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Abstract: The photochemical reflectance index (PRI) has been suggested as an indicator of light use
efficiency (LUE), and for use in the improvement of estimating gross primary production (GPP) in
LUE models. Over the last two decades, solar-induced fluorescence (SIF) observations from remote
sensing have been used to evaluate the distribution of GPP over a range of spatial and temporal scales.
However, both PRI and SIF observations have been decoupled from photosynthesis under a variety of
non-physiological factors, i.e., sun-view geometry and environmental variables. These observations
are important for estimating GPP but rarely reported in the literature. In our study, multi-angle PRI
and SIF observations were obtained during the 2018 growing season in a maize field. We evaluated a
PRI-based LUE model for estimating GPP, and compared it with the direct estimation of GPP using
concurrent SIF measurements. Our results showed that the observed PRI varied with view angles
and that the averaged PRI from the multi-angle observations exhibited better performance than the
single-angle observed PRI for estimating LUE. The PRI-based LUE model when compared to SIF,
demonstrated a higher ability to capture the diurnal dynamics of GPP (the coefficient of determination
(R2) = 0.71) than the seasonal changes (R2 = 0.44), while the seasonal GPP variations were better
estimated by SIF (R2 = 0.50). Based on random forest analyses, relative humidity (RH) was the most
important driver affecting diurnal GPP estimation using the PRI-based LUE model. The SIF-based
linear model was most influenced by photosynthetically active radiation (PAR). The SIF-based linear
model did not perform as well as the PRI-based LUE model under most environmental conditions,
the exception being clear days (the ratio of direct and diffuse sky radiance > 2). Our study confirms
the utility of multi-angle PRI observations in the estimation of GPP in LUE models and suggests
that the effects of changing environmental conditions should be taken into account for accurately
estimating GPP with PRI and SIF observations.
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1. Introduction

Gross primary production (GPP) is defined as the rate of carbon (C) fixation through the process
of vegetation photosynthesis. It drives both ecosystem function and C cycling [1,2]. GPP accounts
for approximately 120 Pg·C·yr−1, and is the largest component of the global C cycle [3]. It is critically
important to precisely simulate GPP in order to accurately estimate C sequestration and the response
of terrestrial ecosystems to climate change. Nevertheless, huge uncertainties remain in estimating
the spatiotemporal changes of GPP, which limits our understanding of elevated atmospheric carbon
dioxide (CO2) in the context of global climate change [4–6]. The utilization of eddy covariance (EC)
technology is the most direct and accurate means to obtain real-time canopy level GPP. However,
EC measurements usually have a spatial footprint in the range of 1 km2 [7]. This limitation necessitates
the combination of remote sensing data with field-based EC measurements for the estimations of GPP
at regional to global spatial scales [8].

Light use efficiency (LUE) models are broadly used to analyze terrestrial GPP utilizing remote
sensing data and utilizes a simple model structure that require less input variables [9–12]. GPP is
generally expressed in LUE models as the product of LUE and absorbed photosynthetically active
radiation (APAR). APAR can be calculated by multiplying the total photosynthetically active radiation
(PAR) incident on a vegetation canopy and the fraction of PAR absorbed by the canopy (FPAR).
Meteorological observations provide the total incident PAR, and FPAR can be acquired using remote
sensing data [13,14]. The accuracy of APAR and LUE are critical inputs for the estimation of GPP.

The photochemical reflectance index (PRI) is the most representative index of the xanthophyll
cycle in the photoprotective mechanisms of photosynthesis and is regarded as a promising method
for accurate estimation of LUE [15–17]. Numerous studies have reported that PRI is an effective
spectral index that can reveal spatial and temporal changes in LUE across various ecosystems [18–22].
PRI-based LUE models enable an improved assessment of GPP in terrestrial vegetation canopies.

Although the correlation between PRI and LUE has been examined across various spatial scales and
ecosystems, the underlying mechanism of the correlation between PRI and LUE remains controversial.
The uncertainty is partly attributed to the impact of canopy structure on sun-view geometry and various
illuminations. Vegetation canopies are non-Lambertian and exhibit varying degrees of anisotropy,
leading to their reflectance changes with viewed angles. The PRI signal and its interpretation of
LUE can be significantly influenced by angular effects, inclusive of leaf angle distribution and
sun-view geometry [16,22–24]. Multi-angle spectral observations can provide information of the
vegetation canopy and describe the variation in the observed fractions of the canopy with view angles.
This approach improves the monitoring and inversion accuracy of crop biochemical parameters for the
entire canopy [25,26]. Recent studies have reported that the long-term variation in PRI was ascribed
to the dynamics of the pigment pool size in vegetation, which also affected the tracking of LUE by
PRI [27–29]. Such studies have concentrated on responses of evergreen vegetation, with only limited
reporting of long-term PRI responses in annual vegetation such as crops [30,31]. Environmental
variables also affect the correlation between PRI and photosynthesis. The ability of PRI to estimate
LUE varies with environmental factors, i.e., the ability of PRI in tracking diurnal variations of LUE
increases with PAR, vapor pressure deficit (VPD), and air temperature (Ta) for a subtropical coniferous
forest [18]. Therefore, further studies are needed to improve our knowledge of varying environmental
conditions on the effectiveness of PRI in the estimation of GPP using LUE models.

