was used to consider the spectral and spatial information of images in the neural network. In addition,
a two-stage training was proposed to overcome the challenge of insufficient in situ Chl-a samples.
In the two-stage training, the use of Chl-a concentration from IRTM-NN proved effective in providing
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in inland water bodies. Due to the limited in situ Chl-a samples, the testing of WaterNet was difficult
in the current study. In the future, more in situ samples will be collected from different water bodies.
A further testing will be conducted to evaluate the sensitivity of WaterNet to different water bodies,
or a site-independence WaterNet will be developed. In addition, other water quality parameters, such
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