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Abstract: Quantitative precipitation estimation (QPE) through remote sensing has to take rain
microstructure into consideration, because it influences the relationship between radar reflectivity
Z and rain intensity R. For this reason, separate equations are used to estimate rain intensity of
convective and stratiform rain types. Here, we investigate whether incorporating synoptic scale
meteorology could yield further QPE improvements. Depending on large-scale weather types,
variability in cloud condensation nuclei and the humidity content may lead to variation in rain
microstructure. In a case study for Bavaria, we measured rain microstructure at ten locations with
laser-based disdrometers, covering a combined 18,600 h of rain in a period of 36 months. Rain was
classified on a temporal scale of one minute into convective and stratiform based on a machine
learning model. Large-scale wind direction classes were on a daily scale to represent the synoptic
weather types. Significant variations in rain microstructure parameters were evident not only for
rain types, but also for wind direction classes. The main contrast was observed between westerly
and easterly circulations, with the latter characterized by smaller average size of drops and a higher
average concentration. This led to substantial variation in the parameters of the radar rain intensity
retrieval equation Z–R. The effect of wind direction on Z–R parameters was more pronounced for
stratiform than convective rain types. We conclude that building separate Z–R retrieval equations for
regional wind direction classes should improve radar-based QPE, especially for stratiform rain events.

Keywords: Thies; disdrometer; weather circulations; convective; stratiform; rain spectra;
radar reflectivity–rain rate relationship

1. Introduction

Understanding rain microstructure can provide us with an insight into the prevailing rain
formation processes leading to it. This understanding can be employed in improving quantitative
estimation of rain intensity using weather radar, especially in flat regions with high altitude values of
the zero degree isotherm [1–4]. Furthermore, the parametrization of the microphysical processes in
numerical weather and climate models can be improved [5,6]. Rain microstructure varies on different
spatial scales ranging from few meters [7], to few hundreds of meters [8], to regional [9,10] and global
extents [11,12]. This variation also occurs with seasons [13], rain types [14], and large-scale weather
types [15–17].

Remote Sens. 2020, 12, 3572; doi:10.3390/rs12213572 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3597-7439
http://www.mdpi.com/2072-4292/12/21/3572?type=check_update&version=1
http://dx.doi.org/10.3390/rs12213572
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3572 2 of 25

A clear example of the different rain formation processes leading to variations in rain drop size
distribution is the discrepancy between convective and stratiform rain. This has been quantified in
a number of studies [5,14,18,19]. The reason for the difference is the relative importance of cold and
warm rain formation processes [20]. Stratiform rain is formed mainly by processes involving ice
crystals and interactions of ice with liquid water, while convective rain formation comprises both
warm and cold processes. Factors and processes that influence the rain drop size distribution as
observed on the ground include rimming and aggregation (above the 0 ◦C isotherm), condensation
(below the 0 ◦C isotherm), collision, coalescence, turbulence, cloud thickness, electric field, evaporation,
and drop fragmentation [21,22]. The difference in rain drop size distribution between convective rain
and stratiform rain has been used for the classification of both rain types on the ground. Most of
these methods use two rain drop size distribution parameters and a linear discrimination between
the regions of rain types [19,23–26]. Recent methods employed machine learning and reached higher
performance levels when using four rain drop size distribution parameters [27,28].

Large-scale weather types denote atmospheric conditions such as the high and low pressure
distribution, the position and paths of frontal zones, and the existence of cyclonic or anticyclonic
circulation types over a sequence of days [29]. Indirectly, they also influence stream flows [30],
floods [31–33], debris-flow events [34], forest fires [35,36], air quality, and pollen distribution [37–39].

Weather type classification is an important part of statistical climatology [40,41], because these
types explain many local weather phenomena. Weather types influence local near-surface temperatures
and precipitation [42–46]. They also affect the diurnal cycle of precipitation in terms of frequency
and amount [47–49], and they impact the occurrence and the magnitude of meteorological extreme
events [50–54]. Large-scale weather types may therefore also influence rain microstructure by different
rain formation processes being more prevalent under different synoptic scale conditions.

Quantifying rain microstructure under different large-scale weather types may have practical
applications for radar-based estimation of rain intensity, because the microstructure influences the
relationship between radar reflectivity Z and rain intensity R. For this reason, separate equations
are used to estimate rain intensity of convective and stratiform rain type [10,55], instead of using
one equation that fits both rain types. A similar improvement of the radar estimation of rain might
be possible when considering specific Z–R relations for each of the weather types. We previously
reported weather type specific Z–R models with lower errors in estimating rain intensity in Lausanne,
Switzerland [17]. Similarly, the influence of weather types on Z–R relationships was also reported for
the Cévennes-Vivarais Region, France [16]. However, parameterizing Z–R equations for many weather
types definitively requires large amounts of data to represent each class.