Solar-induced fluorescence (SIF) signals from satellite remote sensing platforms have been reported
to be a novel methodology for monitoring the variations of GPP [32–37]. SIF is a remitted electromagnetic
radiation in the wavelength range of 650–800 nm during the photosynthetic processes [38,39]. Due to
its direct linkage to vegetation photochemistry, SIF provides an early and more physiologically-based
method to access the functional status and changes of vegetation [39,40]. It has been reported in several
studies that SIF and GPP have strong empirical linear relationships [32,33,40–44]. Environmental
conditions had a greater impact on SIF than GPP [45], but the correlation in the responses of SIF and
GPP to environmental variables has rarely been studied quantitatively with continuous and long-term



Remote Sens. 2020, 12, 2812 3 of 16

observations [46]. Thus, a comparison of PRI-based LUE model and SIF-based linear model could be
helpful to better estimate GPP under varying environmental conditions.

In this study, we assessed the performance of a PRI-based LUE model in estimating GPP under
various environmental conditions in a maize field, and compare it with SIF-based linear model.
We integrated a set of field observation data, including multi-angle spectral observations, eddy flux
measurements, environmental variables, and canopy structural parameters. The objectives of our study
are: (1) to explore the angular variations of observed PRI and evaluate the performance of single-angle
and multi-angle spectral observations of PRI in estimating LUE for a maize canopy, respectively;
(2) to evaluate and compare the performance of PRI-based LUE model and SIF-based linear model
for the estimation of GPP in the maize field; and (3) to explore the model preferences under different
environmental conditions.

2. Materials and Methods

2.1. Study Site

The study was conducted at the Shangqiu Farmland Ecosystem National Field Scientific Observation
and Research Station (34.52◦N, 115.59◦E, elevation 55 m), located in Shangqiu, Henan Province, from June
to September in 2018 (Figure 1). The site has a warm temperate climate with a mean annual air
temperature of 13.9 ◦C, mean annual precipitation of 708 mm, and mean annual solar radiation of 4823
MJ·m−2. The soil is fluvo-aquic, which is the main soil type in the North China Plain and annually
produces almost 60–80% of wheat and 35–40% of maize in China. The study site is a traditionally
managed cropland with a typical crop rotation system, which consists of one season of winter wheat
and another season of summer maize. During the 2018 study period, summer maize (Zea mays L.) was
planted in the agricultural field. The entire growing season lasted for four months, from sowing in
early June (Day of Year (DOY), 155) to harvest in late September (DOY, 267). The phenology of maize is
usually divided into two main growth stages: the vegetative (V) stages (emergence to DOY 207) and
the ripening (R) stages (DOY 208 to harvest). The V stages included emergence on DOY 160, 5th leaf
stage on DOY 170, elongation stage on DOY 183, and tasseling stage on DOY 206. The R stages were
characterized by the silking stage on DOY 208, and the physiological maturity stage on DOY 256,
until harvest on DOY 267. The crop was fertilized (40.5 kg·N·ha−1 and 103.5 kg·P·ha−1) at the time of
sowing and was topdressed (225 kg·N·ha−1, 37.5 kg·P·ha−1, and 37.5 kg·K·ha−1) prior to the elongation
stage. The soil was irrigated (45 mm) before the emergence of maize plants (DOY 158). The field
measurements began on June 16 (DOY 167) when the maize was emerging and ended on September 24
(DOY 267) when the maize was at the mature grain stage prior to harvest.
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the study site in Henan province and China, respectively.
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2.2. Measurements of CO2 Fluxes and Environmental Data

The flux measurement system was fixed to a flux tower situated in the maize field (Figure 1a)
to derive GPP. The tower included a eddy covariance (EC) system to measure the net ecosystem
exchange of CO2 (NEE) [47]. The EC system consists of an open-path infrared gas analyzer (Model
LI-7500, LI-COR Inc., Lincoln, NE, USA) for measuring CO2 concentrations, a three-dimensional
sonic anemometer (Model CSAT3, Campbell Scientific Inc., Logan, UT, USA) for measuring wind
components, and data logger (CR3000, Campbell Scientific, Logan, UT, USA) for recording all EC data
at 10 Hz. The EddyPro software (LI-COR Inc., Lincoln, NE, USA) was employed for data calculation
and quality assurance to produce half-hourly flux estimates of NEE. A flux partitioning algorithm [48]
was applied to estimate EC measured GPP (GPPEC) through net ecosystem exchange of CO2 (NEE)
and daytime ecosystem respiration (Re).

