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Abstract: Remote sensing technologies and machine learning (ML) algorithms play an increasingly
important role in accurate detection and monitoring of oil spill slicks, assisting scientists in forecasting
their trajectories, developing clean-up plans, taking timely and urgent actions, and applying effective
treatments to contain and alleviate adverse effects. Review and analysis of different sources of
remotely sensed data and various components of ML classification systems for oil spill detection
and monitoring are presented in this study. More than 100 publications in the field of oil spill
remote sensing, published in the past 10 years, are reviewed in this paper. The first part of this review
discusses the strengths and weaknesses of different sources of remotely sensed data used for oil
spill detection. Necessary preprocessing and preparation of data for developing classification models
are then highlighted. Feature extraction, feature selection, and widely used handcrafted features for
oil spill detection are subsequently introduced and analyzed. The second part of this review explains
the use and capabilities of different classical and developed state-of-the-art ML techniques for oil
spill detection. Finally, an in-depth discussion on limitations, open challenges, considerations of oil
spill classification systems using remote sensing, and state-of-the-art ML algorithms are highlighted
along with conclusions and insights into future directions.

Keywords: marine pollution; oil spill remote sensing; oil spill detection; SAR; dark spot detection;
feature extraction; machine learning; deep learning

1. Introduction

Oil spills are generally characterized as the release of liquid petroleum hydrocarbons into
the environment due to human activities [1]. Spillage commonly occurs in water, on ice,
or land during oil exploration, production, transportation, refining, storage, and distribution [2].
For instance, oil spillage may occur from offshore oil platforms, refineries, pipelines, chemical plants,
treatment facilities, and transportation accidents and deliberate oil discharges from ships, as well as oil
disposal from energy production and operational errors. Accidents generally account for the massive
oil spill incidents worldwide. Shipping accidents, particularly mishaps caused by oil tankers, release a
significant amount of oil and pose a substantially higher threat to water ecosystems more than other
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pollution sources [3,4]. According to the International Tanker Owners Pollution Federation (TIOPF),
approximately 5.86 million tons of oil are lost globally as a consequence of oil tanker accidents [5].

A worldwide dependence on oil-based products has long existed, and the continuous spillage of
petroleum residues from tanker operations, accidents, and other maritime sources contaminates many
coastlines and beaches worldwide [6]. Oil products entering the marine environment have a wide
range of long-term environmental impacts depending on their chemical and physical composition
and concentration as well as other environmental factors. However, these products can have notable
short-term implications on ecosystems, habitats, and wildlife. For instance, coastal and marine wildlife
exposed to oil is susceptible to intermediate health problems and involves long-term changes to their
physiology and behavior [7].

Chemical and physical properties of oil, such as surface tension, specific gravity, and viscosity,
along with various circumstances relating to the time and location of accidents, oil volume,
and atmospheric factors, affect the behavior of oil in water. When different kinds of oil are spilled
on either land or water, many physical, chemical, and biological degradation processes begin to act
on them. When crude oil is released, it spreads to form a thin film, called oil slick, on the water surface.
Then, many natural processes, known as oil weathering, work together to degrade the oil slick [8]. As oil
travels through aquatic environments, a range of chemical and physical processes, including wind,
wave and current compression, spreading and diffusion of surfaces, sedimentation and dissolution into
the water column, emulsification, evaporation, and photochemical, as well as biological degradation,
can influence and change the oil characteristics [9,10]. The distinction between marine and terrestrial
spills lies in the speed at which the oil moves or disperses and the consequent size of the affected area.
Oil spills in the water are carried by wind and current and often over long distances. The prediction of
oil spill on land can be accurate because of its significantly slow movement, usual downward flow,
and accumulation in depressions [11]. Spill response knowledge is evidential, and past spill responses
are continuously being discovered to learn the behavior of oil spills, verify the effectiveness of
countermeasures, and provide relevant data on handling future spills in similar scenarios [12].

Monitoring and detection of oil slicks is a crucial part of contingency planning for oil spills.
Precise detection of oil spills and prediction of their trajectories are beneficial to fisheries, wildlife,
liability dispute resolutions, and resource management for monitoring and conserving the marine
ecosystem [6]. Traditional oil spill monitoring techniques, such as aerial or field investigation, are costly
and fail to achieve timely and efficient identification of oil spill areas. Given the wide coverage,
synoptic views, and the frequency of acquiring multisensory data, satellite-based remote sensing
(RS) has been extensively used in detecting and monitoring oil spills in the past few decades using
various types of remotely sensed data (Section 2). Numerous review papers that focus on oil spill
RS are available in the literature [13–18]. These studies discussed the utilization and advantages
of using various sources of remotely sensed data and techniques for oil spill extraction. However,
existing review studies have yet to address the adoption of state-of-the-art machine learning (ML)
techniques for identifying oil spills/slicks. The synergetic use of RS technologies and ML algorithms to
detect and monitor oil spill slicks has been examined and adopted in a wide spectrum of studies [19–27].
ML techniques have demonstrated an effective means to extract oil spills from remotely sensed data
in a (semi)automatic manner. Massive amounts of data can be handled and integrated to enable
timely decision making and the analysis of potential oil spill incidents. Recent related literature
(2010–2020) on the recognition, identification, and detection of oil spills using remotely sensed data
and ML algorithms is reviewed in this study. A review of 110 investigations on different components
of ML classification systems for oil spill detection, including 79 journal papers, 29 conference papers,
and 2 book chapters, was conducted in this study. First, the advantages and shortcomings of
commonly used remote sensors in oil spill detection are highlighted. Second, the preprocessing chain
of remotely sensed data for oil spill detection and commonly extracted and selected features for oil
spill detection are presented. Various classical and advanced ML approaches for oil spill detection
are summarized and analyzed. Finally, the challenges, considerations, and future trends of oil spill
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systems are emphasized. Figure 1 shows the overall structure of developing and adopting ML models
for oil spill detection. The remainder of this paper is organized as follows. Different sources of remotely
sensed data are described in Section 2. Different stages of data preprocessing are discussed in Section 3.
Feature extraction and selection are highlighted in Section 4. Classical and advanced ML techniques for
identifying oil spills are analyzed in Section 5. Finally, conclusions are drawn and some considerations
for improving oil spill detection are provided in Section 6.

Figure 1. Framework of oil spill detection.

2. Remotely Sensed Data

Remotely sensed data are extensively used to detect and monitor oil spills in the past few decades.
These data are generally acquired by passive and active systems. Passive sensors record naturally
reflected and/or emitted solar radiation from the observed object, whereas active sensors use
their energy source to illuminate sensed targets and record backscattered energy from the target.
Visible and infrared multispectral, hyperspectral, thermal, microwave, and laser fluorosensors are
some relevant remote sensing techniques for oil spill detection, monitoring, type characterization,
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and thickness estimation. Given that each technique has its own advantages and shortcomings,
acquiring essential information for timely and effective oil spill management from one source of data
can be challenging [28,29]; thus, a concession exists when selecting potential technique(s) from others.
The advantages and shortcomings of optical and microwave remote sensing data for oil spill detection
and monitoring are discussed in the following sections.

2.1. Optical Data

Optical images are less widely used in oil spill studies compared to microwave images
owing to their dependence on weather conditions and day light. Although the presence of
cloud in skies and the lack of sunlight hinder the usage of optical sensors, these devices
have a unique spectral characteristic that can fill the spatial and temporal gaps for a synoptic
coverage of oil spills, provide valuable information to differentiate between oil spills and water
surface features (i.e., algal blooms) [14,30,31], potentially identify oil spills at fine levels [32],
and provide relative information for oil spill thickness estimation [28]. Passive remotely sensed
data acquired at different regions of the electromagnetic spectrum, including the ultraviolet
(100–400 nm), visible (VIS) (400–700 nm), and near-infrared (NIR) (750–1400 nm) regions, are used in
detecting [30,32–40] and estimating oil spill surface thickness [31,41–45]. The utilization of multispectral
data for oil spill detection is growing, and various satellite data with different resolutions are
used in different studies, as shown in Table 1. Such studies used moderate-resolution imaging
spectroradiometer [38,46–48], medium resolution imaging spectrometer (MODIS) [49], Sentinel-2 [36],
Landsat [30,50,51], KOMPSAT-2 [52], and Gaofen-1 [51,53], among others. Figure 2 shows the different
oil spill incidents captured by various optical satellites, such as Sentinel-2 (Figure 2a,b) and MODIS
Terra and Aqua satellites (Figure 2c,d).