Here, we contribute an analysis of the relationship between Z–R parameters and weather types in
Central Europe, based on a comprehensive regional dataset of rain microstructure measurements at
ten sites in the federal state of Bavaria, Germany. We ask: (1) What is the effect of weather types on
rain microstructure, considering both types of rain? and (2) Is there consistent variation in the Z–R
parameters between weather types that would suggest opportunities to improve QPE with radar-based
methods? To address these questions, we investigate disdrometer records under different large-scale
wind direction patterns at a daily scale, and rain type classifications at one-minute intervals over a
period of three years.

2. Materials and Methods

2.1. Data Sources and Tools

We obtained raw rain drop size distribution measurements from the German Meteorological
Service (Deutscher Wetterdienst, DWD), operating a network of Thies disdrometers in Bavaria, in the
southeast of Germany (Figure 1). We analyzed measurements at ten sites spanning a period of three
years (January 2014–December 2016) with a temporal resolution of one minute. The disdrometers
locations cover a distance of 167 km from north to south and 185 km from east to west.
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Figure 2. Raindrop count in each diameter-velocity range after the filtering process. The dotted line 

represents the terminal velocity of each diameter value. The solid lines represent the 60% and the 

140% of the terminal velocity. 

The DWD classifies large-scale synoptic weather patterns into 40 classes of weather types. The 

weather type is provided on a daily time scale and is applicable to all of Germany and its 

Figure 1. Disdrometer locations in Bavaria (SE Germany) that were used to measure rain microstructure,
covering a total of 18,600 h of rain in a period of 36 months.

Since raw disdrometer data requires some statistical data cleaning procedures to remove erroneous
readings, we followed the filtering procedure of Friedrich et al. [56] and the additional steps of Ghada
et al. [17] to remove unrealistically large particles, margin fallers, splashing effects, or readings of
insect and spider webs. The filtering procedure removed: (1) All measured particles with a diameter
larger than 8 mm; (2) All particles which had a falling velocity less than 60% or greater than 140%
of the terminal velocity associated with rain drops of the corresponding diameter [57,58] (Figure 2);
(3) Intervals marked by a damaged laser signal or as non-rain intervals by the disdrometer; (4) Intervals
which included large drops (D > 5 mm) with low velocities (V < 1 m/h) as an indicator of high wind
speed; (5) Intervals with rain intensity lower than 0.1 mm/h [59,60]; (6) Intervals with three or less
diameter bins to insure the existence of a drop size distribution. After filtering, the dataset contained a
total of 21,705 mm of accumulated rain over a period of 18,633 h.
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Figure 2. Raindrop count in each diameter-velocity range after the filtering process. The dotted line
represents the terminal velocity of each diameter value. The solid lines represent the 60% and the 140%
of the terminal velocity.

The DWD classifies large-scale synoptic weather patterns into 40 classes of weather types.
The weather type is provided on a daily time scale and is applicable to all of Germany and its
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surroundings. The classification is based on an operational numerical weather prediction system,
i.e., modelling different atmospheric fields such as geopotential height, temperature, relative humidity,
and the zonal and meridional components of the wind for several elevations. A detailed explanation
of the classification procedure is available online [61], and the full record of weather types is provided
by the DWD [62]. Since this classification is performed on daily basis, it would be operationally
feasible to associate a separate configuration of the radar rain rate estimate for each weather type class.
However, in order to simplify the classification for the purpose of this exploratory case, we grouped all
possible classes according to their wind direction index. This index takes one of five possible values:
northeasterly (NE), southeasterly (SE), southwesterly (SW), northwesterly (NW), and no prevailing
direction (XX). Determining the specific wind direction is based on the number of grid points over
Germany with a specific wind direction which needs to exceed 2/3 of the total number of grid points.
In case this threshold was not exceeded, the wind direction index is assigned to XX.

For data filtering, analysis, and production of visual and statistical results, we used R [63],
RStudio [64], and the packages caret [65], e1071 [66], reshape2 [67], raster [68], Rmisc [69], ggplot2 [70],
and rnaturalearth [71].