GPPEC = −NEE + Re (1)

Half-hourly EC-based light use efficiency (LUEEC) was estimated as:

LUEEC =
GPPEC

PAR× FPAR
(2)

where FPAR was calculated by leaf area index (LAI) and solar zenith angle as Chen [14]:

FPAR = (1− ρ1) − (1− ρ2) × e−0.5LAIe/ cosθs (3)

and, where ρ1 is the PAR reflectance above the canopy and specified as 0.05; ρ2 is the PAR reflectance
below the canopy and specified as 0.06. LAIe is the effective LAI, obtained from field measurements.
θs is the solar zenith angle calculated using site location and time.

Environmental variables were continuously measured in synchronization with EC flux
measurements and integrated over 30 min time periods. The environmental variations included total
incident PAR above the canopy, total sky radiation (Rg), diffuse sky radiation (Rd), air temperature
(Ta), relative humidity (RH), soil temperature (Ts, 10 cm depth), and volumetric soil water content
(SWC, 10 cm depth). The ratio of direct and diffuse sky radiation was also calculated to represent the
sky condition (Q) using Rg and Rd [49]. Q varies with real-time cloudiness of sky, with a less cloudy
sky having greater Q.

2.3. Measurements of Leaf Area Index

We used a plant canopy analyzer (LAI-2200, LI-COR, Lincoln, NE, USA) to measure the effective
leaf area index (LAIe). Measurements of one A value (above the canopy) and four B values (below the
canopy) were taken for each sampling point for calculating LAIe. At least five LAIe values were averaged
for field measurements. LAI measurements were taken during twilight and overcast conditions to
reduce the bias caused by direct sun radiance. The in-situ measurements of LAIe were conducted on
several separate days over the season (DOY 200, 213, 222, 236, 252, and 267), and combined with the
germination date (set as LAIe = 0.1). Linear interpolation was used to calculate LAIe values for every
day during entire growing season.

2.4. Multi-Angle Observations of Canopy PRI and SIF

A multi-angle spectra system was mounted at 4 m above the ground on an adjacent tower in a
paired maize field (details in Li et al. [50]). The system consisted of two spectrometers (HR2000+ and
QEPro, Ocean Optics, Dunedin, FL, USA) for measuring high-resolution spectra, which can be used for
retrieving PRI and SIF, respectively. The single optical path of each spectrometer was separated into
two paths and switched via a 2 × 2 shutter and a Y-shaped splitter fiber (Ocean Optics, Dunedin, FL,
USA), pointing towards the sky (up-looking) and the canopy (down-looking) directions to measure
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irradiance and radiance signals, respectively. In the up-looking direction, cosine-corrected optics
(CC3-UV-S, Ocean Optics, Dunedin, FL, USA) were used to collect the hemispherical irradiance signals
with a large field of view (FOV) of 180◦; while the canopy radiance in the down-looking direction was
measured using a bare fiber with a small FOV of 25◦. The down-looking fiber optics were installed on a
rotating device PTU-D46 (FLIR Motion Systems Inc., Burlingame, CA, USA) to collect canopy radiance
from different view angles. In each half-hour observation cycle, the two spectrometers synchronously
measured the canopy radiance at varying view azimuth angle (VAA) moving from 60◦ to 300◦ at a 10◦

step. The view zenith angle (VZA) was dynamically set as the solar zenith angle (SZA) and was set
as 40◦ when SZA > 40◦ to avoid the measurements at large VZA [51]. Radiometric calibration was
conducted before the growing season using an integrated sphere (Labsphere, North Sutton, NH, USA)
and a tungsten halogen light source (HL-CAL-2000, Ocean Optics, Dunedin, FL, USA) [52].

While utilizing the irradiance and radiance signals, the observed PRI (PRIobs) was estimated by
the reflectance of 531 nm (R531) and 570 nm (R570) as follows:

PRIobs =
R531 −R570

R531 + R570
(4)

R531 was calculated using the average reflectance of three wavebands centered on 530.87 nm,
531.33 nm, and 531.79 nm; R570 was calculated using the average reflectance of three wavebands
centered on 570.07 nm, 570.53 nm, and 570.98 nm.