Figure 2. Oil spill incidents recognized from optical images: (a) Sentinel-2 image of ship spills near
the coast of Mauritius on 10 August 2020, (b) Sentinel-2 image of massive oil slick off the coast of
Kuwait on 11 August 2017, (c) NASA Terra satellite imagery of large oil spills on the Gulf of Mexico on
24 May 2010, and (d) NASA Aqua satellite image of oil slick in the Timor sea on 30 August 2009.
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Spectral characteristics of oil spills may vary from one source to another depending on physical
oil characteristics, film thickness, weather and illumination conditions, and optical properties of water
column [36]. Although oil appears in the visible region of the spectra (approximately 400–700 nm) and
exhibits relatively higher reflectance than water, it has no unique reflection/absorption features that can
enable straightforward discrimination between oil and the background [15,54]. Nevertheless, in some
special cases (i.e., Figure 2c), oil may look silvery with a greater reflectance than the background [54].
Moreover, heavy oil may look brown and peak between the 600 and 700 nm regions of the spectra,
whereas mousse appears red-brown and peaks near 700 nm [55]. However, detectability of oil spills in
images produced by visible sensors can be affected by the contrast between oil and water based on
several factors, including illumination-view geometry (satellite and solar zenith angles), cloud coverage,
sea state (wind speed), oil spectral properties (refractive index and absorption coefficient), and oil
conditions and thickness [15,54,56].

The NIR bands (750–1400 nm) from sun-glittered satellite images for oil spill detection have been
investigated in few studies. For instance, Pisano et al. [57] detected the marine oil spill from a MODIS
near-infrared sun-glittered radiance imagery. Adamo et al. [58] reported that the NIR bands of MODIS
and MEdium Resolution Imaging Spectrometer (MERIS) images show an increased performance of
oil/non-oil class separability compared with the bands in the visible range. Moreover, the absorption
features in the near-infrared NIR region have been used as a proxy for estimating the thickness of oil
spill [41,42,49].



Remote Sens. 2020, 12, 3338 6 of 42

Table 1. List of optical satellites utilized in oil spill studies.

Satellite Spectral Region
(Bands)

Range
(µm)

Spatial
ResolUtion

(m)

Revisit Time
(Days) Operation References

MODIS
(Terra, Aqua) VIS, NIR, MIR, SWIR,55 LWIR (36 spectral bands) B1–19 (0.405–2.155)

B 20-36 (3.66–14.28) 250,500, 1000 m 1–2 1999/2002–operating [38,46–48,59–62]

Landsat-8 VIS, NIR, SWIR, TIR (12 spectral bands) B1–9 (0.43–1.38)
B10–11 (10.6–12.51) 15, 30, 100 m 16 2013–operating [51,63–67]

Landsat-7 VIS, NIR, MIR, TIR
(8 spectral bands)

B1–5 (0.45–1.75)
B6 (10.40–12.50)
B7 (2.08–2.35)

15, 30, 60 m 16 1999–operating [68–70]

Landsat-5 VIS, NIR, MIR, TIR
(8 spectral bands)

B1–5 (0.45–1.75)
B6 (10.40–12.50)
B7 (2.08–2.35)

30, 120 m 16 1984–2013 [44,66,69]

Sentinel-2 VIS, NIR, SWIR
(12 spectral bands) 0.443–2.190 10, 20, 60 m 5 2015–operating [36,71,72]

KOMPSAT-2 VIS, NIR (5 bands) 0.45–0.9 1(pan), 4 m (MS) 14 2006–operating [52]

Gaofen-1 VIS, NIR (5 bands) 0.45–0.89 2 (pan), 8 m (MS) 4 2013–operating [51,53]

ASTER VIS, NIR, SWIR, TIR
(14 bands)

B1–3B (0.52–0.86)
B4–B9 (1.6–2.43)

B10–B14 (8.12–11.65)
15, 30, 90 m 4–16 1999–operating [73–75]

Quickbird VIS, NIR (5 bands) 0.45–0.9 0.61(pan), 2.4(MS) 1–3.5 2001–operating [69,76]

Dubaisat-2 Visible, NIR (5 bands) 0.45–0.89 1(pan), 4 (MS) <8 2013–operating [63]

Huan Jing-1 VIS, NIR (4 bands) 0.43–0.90 30 m 4 2008–operating [32,51,77]

RapidEye VIS, NIR (4 bands) 0.44–0.85 5 m 1–5.5 2008–operating [69]

WorldView-2 VIS, NIR (8 bands) 0.45–0.80 0.52(pan), 2.4(MS) 1.1 2009–operating [44]

IKONOS VIS, NIR
(4 bands) 0.45–0.86 0.82(pan), 3.28(MS) 1–14 1999–2015 [69]

AVHRR (NOAA) VIS, MIR, TIR(6 bands) 0.58–12.5 1.1 km 0.5 1978–operating [74,78,79]

SeaWiFS VIS, NIR (8 bands) 0.58–12.5 1.1–4.5 km 1 1997–2010 [80]

MERIS VIS, NIR (15 bands) 0.4–0.95 300 3 2002–2012 [42,60]

SPOT-5 VIS, NIR, SWIR (4 bands) B1–B3 (0.5–0.89)
B4 (1.58–1.75)

2.5 or 5 m(Pan),
10(MS), 20(SWIR) 2–3 2002–2015 [44]

Visible (VIS), mid-wave infrared (MIR), shortwave infrared (SWIR), longwave infrared (LWIR), thermal (TIR), pan (panchromatic), MS (multispectral).
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Hyperspectral remote sensing, also known as imaging spectroscopy, records reflected and/or
emitted solar radiation in large number (hundreds) of contiguous narrow spectral bands ranging
from 350 nm to 2500 nm. The absorption features of oil and other materials can be detected
in hyperspectral images considering that a continuous and detailed spectrum is measured for
each pixel. The high spectral resolution is vital considering the spectral similarity between diverse
oil types, such as crude, diesel, lubricant, and kerosene, and subtle differences can be distinguished
using hyperspectral RS technology [81]. Several studies on oil spills use hyperspectral systems,
including airborne visible/infrared imaging spectrometry [22,23,82–87], Hyperion [81,88], and analytical
spectral devices [89]. However, the requirement of advanced processing and analysis in hyperspectral
images is a setback for real-time monitoring [15]. In addition, hyperspectral data are relatively
expensive and publicly unavailable compared with multispectral and microwave images.

Oil, as a type of optically thick object, demonstrates different thermal characteristics
(i.e., thermal conductivity, thermal inertia, and heat capacity) in comparison with surrounding
water [90]. Given that oil absorbs and re-emits some parts of solar radiation as thermal energy,
depending on the thickness of the oil slicks, it has a higher thermal infrared emissivity than water
largely in the long-wavelength infrared spectral region (8000–14,000 nm) [54]. Temperature differences
resulting from the variations in the emissivity enable the recognition of oil spills on sea surfaces.
For instance, during sunny days, thick oil (greater than 500 µm thick) appears radiometrically hotter
(brighter) in infrared images than the surrounding water due to its absorbance of greater amount
of solar radiation; intermediate oil appears cooler (darker), while sheen (thin oil) and rainbow
(very thin oil) are not detected [79,91]. Conversely, thick oil can appear cooler than the surrounding
water at night because the heat loss of oil is faster than its surrounding water [91,92]. Considering that
early morning and late afternoon are in-between periods, earlier in the afternoon could be a suitable
time for oil film detection by thermal infrared sensors [93]. Various studies investigated the potential of
using infrared bands for oil spill detection and monitoring from different remotely sensed data,
including Landsat [94,95], Advanced Very High-Resolution Radiometer(AVHRR) [74,78,79,96],
MODIS [97,98], Advanced Spaceborne Thermal Emission, and Reflection Radiometer (ASTER) [73,74],
Environmental Satellite Advanced Along-Track Scanning Radiometer (ENVISAT-AATSR) [99],
and thermal infrared imager [100]. One of the shortcomings of oil spill detection from thermal
infrared images is that natural objects, such as shorelines, sediments, and organic matter, may appear
like oil in thermal infrared images, which may cause errors to the detection of oil objects [15,16].
In addition, the resolution of satellite-based thermal images is low, and thermal images are often noisy
and blurry [101].

2.2. SAR Data

Active microwave sensors are frequently used remote sensing systems for oil spill detection
and monitoring due to their broad coverage and capabilities in collecting day-and-night data under
all-weather conditions. Two main types of radar imaging are used in the detection and monitoring
of oil spills, namely, synthetic aperture radar (SAR) and side-looking airborne radar (SLAR) systems.
SAR (satellites-based), and SLAR (airborne) transmit/receive backscattered radio waves, and the
reflection of target-surface properties are recorded to produce two-dimensional images of the scene.
Both systems operate based on the same synthetic aperture principle and share the same side-looking
imaging geometry. The usefulness and effectiveness of utilizing satellite-based SAR data for oil spill
detection have been established in the reviewed literature. Table 2 lists the available satellite-based SAR
system utilized in the reviewed literature on oil spills along with their frequencies and polarimetry.