2.2. Drop Size Distribution Parameters

Thies disdrometers are laser-based instruments that provide high temporal records of rain
microstructure. When a precipitation particle passes between the transmitter and the receiver,
the strength of the laser beam is reduced. Based on the magnitude and duration of this reduction, it is
possible to estimate the size and velocity of the passing precipitation particle. The Thies disdrometers
raw data output represents one-minute summaries of the number of particles in 22 non-linear size
classes and 20 non-linear velocity classes. From the raw output, a number of parameters can be
obtained. This study is focused particularly on rain intensity R, radar reflectivity Z, total number of
drop concentration N, and median volume drop diameter D0.

Rain rate R (mm/h) is given by

R =
6× 10−4

×π
∆T

×

i=22∑
i=1

j=20∑
j=1

xi, j
D3

i
Ai

 (1)

where

xi, j: Detected number of drops that fall in diameter range i and velocity range j,
∆T (s): Temporal resolution (60 s in this case),

Ai (m2): Corrected detection area: Ai = 228×
(
20− Di

2

)
/106,

Di (mm): Mean diameter of drops that fall in diameter range i.

The radar reflectivity Z (dBZ) is calculated with the following expression:

Z = 10 ∗ log10

i=22∑
i=1

j=20∑
j=1

xi, j
D6

i(
Ai V j ∆T

) 
 (2)

where V j (m/s) : Mean velocity of drops that fall in the velocity range j.
The total number of drops N (m−3) is computed according to

N =
i=22∑
i=1

j=20∑
j=1

( xi, j

Ai V j Wi ∆T

)
(3)

where Wi (mm): the width of the diameter range i.
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The rain microstructure is assumed to follow a gamma distribution [72]:

N(D) = N0Dµe(−ΛD) (4)

where N(D) (mm−1m−3) is the number of drops for each diameter range per unit volume and unite size.
The intercept N0 (mm−1−µ m−3), the shape µ (-), and the slope Λ (mm−1) parameters are determined
by the moments method [73]. The nth moment of the raindrop size distribution Mn (mm−1−µ m−3) is
given by

Mn =

∫ Dmax

Dmin

DnN(D)dD (5)

and the three gamma parameters are

N0 =
Λµ+3M2

Γ(µ+ 3)
(6)

µ =
(7− 11η) −

[
(7− 11η)2

− 4(η− 1)(30η− 12)
]0.5

2(η− 1)
(7)

Λ =

[
(4 + µ)(3 + µ)M2

M4

]0.5

(8)

where

η =
M4

2

M2M6
(9)

The mass weighted mean diameter Dm (mm), the median volume diameter D0 (mm) and the
normalized intercept Nw (mm−1m−3) are calculated based on the parameters of gamma distribution:

Dm =
M4

M3
(10)

D0 =
Dm(µ+ 3.67)
µ+ 4

(11)

Nw =
44 M3

6 Dm4
(12)

Additionally, the classification of rain type into convective and stratiform requires the use of
the following parameters: sd_N_10, sd_D0_10, and sd_log10_R_10, where sd_XX_10 is the standard
deviation of the values of XX (XX being N, D0 and R, respectively) over a time window of ten minutes.

2.3. Rain Type Classification

Rain type classification was based on an ensemble classifier to predict stratiform versus convective
rain based on cloud type, rain intensity, and the standard deviation of rain intensities calculated over
the span of ten minutes.

To create a training set for the machine learning model that classifies rain type into convective
and stratiform, we obtained records of cloud genera from the DWD [74]. These ground observations
were available between July 2013 and August 2014 at Fürstenzell and between July 2013 and January
2014 at Regensburg.

A random forest classification model was trained on the available data from the two locations in
this dataset. A combination of two criteria was used for the prior classification, the observation of
cloud genus, and the values of R and its standard deviation over five minutes. The model was trained
based on the intervals where the prior classification was feasible. It was then used to classify rain in the
whole dataset. The spatial variability in rain properties might influence the quality of our classification
scheme, especially that the model was trained in only two out of the ten sites. However, the drop in
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quality on this scale when training in one location and testing in another was minor [28]. More details
about the classification procedure are given in Ghada et al [28].

2.4. Retrieving the Parameters of the Z–R Relation

Weather radars usually provide the reflectivity Z which is transformed into rain intensity R using
an exponential equation. In our case, R and Z are provided by the disdrometer; therefore, it is possible
to get the values of A and b by fitting a linear model to the values of log10(R) and Z.