In comparison with the estimation of GPP, SIF was estimated from incident irradiance (I) and
canopy radiance (L) around the O2-A absorption using Spectral fitting methods (SFM). The methods
assume that suitable mathematical function (e.g., polynomial) fitted by wavelength (λ) can be used to
describe the spectral characteristics of reflectance (R) and fluorescence (F) [53–55]. Here, we assumed
the linear function of λ could represent R and F [50]. The measured canopy radiance (L(λ)) was
expressed as follows, the observed SIF (SIFobs) was calculated using the function F(λ): L(λ) = R(λ)I(λ)

π + F(λ) + ε(λ), λ ∈ [λ1, λ2]

SIFobs = F(λm)
(5)

where ε(λ) was the bias of observed and modeled radiance. λ1 and λ2 were specified as 757 and 768 nm,
respectively. λm represented the wavelength with the minimum irradiance in the O2-A absorption
band around 760 nm.

The highly frequent (around 1 min) multi-angle observed PRI and SIF at each view angle were
used to calculate the canopy PRI and SIF. The half-hourly canopy PRI (PRIcan) was calculated as a
simple arithmetic average using all available multi-angle PRIobs within 30 min intervals to match
half-hourly EC flux data. SIFobs were also averaged every half an hour to obtain the canopy SIF (SIFcan)
for half-hourly comparison with GPP.

2.5. Statistical Analysis

Our analyses were based on the measurement data from 6:00 to 18:00 local time each day during
the entire maize growing season in 2018 (101 days). Negative GPP, APAR, and SIF data were excluded.
Days with less than 50% of available data were excluded from the analysis. The GPPEC was fitted with
a PRI-based LUE model as:

GPP = LUEPRI ×APAR (6)

where LUEPRI = a × PRI + b. The GPPEC was also fitted with SIF for comparison with empirical linear
SIF-GPP relationship.

We used the coefficient of determination (R2), significant level (p), and root mean square error
(RMSE) for evaluating the performance of the two models. Both models were applied at “daily mean”,
“30 min”, and “day-by-day” scales. At the “daily mean” scale, we used the daily means of half-hourly
values of GPP, APAR, PRI, and SIF from 6:00 to 18:00 of all individual days during the entire growing
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season in 2018. At the “30 min” scale, we used all the half-hourly values from 6:00 to 18:00 during
the growing season. At “day-to-day” scale, we applied two models for each day during the growing
season using the half-hourly values from 6:00 to 18:00.

We also conducted a random forest regression analysis to identify the most important
environmental variables affecting the performance of the SIF-based model and the PRI-based LUE
model for GPP estimation. We calculated the daily mean values of the environmental variables and
used them as the predictor variables. The interplays and nonlinear relationships of predictor variables
were considered in the random forest analysis, while alleviating multicollinearity problems in the
multivariate regression [56,57].The increase in the percentage of mean square error (%IncMSE) of
observations and predictions was applied to quantify the importance of predictor variables. Higher
values of %IncMSE denoted higher the importance of the variables. We calculated the importance of
each tree and averaged it over the forest of 1000 trees. R Studio was used to perform random forest
regression analysis.

3. Results

3.1. Estimation of LUE Using Multi-Angle Observed PRI

The observed PRI (PRIobs) changed with the viewing azimuth angles and its angular pattern
differed with the solar position at a varied time on DOY 204 (a sunny day) (Figure 2). Within 30 min,
solar radiation and solar position were near constant and the variations of PRI were a result of the
different parts of the maize canopy viewed at different angles. We found that PRIobs obtained from 14:30
to 15:00 were much higher than that obtained closer to noon (11:30 to 12:00). PRIobs values in hotspot
directions appeared lower than those when observer and the sun were far apart. These differences
were more obvious in the afternoon hours than that at noon. The hotspot direction was in the same
direction as the sun, resulting in more sunlit leaves being observed in the hotspot direction.
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(PRIs, VAA = 180°) and the canopy PRI with multi-angle mean values (PRIcan) with LUEEC (Figure 3). 
Both PRIs and PRIcan showed similar diurnal variations to LUEEC. LUEEC, PRIs, and PRIcan decreased 
from sunrise and reached their minimum at noon than increased until the sunset. PRIcan (R2 = 0.49, p 

Figure 2. Photochemical reflectance index (PRI) observations in a polar coordinate system. The observed
PRI (PRIobs) were obtained at different view angles at a different time on Day of Year (DOY) 204 (23 July,
2018). The red pentagram represents the average solar position within the 30 min in the polar coordinate
system delineated by solar zenith angle and solar azimuth angle. Azimuth angles are defined from
geodetic north.