The presence of oil in the sea typically reduces the intensity of the backscattered energy because
oil dampens small-scale sea surface capillaries and short gravity waves [102,103]. Consequently,
oil spills appear dark in SAR images. For example, Figure 3 depicts different oil spill incidents captured
in various SAR images acquired in the Interferometric Wide (IW) swath mode and generated in
high-resolution Level-1 ground range detected (GRD) format which entail radar observations projected
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onto a regular 10 × 10 m grid. However, one challenge in using SAR images for oil spill detection
is that oil spills are only one of other phenomena, such as manmade or natural events, which can
reduce the scattering mechanism and appear dark in SAR images. These phenomena are known
as lookalikes, which may include the following: natural surface films produced by plankton or fish,
grease, floating algae, internal waves, low-wind areas, plant oil, ship wakes, and convergence zones.

Figure 3. Oil spill incidents recognized from microwave Sentinel-1 images: (a) ship spills near the
coast of Mauritius on 10 August 2020, (b) massive oil slick off the coast of Kuwait on 10 August 2017,
(c) large oil spills detected on the Arabian Gulf on 8 March 2017, and (d) extended oil spill near the
coast of United Arab Emirates on 10 October 2017.

The appearance of oil spills may vary in SAR images because the radiometric characteristics of radar
imaging can differ based on the option of wavelengths, frequencies, and polarizations. L (wavelength
of 24 cm), C (wavelength of 6 cm), and X (wavelength of 3 cm) are commonly used microwave bands
in oil spill detection. This review found that the C-band is widely used in radar imagery for detecting
oil spills, followed by X- and L-bands. SAR systems operate in different polarization schemes (VV, HH,
VH, and HV). This condition enables the extraction of unique information for oil spill detection
and monitoring. For instance, Sentinel-1 and Radarsat-2 can provide dual-polarized SAR data, that is,
HH (horizontal transmitting and receiving) + HV (horizontal transmitting and vertical receiving) or
VV+VH. Polarization modes can be single (i.e., HH or HV), dual (i.e., HH/HV or VV/VH), and quad
(HH, HV, VH, and VV). However, some features can only be observed using specific polarizations.
For example, an oil spill incident can be seen on the VV band of Sentinel-1 data, but it may not be
visible in the corresponding VH band.
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Table 2. List of SAR-equipped satellites utilized in the oil spill detection community.

Satellite Name Operation Operator Band Polarization References

ERS-1, ERS-2 1991–2000,
1995–2011

European Space
Agency (ESA) C Single-VV [64,104–113]

RADARSAT-1 1995–2013 Canadian Space
Agency (CSA) C Single-HH [64,112,114–117]

RADARSAT-2 2007 Canadian Space
Agency (CSA) C Quad [26,64,106,110,

114,116,118–130]

ENVISAT ASAR 2002–2012 European Space
Agency (ESA) C Dual

[64,77,105,106,
108–110,112,117,
124,129,131–144]

ALOS PALSAR,
ALOS-2

2006–2011,
2013

Japan Aerospace
Exploration

Agency (JAXA)
L Quad [117,118,126,141,

143]

TerraSARX 2007 German Aerospace
Centre X Quad [112,145–150]

Cosmo
Skymed-1/2 2007/2010 Italian Space

Agency X Dual [151–153]

RISAT-1 2012 India C Quad [154–156]

Huan Jing-1C
(HJ-1C) 2012 China S Single-VV [157,158]

Kompsat-5 2013 Korea X Dual [159,160]

Sentinel-1 2014 European Space
Agency (ESA) C Dual [64,65,161–165]

3. Data Preprocessing

3.1. Optical Images

Given the inherent radiometric and geometric errors of optical and SAR sensors and the strong effect
of the environmental conditions, the preprocessing of remotely sensed data is a fundamental step in
enhancing the data quality and improving the accuracy of the developed oil spill classification systems.
The preprocessing chain of optical data may vary on the basis of the quality of the data source
and the required level of processing for the analysis (i.e., levels 0, 1B, and 1C). This process can
generally be categorized into five main steps, namely, radiometric calibration, atmospheric correction,
geometric correction, image enhancement, and masking. The radiometric correction of optical images is
required to mitigate the atmospheric effects to improve the identification of oil spills [53,66] and remove
the radiometric sensor aging effects and radiometric discrepancy among sensors (i.e., Landsat TM
and ETM+) [166]. Atmospheric correction softens the atmospheric effects by eliminating the influence
of the atmospheric molecules and aerosol scattering [71] and improving the extraction of real surface
parameters from satellite images (i.e., surface reflectance, emissivity, and surface temperature) [167].
This correction is considered in different oil spill studies [30,32,47,49,53,62,64,168].

Considering that oil spills can be monitored by different satellite-based or airborne imaging systems,
geometric correction might need to be applied prior to image analysis if an image is to be compared
with multitemporal and multisensory images or with existing vector data/maps. Image data should
then be projected to a local or common projection system (i.e., Universal Transverse Mercator).
Image enhancement, such as contrast enhancement, is applied to each image scene to enhance the oil
slick visibility. Masking clouds, smoke, shadow, and land pixels can enhance the oil spill visualization
and improve the discrimination of oil spills from the complex surrounding features [32,63].
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3.2. SAR Images

Preprocessing of SAR data can generally be divided into four main steps, namely,
radiometric calibration, geocoding, filtering, and masking. First, radiometric correction and calibration
of SAR images are essential procedures to eliminate or reduce radiometric distortions and ensure that
pixel values in SAR images are linked to the backscattering coefficient (sigma naught [measured in dB])
of the reflecting surface [169]. Thus, quantitative measurements (backscattered microwave energy from
ground targets) restored from digital number values of image pixels and characteristics of an object in
multitemporal SAR images acquired with different SAR sensors and modes can be compared [170,171].

The presence of geometrical distortions in SAR images (i.e., foreshortening, layover, and shadow)
can minimize the use of SAR data and impede information extraction in various applications. Thus,
geocoding of SAR data is required to minimize geometric distortions, and the location of any pixel in
SAR imagery can be connected directly to the location on the ground [172]. In addition, the geocoding
of SAR data facilitates the integration of geospatial data collected from different sources to improve
monitoring and classification processes of oil spills. However, a high-resolution digital elevation
model and additional knowledge, regarding orbit and sensor platforms, are needed for accurate terrain
geocoding [173].

Unlike passive sensors, SAR images contain a certain degree of dark and light multiplicative
noise known as speckle. The speckle noise is caused by the random interference of waves received
by the sensor of many elementary reflectors within the ground resolution cell (or pixel) with a
single resolution [174]. The noise may reduce the efficiency of information extraction techniques,
human interpretation, automated scene analysis, and the analysis of multiple SAR observations [175].
Thus, speckle filtering is a crucial step in SAR images for oil spill classification systems. The optimal
filtering technique should preserve the useful radiometric information and avoid the loss of
scene features, such as local mean of backscatter, texture, linear features, edges, and point targets [176].
Various filter types with different kernel sizes were utilized by previous studies to reduce the speckle
and enhance the SAR images for oil spill detection. Lee, enhanced Lee, Frost, Kuan, median, Lopez,
boxcar, and non-local mean filters are some examples of the filters used in speckle filtering techniques.
The most commonly used despeckling techniques for SAR images in the reviewed literature are the
Lee [26,64,66,109,136,161] and enhanced Lee filters [112,149,154]. These filters are selected in oil spill
studies due to their outstanding ability to minimize speckle noises while preserving edge sharpness
and the important features in the SAR images. The final preprocessing step is masking out land and
shorelines from SAR images. This process prevents the land from interfering with the detection of oil
spills while reducing the computational intensity of the image [129]. In addition to the masking out of
land and shorelines, weed beds and algae infestations can also be removed [15].

4. Feature Extraction

Feature extraction, a critical stage in oil spill detection systems, allows the extraction and input
of a set of features to distinguish oil spills from lookalikes (natural phenomena, such as algae bloom,
biogenic slicks, currents, and low-wind areas) and other targets on the water. The incorporation of
features with reliable discriminatory power contributes to the improvement of classification accuracy
in oil spill detection. Various studies have attempted to determine the optimal combination of
different features for detecting and classifying oil spills [110,145,177–181]. However, the lack of
systematic research on the extraction and combination of various sets of features (i.e., SAR polarimetric,
textural, geometrical, and other features) and their influence on classification accuracies has generally
contributed to the arbitrary selection of features as inputs to numerous classification systems [177,180].
The majority of reviewed studies explored the extraction of multiple features to detect oil spills from
SAR and optical images in the last decade. The following section describes the widely used handcrafted
(shallow) features in oil spill detection, while the automatic extraction of deep features is discussed in
Section 5.2.
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4.1. Feature Categories

Commonly used shallow features for identifying, detecting, and classifying oil spills can be
categorized into the following five broad categories: statistical (i.e., mean, max, standard deviation,
and ratios of backscattering coefficient values), geometric (i.e., area, perimeter, complexity, and shape
factors and ratios), texture (i.e., derivatives of gray-level co-occurrence matrix [GLCM]), contextual
(i.e., proximity to ships and oil platforms) [14,182,183], and SAR polarimetric (extracted from quad-,
dual-, and single-polarimetric images) features. The detection of oil spills from optical images mainly
focuses on the extraction of statistical [36,47,48,50–53,61,68,69], textural [46,184], and geometrical
features [47]. Spectral, thermal, and textural properties are among the widely extracted features from
optical images to differentiate oil spill and surface targets.

Considering that SAR data are extensively used in oil spill studies, various feature categories are
extracted and utilized to differentiate oil spills and lookalikes. Commonly used feature categories and
standard associated features for oil detection from SAR images are listed in Table 3. The frequency of
adopting feature categories in differentiating oil spills and lookalikes from SAR images are shown
in Figure 4.
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Table 3. Common features extracted from SAR imagery.

Feature Category Feature Description References

Geometric/
Shape

Area (A) Area of an image object (in number of pixels)

[47,106,110,111,113–115,129,
136,138,141,142,145,163,177,

180,185–188]

Perimeter (P) perimeter of an image object (in number of pixels)

Complexity measure (C) measure of the intricacy of an object geometrical shape C = P2

A or C =
p

2
√
πA

Spreading (S) S measures the ratio between an object’s width and length

Shape factor Measure of an image object border smoothness [109–111,118,129,134,177,
180,186,188]

Hu moment invariant [189] Invariant moments used to characterize object patterns [110,113,114,132,139,180,
190]

Circularity Measure of an image object compactness [104,139,180,190,191]

Perimeter to area ratio Ratio of the perimeter to the area ( P
A ) [106,110,118,177,180,188]

Statistical

Object standard deviation Standard deviation of backscatter values an image object computed from SAR imagery

[106,109–111,113–115,134,
136,138,163,177,180,185,

188]

Object mean value Mean backscatter values of an image object

Background mean value Mean backscatter values of a small region around the object

Background standard deviation Standard deviation of backscatter values of a small region around the object

Max contrast Difference between background mean value and the lowest backscatter value inside the object

Object power to mean ratio Ratio between the standard deviation and the mean of an image object

[114,138,177,180,185,188]

Mean contrast ratio Difference between background mean value and the mean backscatter value of the object

Gradient standard deviation Standard deviation of the border gradient

Mean border gradient Mean value of the border gradient

Max gradient Maximum value of the border gradient

Texture

Contrast GLCM GLCM contrast value computed from backscatter values of image objects
[111,113,114,129,135,136,

138,155,188,192–194]
Homogeneity GLCM GLCM homogeneity value computed for an image object

Entropy GLCM GLCM entropy value computed for an image object

Correlation GLCM GLCM correlation value computed for an image object

[110,113,129,155,192,195–
197]

Dissimilarity GLCM GLCM dissimilarity value computed for an image object

Variance GLCM GLCM variance value computed for an image object

Energy GLCM GLCM energy value computed for an image object

Mean GLCM GLCM mean value computed for an image object
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Table 3. Cont.

Feature Category Feature Description References

SAR polarimetric
features

Entropy Polarimetric parameter used to measure the degree of randomness of the scattering mechanism

[103,128,198–200]

Alpha angle Polarimetric parameter used to characterize the scattering mechanism of the reflection

Degree of polarization Physical quantity that is used to characterize the polarized light’s polarization degree

Conformity coefficient
Evaluates if surface scattering is the dominant among all

the scattering mechanisms [198], and it can discriminate surface, double-bounce, and volume
scattering [201]

Correlation coefficient Measure that reflects the averaged phase difference among scattering coefficients in
co-polarized phases (i.e., HH, VV) [202]

[103,119,198,200,203]
Anisotropy Measures of the relative values of the second and third eigenvalues [204]

Pedestal height Measure of the amount of the unpolarized backscattered energy [205]

Standard deviation of CPD
(Co-Polarized phase Difference) Standard deviation of CPD was introduced by [206] to differentiate oil and biogenic slicks

Contextual

Number of neighboring targets in the
same image Number of adjacent targets to oil slicks in the same scene [115,185]

Distance to ship/rig Distance from oil slick objects to ship, rig, and oil platforms in the surroundings [110,142]

Mean wind speed Values of mean wind speed of image object [132,139]
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Figure 4. Number of studies that use each type of feature category.

Most oil spill studies combine various SAR features from different categories rather than rely on a
single feature category only. Geometric and statistical features, followed by textural, SAR polarimetric,
and contextual features, are frequently used to determine the contribution of each feature category.
Several studies in which the feature selection process was conducted indicate that geometric features
that are simple and easy to extract demonstrate higher discrimination power than other feature
types [106,178]. For instance, spill released from a moving ship can appear in an SAR image as an
elongated object of a particular width and length (Figure 3d). The ratio of the width to the length of the
spillage could be used as a discriminative feature to differentiate between oil spills and their lookalikes.
Area, perimeter, complexity, and spreading features are geometric features used in 39–49% of the
total number of reviewed studies describing handcrafted features. Given that oil spills and their
lookalikes can appear in diverse shapes under different and even similar environmental conditions,
geometric features are usually combined with other feature categories. Object standard deviation,
object mean value, background standard deviation, and maximum contrast, for instance, are common
statistical features utilized in over 27–43% of the total number of reviewed studies discussing
handcrafted features. The values and thresholds of the statistical features of an oil slick object extracted
from optical or SAR imagery (i.e., mean, maximum, and standard deviation of a spectral band or
backscattering coefficient), may vary from one data source/event to another owing to differences
in oil characteristics, environmental conditions, sensor types, and specifications (i.e., wavelength,
polarization, incidence angle). The texture of oil spills is continuous, smooth, and delicate, while that
of their lookalikes is scattered, rough, and continuous [197]. Most textural features utilized in oil
spill detection are based on GLCM. Contrast, homogeneity, and entropy are common GLCM-based
features employed in over 23% of the total number of studies that use handcrafted features. However,
GLCM features are computationally intensive compared with other feature types. Different SAR
polarizations can help differentiate special features of the target and are considered in different studies
to discriminate between oil spills and lookalikes. More than 21% of the studies rely on variations of
SAR polarimetric features. Entropy (H), alpha angle (α), degree of polarization (DoP), and conformity
coefficient are commonly used polarimetric features. Contextual features, which include information
on the distance from the oil spill to a possible source, such as ships or oil rigs, are the least used features
among the five categories [110,111,207]. Other contextual features may include weather data, such as
wind speed, water depth, upwelling, atmospheric conditions (rain, dense fog, and aerosols), eddies,
river inflow, location and direction of oil and gas pipelines, platforms, and vessels [64].

4.2. Feature Selection Techniques

Determining the optimal set of features for oil spill classification is based on the experience of
researchers [180]. This step can be subjective and case-specific because the degree of importance
of features may vary based on the data source, nature of the oil spill, complexity of surrounding
surface features. The use of an excessive number of features in a classification scheme may result
in the introduction of redundant features, increased processing time, and reduced classification
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accuracy as well as influence the generalizability of the model [208,209]. Thus, feature selection
(FS) techniques, which are dimensionality reduction strategies used to select relevant features and
overcome these issues, are widely utilized as a critical step in classification tasks of remotely sensed
data [210,211]. FS methods can typically be grouped into three main categories, namely, filter, wrapper,
and embedded methods [212,213]. Filter methods utilize statistical measures (i.e., correlation coefficients
and variance) to evaluate and rank features based on their degree of importance [213,214]. However,
feature selection through filter-based methods does not involve the use of any classification algorithms.
Different from the filter methods, the performance of a specific classification algorithm is used by
wrapper methods to select relevant features that lead to the best classification result [215]. However,
wrapper-based methods are computationally extensive and prone to overfitting, particularly when
small training samples are used to train the adopted classification model [216]. Embedded methods are
the trade-off strategies between the two methods that aim to optimize classification performance while
decreasing the number of selected features [211,217]. The selection of the relevant subset is performed
as part of the learning process of a classifier without an additional evaluation of the selected feature
subset [218].

The utilization of FS techniques in oil spill detection systems is limited given the lack of systematic
studies that focused on extracted features and their contribution to the classification results in oil spill
detection and monitoring [180]. Only a few studies use various feature selection techniques to evaluate
the effectiveness of different features and select optimal ones for oil spill detection. For instance,
Mera et al. [180] employed filters and embedded methods, five feature selection methods, to choose
a concise and relevant set of features for improving oil spill detection systems. Correlation-based
feature selection, consistency-based filter, information gain, relief, and recursive feature elimination
for support vector machines (SVMs) were applied on a 141-input vector comprising features from
a collection of outstanding oil spill studies. The selection of relevant features expedited the feature
extraction step without reducing classification accuracy. Chehresa et al. [110] used and evaluated eight
different evolutionary algorithms (i.e., genetic algorithm, particle swarm optimization, and others)
to select optimum feature subsets from 74 different types of features. High-frequency features with
the highest number of repetitions among 30 independent repetitions of three evolutionary algorithms
(genetic algorithm, fast, and classical evolutionary programming) were selected for classification as the
optimum set of features.