Using the multi-angle observations, we compared the observed PRI in the single view angle
(PRIs, VAA = 180◦) and the canopy PRI with multi-angle mean values (PRIcan) with LUEEC (Figure 3).
Both PRIs and PRIcan showed similar diurnal variations to LUEEC. LUEEC, PRIs, and PRIcan decreased
from sunrise and reached their minimum at noon than increased until the sunset. PRIcan (R2 = 0.49,
p < 0.01) had a stronger correlation with LUEEC than PRIs (R2 = 0.41, p < 0.01). The PRIcan, which
was the mean value of the multi-angle PRIobs, performed better in estimating LUE with tens of
measurements evenly distributed at different view angles.
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3.2. Performance of the PRI-Based LUE Model and SIF-Based Linear Model for GPP Estimation

The PRI-based LUE model and SIF-based linear model for GPP estimation were compared
at different time scales. The summary statistics of both models are shown in Table 1. Significant
relationships were found between LUEPRI × APAR and GPPEC at these three-time scales. The R2

between LUEPRI×APAR and GPPEC at the “daily mean” scale and the “30 min” scale was lower than
that at the “day-by-day” scale (R2 = 0.71 ± 0.22, p < 0.01). This indicated that LUEPRI × APAR tracked
the diurnal variations of GPPEC better than the seasonal variations of GPPEC. Compared to SIFcan, the
LUEPRI×APAR was higher R2 with GPPEC at the short-term time scale, especially at the “day-by-day”
scale. However, the R2 between SIFcan and GPPEC at the “daily mean” scale (R2 = 0.50, p < 0.001)
was highest among the three time scales and higher than the R2 between LUEPRI×APAR and GPPEC

(R2 = 0.44, p < 0.001) at the same time scale.

Table 1. Summary statistics of the photochemical reflectance index (PRI)-based light use efficiency
(LUE) model and solar-induced fluorescence (SIF)-based linear model for gross primary production
(GPP) estimation at different time scales.

Explanatory Terms for GPP
Regression Model

Unit: µmol CO2 m−2·s−1

LUEPRI × APAR: GPPEC * SIFcan: GPPEC **

R2 p RMSE R2 p RMSE

daily mean 0.44 <0.001 12.25 0.50 <0.001 11.75
30 min 0.47 <0.001 15.28 0.45 <0.001 16.12

day-by-day *** 0.71 ± 0.22 0.00 ± 0.01 4.59 ± 3.08 0.38 ± 0.23 0.08 ± 0.19 8.90 ± 5.51

* LUEPRI = a × PRIcan + b, where a and b were fitted linearly using LUEEC and PRIcan over the half-hourly values
from 6:00 to 18:00 each day during the entire growing season in 2018. GPPEC represented the EC measured GPP.
** SIFcan represented the canopy SIF. *** The results of “day-by-day” were the averages ± standard deviations of the
statistical variables (coefficient of determination (R2), significant level (p), and root mean square error (RMSE)).

Figure 4 showed the day-by-day variation of R2 between LUEPRI × APAR and GPPEC (R2
PRI),

and between SIFcan and GPPEC (R2
SIF) and their relative frequency. There was some data loss (Figure 4)

because of instrument failure. Significant correlations (p < 0.05) between LUEPRI×APAR and GPPEC

occurred on all 51 available days with an R2 ranging from 0.23–0.96. SIFcan showed significant
relationships with GPPEC on 81% of the 79 available days (R2: 0.18–0.85). The highest frequency of
R2

PRI was 0.8–0.9, much higher than that of R2
SIF (0.2–0.5). In summary, LUEPRI×APAR tracked the

diurnal variations of GPPEC better than SIFcan for individual days.
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3.3. Effects of Different Environmental Variables on the Abilities of the PRI-Based and SIF-Based Models in
Tracking Diurnal Variations of GPP

Figure 5 illustrates the seasonal variations of the environmental variables, GPPEC and LUEEC.
PAR and Q exhibited the largest day-to-day variations and high Q usually occurred with high PAR
(Figure 5a). The day-to-day variation of RH appeared opposite those of PAR, while the several abrupt
changes of SWC depended on irrigation and precipitation (Figure 5b). Both Ta and Ts remained around
30 ◦C during DOY 180–220, and then slowly decreased to around 22 ◦C at the end of the growing
season (Figure 5c). The day-to-day fluctuation of Ta was larger than that of Ts (Figure 5c). The maize
canopy showed pronounced seasonal variations in GPPEC and LUEEC (Figure 5d). The onset of GPPEC

occurred on DOY 167, several days after emergence. GPPEC increased with maize development and
reached its peak of 60 µmol CO2 m−2

·s−1 on around DOY 215. During the early reproductive stage,
GPPEC had high and stable values, sometimes dropped to low values due to low PAR. GPPEC decreased
with leaf senescence at the end of the growing season. LUEEC increased from the start of the growing
season, reaching the maximum on around DOY 190, and remaining until the early reproductive stage,
and then decreasing.
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Figure 5. Seasonal variations of the daily mean (a) photosynthetically active radiation (PAR) and sky
condition (Q), (b) relative humidity (RH), and soil water content (SWC), (c) air temperature (Ta) and
soil temperature (Ts), and (d) GPPEC and LUEEC. Daily means were calculated from half-hourly values
from 6:00 to 18:00 in the day. Small dot indicates half-hourly GPPEC.
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To avoid the interactions between environmental variables, a random forest regression analysis
was used to assess the effects of environmental variables on R2