5. Machine Learning

ML, a subset of artificial intelligence, refers to the ability of machines to learn and understand
relationships between inputs and outputs from a full set of representative training samples,
from which predictive and empirical classification models can be constructed without assuming
any data distribution. ML can address specific issues even when the theoretical understanding
of a particular problem remains inadequate regardless of the availability of a massive number
of observations. Given the increasing availability of high-dimensional remotely sensed data and
the complexity of pattern recognition tasks, ML techniques have been adopted for a full spectrum
of the earth’s observation applications such as oceanography [219–221], natural disasters [222–225]
agriculture [226,227], land use [208,228,229], and environmental monitoring [230–232].

Various ML models have been proposed in the past decades to detect oil spills and distinguish
between oil slicks and lookalikes, in which optical and SAR images are used to provide efficient
monitoring solutions to mitigate the impact of oil spills. ML methods for oil spill detection
are categorized in this review into traditional ML techniques and deep learning (DL) models.
The succeeding subsections discuss and analyze various types of classical and advanced ML models
for recognizing, identifying, and detecting oil spills obtained from remotely sensed data.
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5.1. Traditional Machine Learning Techniques

The general framework of oil spill detection comprises the following four main steps:
preprocessing of remotely sensed data, image segmentation for dark-spot identification,
extraction of discriminative features, and classification of image pixels/objects to discriminate
between oil spills and lookalikes. Sufficient and high-quality representative training samples
and selected feature subsets demonstrated in Section 4.2 are used as inputs for developing
classification models. ML models are developed to solve complex classification problems through
recursive and iterative analysis of candidate solutions from given training samples and features
without explicitly being programmed to do the task [233]. Various classification algorithms,
such as artificial neural network (ANN) [50,52,141,146,163,199,207], SVM [145,180], decision tree
(DT) [177], K-nearest neighbor [48,64], genetic algorithm [123,127,130], random forest (RF) [26],
fuzzy logic [109,135,136,138], maximum likelihood [234], linear discriminant analysis [114,194],
k-means [119], Mahalanobis distance [113], naïve Bayes [110], ensemble learning [46,115],
Classification and Regression Trees (CART) [132], and others [38,51,140,142,235,236], have been
used to classify oil spills and lookalikes. Widely used traditional ML classification model for oil
detection from optical and SAR images are listed in Table 4. Figure 5 shows the frequency of common
traditional ML algorithms in oil spill studies (a total of 79 studies). The following subsections provide
a brief description of widely used traditional ML models in oil spill classification systems.
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Table 4. Commonly used traditional ML models for oil spill detection.

Classification Sensor Type Satellites References

ANN
Optical Landsat, DubaiSat-2, KOMPSAT-2, Landsat ETM+, GF-1 [52,53,63,68]

SAR ERS-1, ERS-2 and ENVSAT ASAR, RADARSAT-1, 2, ALOS PALSAR, TerraSAR-X,
COSMO-SkyMed

[104,106,108,115,128,135,141,146,163,185–
187,190,191,198,199,207,237–240]

SVM

Optical MODIS (Band 1 and 2), AVIRIS, HJ-1 and Landsat ETM+, GF-1 [32,46,53,192]

SAR TerraSAR-X, ENVISAT ASAR, UAVSAR, RADARSAT-1, 2, RISAT-1, Shipborne radar [21,27,114,115,121,145,154,180,185,192,198,
241,242]

DT/fuzzy logic/rule-based
Optical MODIS (Band 1 and 2), IKONOS, Quickbird, RapidEye, WorldView2, Landsat TM [36,47,69]

SAR ERS-2, ENVSAT ASAR, TerraSAR-X, RADARSAT [36,109,129,134–136,138,147,177]

KNN
Optical LANDSAT-8, MODIS (Terra and Aqua) [48,64]

SAR ENVISAT, ERS-1/2, TerraSAR-X, RADARSAT-1, SENTINEL-1,ERS-1,2 [64,112]

Genetic algorithm SAR RADARSAT-2 [123,124,127,130]

Extreme learning SAR ENVISAT ASAR [196]

Ensemble learning
Optical MODIS (Band 1 and 2) [46]

SAR RADARSAT-1 [115]

Maximum likelihood SAR RADARSAT-2 [198,234]

Naïve Bayes SAR ERS-1, ERS-2, ENVISAT and RADARSAT-2 [110]

Mahalanobis distance SAR ERS-1, 2 [113]

Random forest SAR Radarsat-2 and UAVSAR [26]

Cart SAR ENVSAT ASAR [132]

K-means SAR RADARSAT-2 [26,119]

Others
Optical MODIS (Band 1 and 2), Landsat 8,

GF-1, and HJ-1 [38,51]

SAR ERS-1, 2, RADARSAT-1, ENVISAT ASAR, Sentinel-1, PALSAR and TerraSAR-X [111,115,137,140,142,162,185,191,236,243]
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Figure 5. Frequency of traditional classification algorithms in oil spill studies.

5.1.1. Artificial Neural Network

Inspired by the functionality of the biological nervous system, ANNs are computing systems that
entail a set of algorithms working together to simulate the structure and functions of the human brain.
The relationship between input parameters and their output responses are derived using highly
interconnected processing units (artificial neurons), a training or learning algorithm, and activation
functions [244,245]. The basic ANN topological structure consists of three layers, namely, input,
hidden (may be more than one), and output layers. The training procedure of ANNs involves the
determination and adjustment of associated weights on connections in three main stages; namely,
the feedforward of input data, calculation of the associated error between the input and output,
and adjustment of weights [246]. Upon the completion of the training and accuracy evaluation phases,
the developed neural network model can predict the presence and absence of oil spills in unseen data
with similar feature characteristics.

Feedforward ANNs with backpropagation optimization algorithm are widely used ML algorithms
for oil spill classification and account for almost 27% of the reviewed literature in this work
(a total of 29 studies). A key challenge in the utilization of ANN for oil spill classification is
the determination of optimal combinations of ANN hyperparameters, such as the number of
hidden units, batch size, training iterations, learning rate, and momentum, because poor choices
may negatively impact its accuracy and computing performance. A trial-and-error strategy is
commonly used to determine and evaluate the appropriateness of multiple combination sets of
these parameters. For instance, Park et al. [52] implemented ANN architecture to classify oil spills
from optical images with the following settings: 1000 epochs, learning rate of 0.01, and hidden layer
of eight neurons. Chen et al. [103] implemented ANN to classify oil spills from SAR images with the
following parameter settings: 100 epochs, learning rate of 1.0, and two hidden layers of eight and
six neurons. Reported accuracies of ANN in oil spill studies range from 72% to 99%.

5.1.2. Support Vector Machine

SVM [247], a nonparametric supervised ML technique based on the principle of structural risk
minimization from statistical learning theory, has been successfully used in a wide range of remote
sensing applications. The popularity of adopting SVM in the field of oil spill classification (almost 17%
of the reviewed literature use SVM) can be attributed to its ability in handling high-dimensional
feature space and achieving satisfactory classification results with a limited number of training samples.
SVMs specifically focus on samples that are adjacent to borders between classes in the feature space,
which are called support vectors; these SVMs aim to determine the location of a separating hyperplane
(decision boundary), which produces the optimal separation of classes to minimize misclassifications
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and achieve satisfactory generalization capability [248]. Earlier versions of SVM were originally
developed for binary classification by identifying the optimal hyperplane in linearly separable cases;
kernel tricks were then introduced to address this limitation by mapping the data into a high-dimensional
feature space and constructing an optimized separating hyperplane that deals with nonlinear decision
surfaces [249–251]. Various kernel functions, including linear, polynomial, sigmoid, and radial basis
function (RBF) kernels, are used to reduce the computational cost of dealing with high-dimensional
feature spaces [248]. RBF [22,112,114,115,155,185,198] and polynomial kernel [194] are commonly used
kernels in oil spill studies. However, the selection of the appropriate kernel type and its parameter
configuration should be considered when adopting SVM for oil spill classification. Reported accuracies
of SVM in oil spill studies range from 71% to 97%.