PRI and R2
SIF. Among the environmental

variables, the most important one affecting R2
PRI was RH, with the percentages increase in mean square

error (%IncMSE) of 25.6%. Ts (%IncMSE = 22.0%) was the second most important environmental
variable affecting R2

PRI followed by SWC (%IncMSE = 13.9%). PAR and Q were the least important
variables (Figure 6a). Obvious differences were found between R2

SIF and those of R2
PRI. PAR appeared

to be the most important driver for R2
SIF (%IncMSE = 22.3%). Q was of secondary importance to R2

SIF

(%IncMSE = 11.5%) (Figure 6b).

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 16 

 

soil temperature (Ts), and (d) GPPEC and LUEEC. Daily means were calculated from half-hourly values 
from 6:00 to 18:00 in the day. Small dot indicates half-hourly GPPEC. 

To avoid the interactions between environmental variables, a random forest regression analysis 
was used to assess the effects of environmental variables on R2PRI and R2SIF. Among the environmental 
variables, the most important one affecting R2PRI was RH, with the percentages increase in mean 
square error (%IncMSE) of 25.6%. Ts (%IncMSE = 22.0%) was the second most important 
environmental variable affecting R2PRI followed by SWC (%IncMSE = 13.9%). PAR and Q were the 
least important variables (Figure 6a). Obvious differences were found between R2SIF and those of R2PRI. 
PAR appeared to be the most important driver for R2SIF (%IncMSE = 22.3%). Q was of secondary 
importance to R2SIF (%IncMSE = 11.5%) (Figure 6b). 

 
Figure 6. Relative contributions of the environmental variables for explaining (a) R2PRI, the correlation 
between LUEPRI×APAR and GPPEC, (b) R2SIF, the correlation between SIFcan and GPPEC. 

3.4. Comparison between the Abilities of the PRI-Based and SIF-Based Models under Different 
Environmental Variables 

R2PRI and R2SIF were compared under classified ranges of the environmental variables (Figure 7). 
R2PRI remained constant (>0.6) with the increase of PAR and Q (Figure 7a). R2SIF increased with the 
increase of the light-related variables (i.e., PAR and Q) and reached the highest values of 0.56 and 
0.85 for the PAR range of 800–1000 μmol·m−2·s−1 and the Q range of >2, respectively (Figure 7a,b). R2SIF 
was higher than R2PRI for the Q range of >2 (Figure 7b). 

 
Figure 7. Distribution of R2PRI and R2SIF under the classified (a) PAR, (b) Q, (c) RH, (d) SWC, (e) Ta, (f) 
Ts. Error bars represent standard deviations of R2 under the classified ranges of the environmental 
variations. 

Figure 6. Relative contributions of the environmental variables for explaining (a) R2
PRI, the correlation

between LUEPRI×APAR and GPPEC, (b) R2
SIF, the correlation between SIFcan and GPPEC.

3.4. Comparison between the Abilities of the PRI-Based and SIF-Based Models under Different
Environmental Variables

R2
PRI and R2

SIF were compared under classified ranges of the environmental variables (Figure 7).
R2

PRI remained constant (>0.6) with the increase of PAR and Q (Figure 7a). R2
SIF increased with the

increase of the light-related variables (i.e., PAR and Q) and reached the highest values of 0.56 and
0.85 for the PAR range of 800–1000 µmol·m−2

·s−1 and the Q range of >2, respectively (Figure 7a,b).
R2

SIF was higher than R2
PRI for the Q range of >2 (Figure 7b).
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environmental variations.

The distributions of R2
PRI and R2

SIF were different for the two water-related variables (i.e., RH and
SWC) (Figure 7c,d). R2

PRI was conspicuously lower in RH < 60% than that in RH > 60%. It reached the
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highest value of 0.83 for the RH range of 70–80%. R2
PRI had high values at low and high ends of SWC

with a high value of 0.88 for the SWC range of 0.2–0.25 m3 m−3 and a high value of 0.81 for the SWC
range of 0.4–0.5 m3 m−3. However, R2

SIF fluctuated with the increase of RH and SWC.
For the temperature-related variables (Ta and Ts), the distributions of R2

PRIand R2
SIFalso differed

(Figure 7e,f). The higher soil temperature showed the higher R2
PRI. The highest R2

PRI was at the
temperature range of 31–34 ◦C, while the highest R2

SIF was at the temperature range of 25–28 ◦C.
Overall, R2

PRI was higher at high RH or under soil water stress (i.e., SWC too low or too high) or
high temperature, while the higher R2

SIF occurred under high solar radiation or clear sky. The PRI-based
LUE model exhibited better performance than the SIF-based linear model in estimating GPP in most
of the classified ranges of the environmental variables, with the SIF-based linear model performed
slightly better under clear sky (Q > 2).

4. Discussion

4.1. Evaluation of Multi-Angle Observed PRI

This study found that the averages of the multi-angle observed PRI within short time intervals
better represented the condition of the entire canopy in estimating LUE than the single angle observed
PRI (Figure 3). This relationship indicates that the utilization of multi-angle observations with tens
of measurements evenly distributed at different angles could diminish the angular effects to some
extent. Crop canopies are non-Lambertian characterized by bidirectional reflection. Their reflectance
changes because of the varied fraction of sunlit/shaded elements of the canopy with the changing
angles. The reflectance at 531 nm differed significantly over sunlit and shaded elements of the canopy.
The canopy elements whose reflectance differed as a function of illumination intensity lead to the
variation in the PRI signal viewed at varied angles [25]. The sunlit elements are more likely to be
exposed to excess light levels, causing a conversion of violaxanthin to zeaxanthin and resulting in a
lowering of PRI. The angular effects of the observed PRI were also reported by Hilker et al. [49] and
Zhang et al. [18], which was consistent with our observations (Figure 2). We used the simple arithmetic
averages of the multi-angle observed PRI to represent the whole canopy with assuming the canopy
as a big leaf in this study. There are also two-leaf approaches that interpreted the variations of the
observed PRI with the sun-view geometry and canopy structure as their sensitivity to the fractions of
sunlit/shaded leaves. Zhang et al. [58] used a two-leaf model to derive canopy PRI with multi-angle
observations and found the two-leaf PRI could effectively improve the ability for indicating LUE
over the big-leaf PRI in a subtropical evergreen coniferous forest. However, the canopy of maize
was relatively homogeneous compared to the coniferous forest with more species. Different from
the previous observation methods, the view zenith angle in this study was assigned to be consistent
with the SZA, while the VAAs within half an hour were evenly distributed (Figure 2). Therefore, the
arithmetic average was chosen as a more simple approach to reduce the angular effect in this study.

4.2. Comparison of the PRI-Based and the SIF-Based Models in Estimating Diurnal and Seasonal
GPP Variations

Among different time scales, we found that the PRI-based LUE model exhibited better performance
than the SIF-based linear model in estimating the diurnal variations of GPPEC, while the SIF-based linear
model performed better at estimating the seasonal variations of GPPEC (Table 1, Figure 4). PRI may be
a good indicator of LUE because of the link between PRI and xanthophyll cycle activity. The rapid
xanthophyll cycle activity represented physiological regulations of photosynthesis on short-term
changes in general environmental conditions and thus PRI was regarded as an optical indicator of LUE
at diurnal time scales. Several studies have confirmed that the long-term (seasonal) PRI responses were
primarily driven by constitutive changes in pigment pools (i.e., the ratio of carotenoid and chlorophyll)
instead of facultative xanthophyll cycle activity [27–29,59,60]. Although the slower or seasonal pigment
pool size adjustments of photosynthesis were also shown to correlate with LUE, the mechanistic
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explanations of the relationships differed [31]. Thus, the PRI-based LUE model showed a high advantage
in the estimation of the diurnal photosynthesis variations, but a lower advantage in estimating the
seasonal photosynthesis variations. Maize is a C4 plant, which does not have the photosynthetic “lunch
break” phenomenon under high light at noon. Thus, the distribution of absorbed light energy relies on
non-photochemical quenching (NPQ), i.e., heat energy dissipation through the xanthophyll cycle, which
may be more conducive to the expression of the diurnal LUE variations by PRI. In contrast, it has been
found that the relationship between SIF and GPP appears to be linear under stress conditions precisely
due to the reduced SIF values around midday [45]. At the seasonal scale, considerable evidence based
on retrievals from satellite [32,33,37,41,42] and ground-based measurements [43,44,61,62] has been
showing strong empirical linear SIF-GPP relationships. In contrast, the studies conducted at short time
scales (e.g., sub-daily) found insignificant relationship (R2

≤ 0.3) than that in seasonal scale studies [63],
which may be nonlinear [64]. Yang et al. [46] demonstrated that SIF primarily responded to changes
in APAR rather than GPP and emphasized the needs of LUE information when estimating GPP at a
short-term scale.