5.1.3. Decision Tree

DT is a simple and straightforward nonparametric ML technique classifier that recursively divides
the input dataset into branches of data subsets; each subset is described by a set of features, thresholds,
and a class label [252,253]. Compared with ANN and SVM, DT can be trained and executed rapidly
and analysts can easily interpret the output of the model. DT is widely used to aid the development of
ruleset for the classification of remotely sensed data using object-based classification approach due
to its ability to handle nonlinear relationships between features and feature values from different
scales or range of values and classes. Topouzelis and Psyllos [177] highlighted that tree size plays a
significant role, especially because the tree deals with two classes, namely, oil spills and lookalikes.
A tree size that is neither excessively large nor excessively small will correctly represent feature vectors.
Moreover, tree classifiers are very sensitive to small changes that occur in the training dataset; thus,
the careful development of a training dataset is required to distinguish between oil spills and lookalikes
successfully [129,177]. Compared with other traditional ML classifiers, DTs and fuzzy logic have been
adopted in fewer oil spill studies (10% of the reviewed studies). The reported accuracies of DT and
fuzzy logic in oil spill studies range from 80% to 96%.

Differences in oil spill classification results reported in the literature are likely due to various
factors affecting the performance of ML classifiers, including variations in the data source,
data preprocessing techniques, training sample size, number and quality of selected features, and choice
of classification algorithms and their parameter settings. A study is considered case-specific when
the performance of ML models for oil spill detection is compared without unifying all possible
influencing factors. Thus, comparing the performance of traditional ML algorithms in terms of their
accuracy for oil spill detection using different datasets is problematic [104]. Several studies have
compared the performance of numerous traditional ML models for oil spill detection using the same
data source [115,139,198]. Zhang et al. [198], for example, compared three widely used supervised
classifiers (i.e., ANN, SVM, ML) for oil spill classification using complete and compact polarimetric
SAR images. SVM, followed by ANN, outperformed ML when sufficient polarimetric information
(i.e., quad polarization) was obtained. Mera et al. [139] studied the performance of 428 classifiers of
41 families, including ensembles, SVM, ANN, Bayesian, DT, RF, and many others, for oil spill detection
using 47 ENVISAT ASAR images. The group’s experiments showed that the best classification
accuracies are achieved by the rotation forest ensemble of multilayer perceptron base classifiers.
Yang et al. [53] evaluated the performance of ANN, SVM, MD, and ML for oil spill extraction from
GF-1 images using an object-based approach. The results of single classifiers demonstrated that ANN
and SVM are superior to other classifiers, while the results of multiple classifiers (decision level fusion)
revealed that the classification accuracy of SVM-ANN is slightly higher than that of ANN.

5.2. Deep Learning Techniques

Inspired by the structure and function of the human brain, DL algorithms are a series of
distinct deep neural networks (DNNs) that automatically learn complex discriminative features
from considerably large amounts of data in a hierarchical manner to extract information through
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multiple high-level layers of abstractions [254,255], demonstrate remarkable capabilities, and achieve
remarkable success in various fields of remote sensing and geoscience. Unlike traditional ML
approaches, DL is completely data-driven, in which natural relationships between input and output
data are automatically constructed and feature representation characteristics are solely learned from
the data [256]. Therefore, the feature extraction step dependent on expert knowledge in constructing
handcrafted features prior to the classification phase of the oil spill is eliminated. Various DL
models exhibited outstanding performance in detecting oil spills from SAR and optical images
through the automatic extraction of discriminative learned features to distinguish between oil spills
and lookalikes. Moreover, the generalization ability of these models can address the case-specific
nature of traditional techniques. The number of oil spill-related studies that adopted DL models
has increased since 2017. These models were used to perform diverse tasks, such as oil spill
detection and recognition [257,258], image patch-based classification [83,103,197], and semantic
segmentation [259–265]. Depending on the neural network architecture, DL models can vary in
terms of their architecture, components, and tasks, which can consist of convolution layers,
activation functions, pooling layers, fully connected layers, memory cells, gates, encoder/decoder,
and others [266]. Commonly used DL models include convolutional neural network (CNN),
autoencoder (AE), recurrent neural network (RNN), deep belief network (DBN), and generative
adversarial network (GAN). Table 5 lists the different DL models adopted in oil spill studies for
performing various tasks. The following subsections review some of these models in the context of oil
spill identification and detection.

5.2.1. Convolutional Neural Network

CNNs [267] are widely used DL techniques in image recognition due to their weight-sharing
network structure, which allows the direct feed of images into the deep network [258]. The underlying
architecture of CNNs consists of a set of convolutional layers, activation functions, pooling layers,
and fully connected layers (Figure 6). CNNs are typical feedforward DNN architectures that can learn
highly abstract features from original representations of images through a set of convolutions and
mathematical operations, which preserve the spatial relationship among pixels and reduce the effective
number of learning parameters [268].

Figure 6. General CNN framework.

Convolutional layers are used to perform feature extraction by utilizing several learnable
convolutional kernels or filters on a small area of the input data based on the kernel size. The result of
each convolutional function undergoes nonlinear transformation via an activation function (e.g., rectified
linear unit, sigmoid, hyperbolic tangent, and softmax) to obtain nonlinear convolved features or
so-called feature maps (i.e., multiple maps of neurons) and increase the nonlinear fitting capability
of CNN.
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Table 5. Commonly used DL models for oil spill detection.

DL Models DL Task Data Architecture Input Data Size Labelled Data Reference

CNN

Patch-based
classification

ERS-2 DenseNet 224 × 224 A total of 86 oil film samples and 62 oil film samples. [258]

ERS-2 VGG-19 224 × 224 A total of 87 and 63 oil slick and look-alike oil slick
samples, respectively. [269]

ENVISAT, ERS-1,2, COSMO
Sky-Med VGG-16 64 × 64 A total of 4843 and 18,925 oil slick and look-alike samples,

respectively. [270]

RADARSAT-2 Two convolutional and
pooling layers 28 × 28 A total of 2100 crude oil, 2100 plant oil, and 2100 oil

emulsion samples [197]

AVIRIS 1D CNN - A total of 469,567 and 42,676 samples were selected for
training and testing, respectively. [22]

RADARSAT-2 Five-layer CNN architecture + SVM 15 × 15 A total of 26,000 and 6500 samples were used for training
and testing, respectively. [271]

Object detection

SLAR Two-stage CNN 50 or 28 pixels per side (with an
overlap of 25 and 14 pixels)

A total of 23 SLAR images
(512,566 samples) [272]

Unmanned aerial vehicle
(RGB) Faster R-CNN - A total of 1096 and 958 images were used for training and

testing, respectively. [273]

Semantic
Segmentation

Sentinel-1 DeepLabv3+ 321 × 321 pixels A total of 1002 and 110 images were used for training and
testing, respectively. [260]

Radarsat-2 SegNet 256 × 256 pixels A total of 3600 and 600 samples were used for training and
testing, respectively. [262]

ENVISAT and Sentinel-1 Fully CNNs 128 × 128 pixels;
2048 × 2048 pixels A total of 630 images were used for the training process. [265]

QuickBird, Worldview, and
Google Earth

Deeplab + fully connected
conditional random field - Approximately 60%, 20%, and 20% of the 8400 images were

used for training, testing, and validation, respectively. [259]

Radarsat-2 and SIR-C/X-SAR Encoder–decoder CNN and simple
linear iterative clustering superpixel 48 × 48 pixels A total of 356 and 122 samples were used for training and

testing, respectively. [261]

Sentinel-1 DeepLab 1250 × 650 pixels The training and testing sets consist of 771 and 110 images,
respectively [274]

Landsat-8 and Landsat-7 FCN-GoogLeNet and
FCN-ResNet models - Yantai and Bohai bay datasets [275]

Sentinel-1 DeepLab 1252 × 609 pixels The training and testing sets consist of 571 and 106 images,
respectively. [264]

Sentinel-1 fully convolutional network
based on U-net 160 × 160 pixels Three sets of data were used, and each set was divided into

training, testing, and validation patches. [276]

Sentinel-1 Mask R-CNN 1024 × 1024 A total of 2882 images were labelled for training
and validation. [277]
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Table 5. Cont.

DL Models DL Task Data Architecture Input Data Size Labelled Data Reference

AEs

Classification
AVIRIS Stacked AE - A total of 1500 and 315 pixels were used for training and

validation, respectively [83]

RADARSAT-2 Stacked AE and DBN 20 × 20 A total of 24,000 data samples [103]

Segmentation

SLAR Selectional AE, and very
deep Residual Encoder-Decoder Networks

256 × 256
384 × 384 A dataset with 28 flight sequences [278]

SLAR Long Short-Term Memory
Selectional AE - A dataset composed of 51 flight sequences [263]

DBN Classification Radarsat-2 DBN with Restricted
Boltzmann Machine 32 × 32 A total of 600 and 300 samples were used for training and

testing, respectively. [195]

RNN Classification SLAR MLPs, Vanilla RNN, LSTM networks,
Bidirectional LSTM networks - A total of 12 SLAR records [279]

GANs Segmentation ERS-1, 2, ENVISAT ASAR Adversarial f -divergence 256 × 256 - [280]
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Feature maps and the input image have similar output sizes. The dimensionality of feature maps
is reduced by subsequent pooling layers (e.g., max and average pooling layers) to acquire features
but insensitive to precise locations of targets, thereby ensuring that effective features can still be
learned by the network [281]. Therefore, feature maps are generally downsampled by half using
pooling layers to increase the abstraction of extracted features and reduce the input dimensionality
of feature maps while maintaining the depth to minimize the computational power and circumvent
overfitting by cutting the number of learnable parameters [282]. Additional pooling operations, such as
stochastic [283], spatial pyramid [284,285], and atrous spatial pyramid pooling [286], are also used
by several studies. Feature maps extracted through convolutional and pooling layers are transferred
into a one-dimensional vector by flattening the layer that connects outputs of CNN layers with fully
connected layers.

A fully connected layer, which is mounted at the top of the architecture, is composed of multiple
hidden layers and computes the score of each class using convolved features from former layers.
The output of fully connected layers is known as the classification layer. The classification results
are derived through activation functions, such as sigmoid (for binary classification, which involves
indicating the existence or absence of oil spill) and softmax functions (for assigning the probability that
belongs to multiple classes, such as oil spills, ships, and lookalikes). Forward and backpropagation
are two primary processes for training and learning weights of parameters between the input and
output of the network. Forward propagation involves the transmission of characteristic information
and optimization of weights of learnable parameters of the network through iterative backpropagation
processes to minimize the value of a defined cost function [261].

CNNs are widely used as DL models in oil spill detection due to their outstanding performance
and versatility in object detection (e.g., a label and a bounding box are produced from given image
tiles to show the oil spill location in each image), image classification (e.g., a label from the given
image tiles is used to indicate the content of each tile), and semantic segmentation (e.g., a segmentation
or probability map is created for predefined classes from given image tiles). Different tasks and
architectures of CNN for oil spill detection are discussed in the following subsections.

Patch-Based Image Classification

Patch-based CNN models are constructed based on equally spaced selected tiles (patches) from
remotely sensed images, and each tile corresponds to one class label. The CNN model can be designed
to produce a probability map of each input patch label for every tile to indicate the probability of
the presence or absence of an oil spill in an image tile. The determination of the optimum size of the
input patch for CNN classification can be considered a critical factor. For example, the selection of
a small input image patch size may hinder the CNN model from learning discriminative features,
whereas the selection of a large one adds computational burden on the network and increases the
overall processing time [197]. Various CNN structures were used to classify oil spills from patches
of remotely sensed data. Yaohua et al. [258] presented a densely connected CNN network structure
based on DenseNet to recognize oil slicks from lookalikes in ERS-2 SAR data of the China Sea. A total
of 148 images that represent 86 oil slick and 62 lookalike samples were selected from ERS-2 data to
develop the DenseNet model. Considering the limited number of samples, the mixing of the oil and
oil-like slicks was ignored. Zeng and Wang [270] developed a deep oil spill CNN based on the VGG-16
model by designing and adjusting the CNN architecture and hyperparameters using a large dataset
comprising SAR dark patches. A total of 4843 oil slick and 18,925 lookalike samples were generated
through manual labeling and data augmentation techniques and subsequently utilized to develop
the model.

The incorporation of parametric SAR and optical features to improve the performance of
patch-based classification was investigated by different researchers. For instance, Guo et al. [197]
utilized SAR polarimetric features (i.e., entropy, alpha, and single-bounce eigenvalue relative difference)
extracted from C-band SAR data to develop a CNN that can differentiate crude oil, plant oil,
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and oil emulsion. The CNN model was trained using 5400 samples and achieved a recognition
rate of 91.33%. Song et al. [271] extracted deep features of SAR polarimetric data using a CNN model,
which was accompanied by dimensionality reduction through principal component analysis and
followed by an SVM classifier with radial basis kernel to identify oil spills. Liu et al. [22] extracted
spectral indices from AVIRIS hyperspectral images and used a one-dimensional CNN to mine spectral
feature information deeply and extract oil films automatically. The CNN model outperformed
traditional ML models, such as SVM and RF.

Object Detection

CNN-based object detection techniques contain a two-stage mechanism, where shared
discriminative feature maps are initially extracted using CNNs and candidate region proposals
are subsequently generated to localize object(s) within an image and output corresponding
categories [287]. Various generic object detection techniques based on deep CNNs (DCNNs) can detect,
localize, and predict the label of the target to deliver state-of-the-art detection performance [288].
Faster region-CNN (R-CNN) [289], mask region-based CNN (mask R-CNN) [290], you only look
once [291], and single-shot multibox detector [292] are examples of models that achieve satisfactory
performance in object detection. Previous studies adopted DCNNs to perform object detection of
targets in water surfaces for detecting ships [293–296]. Few studies focused on investigating oil spills.
Nieto-Hidalgo et al. [272] presented a system for detecting ships and oil spills from SLAR images using
a two-stage CNN. Huang et al. [273] applied faster R-CNN to locate and classify the spill of floating
hazardous and noxious substances from optical images. Jiao et al. [257] constructed and optimized a
DCNN model using faster R-CNN on the basis of a pretrained network on ImageNet to detect oil spills
on lands using unmanned aerial vehicle-based data. The results showed that the cost of inspecting oil
spills reduces by 57.2% compared with the cost incurred in the traditional manual inspection process.

Semantic and Instance Segmentation

Image segmentation, based on pixel-wise classification using DNNs, can be categorized into
semantic and instance segmentation [297]. Semantic segmentation, a widely used concept in computer
vision that has the same meaning as per-pixel classification used among remote sensing communities,
conducts pixel-level classification to assign a category to every pixel in a remotely sensed image.
Sea surface areas, ships, and oil spill areas can be accurately classified through semantic segmentation,
which can also provide comprehensive knowledge of an image [259]. Unlike patch-based and object
detection methods, semantic segmentation accurately delineates the boundary and position of the target
of interest and renders it suitable for processing remote sensing images [298]. Numerous semantic
segmentation models, including fully connected network [299], fully connected DenseNet [300],
U-Net [301], pyramid scene parsing network [302], SegNet [303], RefineNet [304], pyramid attention
network [305], DeepLab series [286,306], and discriminative feature network [307], were proposed and
adopted in the field of computer vision.

By comparison, instance segmentation models are hybrid approaches that incorporate semantic
segmentation and object detection algorithms to localize objects and deliver their per-pixel
classification simultaneously. Yekeen et al. [277] recently developed an instance segmentation mask
R-CNN model to localize and segment oil spills and different elements within the surrounding areas of
oil spill incidents. The developed model combines the feature pyramid network architecture (used for
extraction features at different scales) and transfer learning approach through the pretrained ResNet
101 on COCO datasets. The performance of the mask R-CNN and approaches that utilized a set of
classical ML [106,109,139,180,185,308] and DL models [260,270,278] in other studies was compared.
The reported results indicated that mask R-CNN outperformed other CNN models in the literature.
However, a comprehensive evaluation on the performance of diverse CNNs and the influence of
various factors, such as the number of samples, hyperparameter settings, optimization algorithms,
and transfer learning on the performance of oil spill detection are lacking.
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5.2.2. Autoencoder

Hinton and Zemel [309] introduced AE, which is a feedforward neural network trained to
transform its inputs into outputs. This transformation can be achieved through the utilization of
an encoder–decoder structure in an unsupervised manner. Although the encoding step transforms
characteristics of input data into a low-dimensional space, the decoder step takes the top extracted
representative characteristics as the input and attempts to reconstruct such an input. AE aims
to set target values to be as close to the original input as possible [310]. This outcome is
achieved by adjusting parameters of the network and consistently comparing the input and output
through backpropagation until a minimal amount of discrepancies between the input and output
is achieved. Several AE architectures, such as multilayer, stacked (SAE), sparse, denoising, adversarial,
variational, convolutional, and vanilla AEs, have been proposed to solve different types of problems.
Additional information on different types of AEs are discussed in [310,311].

Motivated by the lack of studies using DL in the feature optimization for oil spill detection,
Chen et al. [103] utilized SAEs and DBNs to reduce the dimensionality, optimized SAR polarimetric
features in an unsupervised manner, and used them as input in a supervised classification procedure
to classify marine oil spills and biogenic lookalikes. SAE and DBNs successfully boosted and
achieved more accurate classification result using a given limited number of samples compared with
classical algorithms. Liu et al. [83] used hyperspectral data and proposed a spatial–spectral jointed
SAE (SSAE) to extract and classify oil slicks on the sea surface. The performance of the proposed SSAE
was compared with the results of SAE, SVM, and BPNN algorithms (multilayer feedforward network
trained according to error backpropagation); the results indicated that the proposed model remarkably
outperformed other models. Two recent studies [263,278] adopted two different AE architectures
to segment oil spills from an airborne SLAR dataset. Gallego et al. [278] utilized SelAE with very
deep residual encoder–decoder networks to segment and identify oil spills from the SLAR data set.
Bazine et al. [263] developed a selectional AE with convolutional long short-term memory to segment
oil spills and other maritime classes (ship, lookalike, coast, central noise, lateral turns, and water) from
scanlines of SLAR airborne images simultaneously.