4.3. Environmental Effects on the Abilities of the PRI-Based and SIF-Based Models in Estimating GPP

In our study, RH was the most limiting factor for the PRI-based LUE model in estimating GPP of
maize (Figure 6). Previous studies have reported that PRI has the highest and most common correlation
with LUE under cloudless or slightly cloudy conditions, rather than water-limited conditions [19,58].
Our study demonstrated that the incident radiation (PAR) and sky condition (Q) were not influenced the
performance of the PRI-based LUE model in estimating GPP (Figure 7a,b) because the APAR included
in the model partly account for the sky radiation. The relationship between LUEPRI×APAR and GPPEC

had a lower correlation when RH was lower than 60% (Figure 7c), which was consistent with the
VPD-limited conditions in Zhang et al. [58]. However, in the cropland with irrigation, SWC was not a
limitation. We infer that the PRI-based LUE model was more sensitive to the atmospheric water deficit
(low RH) than the soil water deficit (low SWC) because the former had a direct effect on opening and
closing of the leaf stomata and then the photosynthesis, not the reflectance of the leaf and canopy.
Soil temperature also had a positive effect on the PRI-based LUE model (Figures 6a and 7f). The high Ts

occurred at the late V stages (DOY 195 to 207) with synchronously high RH (Figure 5). Thus, the maize
rapid grown at this stage had a higher photosynthetic rate and linear energy distribution, leading to
the good performance of the PRI-based LUE model.

Different from the PRI-based LUE model, the relationship between SIFcan and GPPEC was
influenced by the light-related factors, i.e., PAR and Q. It was found that incident radiation played
dominant roles in SIF changes among environmental variables by sensitivity tests on simulated SIF
data by Soil Canopy Observation Photosynthesis Energy (SCOPE) model [65]. Photosynthesis and
chlorophyll fluorescence were highly correlated when vegetation was exposed to excess incident
radiation [38]. The incident radiation absorbed by chlorophyll was a key driver of both GPP and
SIF, but limited or saturated light conditions could result in different coupling patterns between the
efficiency of photosynthesis and fluorescence [66,67]. Due to the effect of diffuse radiation, the clearer
the sky showed the stronger correlation between SIF and GPP for maize canopy in our study (Figure 7).
This finding was in agreement with Miao et al. [66], but differed from Yang et al. [46], Goulas et al. [68],
and Li et al. [50].

4.4. Combination of PRI and SIF for GPP Estimation

Photosynthesis, fluorescence, and NPQ are three pathways to dissipate the absorbed light energy,
which interrelate and compete with each other. The relationship between photochemical yield (ΦP)
and fluorescence yield (ΦF) is divided into two distinct phases: under high light, NPQ dominates the
variations of ΦP, with constant photochemical quenching (PQ); under low light, the variations of ΦP
are mainly driven by PQ, with constantly low NPQ [67]. ΦP is in proportion to ΦF under the NPQ
stage and becomes inversely proportional under the PQ stage because of the opposite effects on ΦF
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with decreasing PQ and increasing NPQ. PRI has been proven to be a representative of the temporal
dynamics of NPQ [69]. The combination of PRI and SIF observations could be a solution for a better
estimation of photosynthesis. Cheng et al. [63]) and Schickling et al. [70] combined the PRI and SIF
data in simple linear regression models and found that their combinations improved the estimation of
GPP. However, their models were more mathematical than mechanistic. Atherton et al. [71] combined
PRI and SIF via NPQ model and ΦF to predict the dynamics of photosynthetic efficiency at leaf scale
and short-time scale from a theoretical perspective. Different from their direct combination of PRI
and SIF, we treated SIF and PRI as alternatives for the estimation of GPP and pointed out the better
performance of the PRI-based LUE model under most environmental conditions for the maize field in
our study. Additional studies on the theoretical combination of PRI and SIF at various temporal and
spatial scales would be helpful for a more accurate estimation of GPP.

5. Conclusions

In this study, we measured multi-angular canopy spectra continuously during the whole 2018
growing season of a maize field. We compared the ability of the single-angle and multi-angle PRI
observations at canopy level in estimating LUE. Then, the PRI-based LUE model was evaluated and
compared to the SIF-based linear model for their performance in the estimation of GPP during the
maize growing season in 2018. The major results are as follows:

(1) the observed PRI varied with sun-view angles and the averaged PRI using the multi-angle
observations within a short time exhibited better performance than single-angle observed PRI in
the estimation of LUE in the maize field;

(2) LUEPRI×APAR tracked the variations of GPP during the growing season of the maize field in
2018, and it demonstrated a higher ability to capture the diurnal variations of GPP, while SIF was
a better fit for the seasonal variations of GPP;

(3) RH was the most important factor affecting the utilization of the PRI-based LUE model to estimate
diurnal GPP variations, while PAR affected most for the SIF-based linear model. Under most
environmental conditions, the performance of the SIF-based linear model was not as good as the
PRI-based LUE model except for clear days (Q > 2).
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