5.2.3. Other Deep Learning Models

CNNs, followed by AEs, are commonly used DL models for identifying oil spills from remotely
sensed data; however, only a few studies have adopted other DL models, such as DBN, RNN,
and generative adversarial network (GAN). Chen and Guo [195] proposed a DBN model to
distinguish oil spills, lookalikes, and water in three SAR images from a small sample space database.
Chen et al. [103] analyzed and compared the performance of SAE, DBN, and several classical algorithms
to identify the presence of oil spills from a limited number of samples. The performance of both DBN
and SAE achieved better performance than classical ML algorithms.

A DL model based on RNN, which is a network where connections form directed cycles designed
for processing sequential data, was presented in [279] to identify candidate oil spills from SLAR
scanned sequences rapidly. The RNN model achieved better performance compared with a multilayer
perceptron neural network. An encoder–decoder structure-based adversarial learning of f-divergence
minimization function was introduced in [280] to segment oil spills from SAR images automatically.
Different forms of deep networks are structured to produce a segmented instance of the input image
via a generator initially and minimize the f-divergence between ground truth and the generated
segmentation result by a regressor. One advantage of this model is the ability to segment irregular
oil spills even in extremely noisy conditions given the comprehensiveness of the f-divergence and its
capability to address rigorous situations. However, this method is limited to one-class segmentation
(i.e., oil spill) without completely maximizing the pixel-wise classification delivered by semantic
segmentation methods.
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6. Discussion and Conclusions

Oil spills on seas and oceans, a major source of maritime and ocean pollution due to anthropogenic
activities and the growing demand for oil and maritime transport capacity, pose a deleterious effect on
aquatic and wildlife, maritime tourism, aquaculture, and commerce. Constant monitoring and early
intervention of oil spills are crucial and urgently needed to minimize their environmental impacts and
economies of coastal states. The capability of monitoring, detecting, and managing oil spills remotely
is vital due to persistent dangers posed to marine biodiversity, wildlife, and habitats. The past decade
has shown remarkable advances in the field of oil spill detection due to the increasing availability of
remotely sensed data, growth of computation power, availability of cloud computing infrastructure,
and development and adoption of state-of-the-art ML algorithms.

Satellite and airborne remote sensing techniques have been extensively used to detect, monitor,
characterize, and estimate the thickness of oil spills. These techniques include the use of visible
and infrared multispectral, hyperspectral, thermal, microwave, and laser fluorosensors. Oils in seas
and oceans exhibit different characteristics in various wavelengths across the spectrum. Figure 2a,b
and Figure 3a,b show the differences in the appearance and information of an oil spillage event
captured by Sentinel multispectral and SAR sensors near the coast of Mauritius and Kuwait.
Microwave satellite-based SAR data are widely used data source compared with other sources
for oil spill detection due to their sunlight independence, cloud coverage, and availability in all types
of weather conditions. The use of satellite-based multispectral data is increasing, owing to their
growing availability, synoptic coverage, and unique spectral characteristics. These optical features
assist the differentiation between oil spills and lookalikes. The utilization of other sensors—such as
ultraviolet and laser fluorosensors—in oil spill detection systems remains limited. Each remote sensing
technique has its own advantages and shortcomings (i.e., data cloud contamination and presence
of shadow in optical data). Leveraging multisource data can provide valuable information, fill the
temporal gap, and enable timely and effective oil spill monitoring and management.

Similarities between oil spills and other natural or manmade regions (lookalikes) in optical and
SAR images affect the accuracy of oil spill detection systems. The inclusion and combinations of
various feature categories (i.e., statistical, geometric, texture, and SAR polarimetric features) with
robust discriminatory power help discriminate between oil spills and counterparts and improve the
accuracy of oil spill classification models. A wide range of oil spill studies rely on the manual extraction
and incorporation of different feature categories based on analysts’ experience. However, few studies
utilize feature selection techniques (i.e., filter and embedded methods) to select remarkable features
with high discriminative power for improving the classification accuracy and generalization ability of
oil spill classification systems. Considerable efforts should be exerted in evaluating the efficiency of
extracted features from optical and SAR images and their contribution to the classification results in oil
spill classification systems.

The acquisition and selection of adequate and high-quality representative training samples
(ground truth samples) are critical factors that control the performance of classification algorithms.
Maxwell et al. [312] argued that information regarding the minimum number of samples required
by ML classifiers is still unknown. Ample high-quality representative training samples of oil spills
and lookalikes are essential in selecting discriminatory features and developing accurate and reliable
classification systems. The collection of accurately labeled oil spill samples is a challenging task that
requires meticulous attention considering similarities between natural phenomena known as lookalikes,
which produce a signal similar to oil spills. In some circumstances, a human expert may have difficulty
in determining whether dark regions on the image are oil spills or lookalikes. These uncertainties may
result in the introduction of some false positive and negative errors in the process.

Moreover, oil spill incidents spatially cover a small percentage of the entire data and training
datasets are collected from multiple time-series images acquired at different locations with varied
oil characteristics; thus, expected dissimilarities between samples may ultimately affect the training
and generalization capability of the developed classification approach [14,313]. The scarcity of in situ
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oil spill data, uncertainties encountered during the selection of oil spill samples from SAR images,
presence of class imbalance between oil spills, and lookalikes are some challenges that may affect the
development of accurate ML classification models with high generalization capabilities.

Various classical and advanced ML models have been adopted in the past decade for oil spill
detection and classification. Different classical ML models were used in 72% of the reviewed studies.
The generic framework for developing automatic oil spill detection systems from SAR images using
traditional ML models may include preprocessing of remotely sensed data, identification/segmentation
of dark spots, extraction of discriminative features, and classification of image pixels/objects with
various classification models. ANN, SVM, DT and fuzzy logic are among the widely used classical
ML models for oil spill detection. However, the literature presented varied classification results for
these methods. A thorough comparison between various classical ML classifiers under the same
data source, preprocessing techniques, size of training samples, number and quality of selected features,
and choice of parameter settings of classification algorithms is ideal.

The potential for overfitting occurs when a classifier achieves high accuracy on a dataset while
failing to generalize well on unseen data. This condition is a common concern when ML models are
developed with limited training samples. Thus, evaluating the performance of a classifier on a new
dataset that is not used during the training phase is imperative.

Versatile DL models (accounting for 28% of the reviewed literature) recently demonstrated
remarkable success in detecting oil spills from SAR and optical images by automatically extracting
discriminative features to differentiate among oil spills, lookalikes, and other targets. The generalization
capability of DL models addresses the case-specific nature of classical ML techniques. DL algorithms
with different architectures were used to perform diverse tasks, including object detection,
patch-based classification, and semantic and instance segmentation of oil spills. CNNs, AEs, RNNs,
DBNs, and GANs are commonly used DL models for oil spill classification. CNNs and AEs are utilized
more than other DL models for oil spill detection and segmentation. Although the adoption of various
DL models and architectures for the identification and detection of oil spills/slicks has increased and
achieved promising results, the following challenges still exist:

• The process of preparing considerable amounts of labeled data to train a DL model is a laborious
and time-consuming task. Given the similarities between oil spills and lookalikes (i.e., dark spots
created by natural phenomena, such as regions with low wind speed, wave shadows, and biogenic
slicks/films) in SAR images, the process of defining training samples is challenging and susceptible
to human errors.

• The limitation or absence of accessible open-source annotated datasets compromise oil
spill/slick images collected from various multisensory sources at different locations with diverse
environmental variations and oil characteristics.

• The fine-tuning of DL model hyperparameters (i.e., number of filters, batch size, learning rate,
momentum, weight decay, and others) requires an extensive trial-and-error experimentation to
determine optimum configurations of parameters. A wide variety of hyperparameters should be
considered and investigated for practical use.

• A thorough investigation on the performance and generalizability of DL models to detect the
presence of oil spills from unseen datasets collected from different environments in the literature
is lacking.

• A detailed classification of oil spills/slicks—including oil type, thickness, or other chemical
properties—via DL models is lacking in the literature.

Considering the continuous development in remote sensing technologies, cloud computing services,
and computer vision along with the increasing accessibility of publicly annotated remotely sensed data
(i.e., SpaceNet [314], CleanSeaNet service [315],), the aforementioned challenges can be mitigated in the
future. The development of real-time monitoring and detection systems of oil spills with unmanned
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aerial vehicles (UAVs) is inevitable due to the miniaturization of sensor technologies and advances in
UAV technology.
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