The radar reflectivity Z is assumed to be related to rain intensity R by the power law:

Z = A×Rb (13)

In this equation, Z is expressed in mm6 m−3. However, Z is usually expressed in the unit decibel
relative to Z (dBZ):

Z[dBZ] = 10× log10
(
Z[mm6 m−3]

)
. (14)

By taking the log of Equation (13) and multiplying by 10:

10 × log10(Z) = 10 × log10(A) + 10 × b × log10(R) (15)

Moreover, based on Equation (14):

dBZ = 10 × log10(A) + 10 × b × log10(R) (16)

a simple linear model is fitted to the values of dBZ and log R which are calculated from the rain drop
size distribution. This linear model has the equation:

dBZ = intercept + slope× log10(R) (17)

thus, by comparing Equations (16) and (17) the A and b parameters can be readily found:

b =
slope
10

(18)

A = 10
intercept

10 (19)

Equations (13)–(19) represent the conventional way of retrieving A and b. An alternative method
is to consider R as the dependent variable [75]. This method is more appropriate because the main
purpose is to reduce errors in estimating R:

R = (1/A)1/b
×Z1/b (20)

By taking the log10 of both sides of Equation (20):

log10(R) =
1
b
× log10(Z) −

1
b
× log10(A) (21)

log10(R) =
dBZ

10× b
−

log10(A)

b
(22)

log10(R) = intercept + slope× dBZ (23)

by comparing Equations (22) and (23):

b =
1

slope× 10
(24)

A = 10−b × intercept (25)
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Retrieval of A and b values was done for each event separately. Events with an accumulated rain
amount of less than 1 mm were excluded to limit their influence on the fitting process. Additionally, the
events were defined by a minimum interevent threshold of 15 min and a minimum duration of 15 min
as in Jaffrain and Berne [75]. To ensure clear classification of the rain type on the event level, the fitting
was restricted to events during which more than 60% of the event was convective, and events where all
intervals were classified as stratiform. The remaining 2449 events contain 9914 h of rain (see Table A1).

3. Results

3.1. Duration and Amount Variation With Rain Type and Wind Direction

During the 1096 days included in the study period, rain was recorded at least at one station on
515 days. The five wind directions had different frequencies and the most frequent wind directions
were the westerly circulations SW and NW with a total of 739 days or two thirds of the time (Figure 3).
More than half of these days included rain in at least one station. The easterly circulations accounted
for less than 12% of the total number of days. SE had the lowest occurrence and the lowest percentage
of rainy days. Both XX and NE had more than 40% rainy days.
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Figure 3. Frequency of rainy days per year and per wind direction classes that represent large-scale
weather types. Rainy days are days on which at least one station recorded five minutes of rain with an
intensity of more than 0.2 mm/h. Error bars represent the 95% confidence intervals. Percentages above
the white columns represent the overall occurrence of each wind direction and percentages below the
columns represent the portion of rainy days in the total number of days within a specific wind direction.
The dashed line represents the mean number of rainy days per year.

When examining the accumulated rain amount and duration, westerly circulations were the
dominant wind directions with a contribution reaching 69% of the total rain duration (18,633 h)
and total rain amount (21,705 mm) accumulated over all stations (Figure 4). Easterly circulations
contributed less than 10% of both rain duration and amount. Convection contributed 36% of the
total rain amount and occupied only 8.5% of rain duration. Southerly circulations had the highest
proportion of convective rain with around 10% of the total rain duration and more than 40% of the
total rain amount, while northerly, and especially northeasterly circulations had a low proportion of
convective rain.
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Figure 4. Prevalence of convective and stratiform rain types. Accumulated rain duration (a), and rain
amount (b) per wind direction averaged over the stations and years. Error bars represent the 95%
confidence intervals. The percentages on top of each column represent the proportion of accumulated
rain within the respective wind direction to the accumulated rain in the whole year. The percentages
below the columns represent the proportion of convective rain to total rain within the respective
wind direction.

The mean stratiform rain intensity was 0.8 mm/h which only marginally varied with wind
direction. On the other hand, the mean convective rain intensity of ~5 mm/h considerably varied across
wind directions. The highest intensity was associated with SE circulations and the lowest with the NW
circulations. Statistical data for each wind direction and rain type including standard deviation (SD)
and standard error (SE) are summarized in Table 1.

Table 1. Summary of rain intensities (R) for wind directions in convective and stratiform rain.

Rain Type Wind
Direction

Duration
(h)

Mean R
(mm/h)

Median R
(mm/h)

Standard
Deviation (mm/h)

Standard
Error (mm/h)

Convective

NE 82.5 4.51 3.65 4.90 0.070
SE 50.7 6.23 4.83 6.41 0.116
SW 645.6 5.11 3.72 6.09 0.031
NW 538.1 4.33 3.36 4.89 0.027
XX 269.6 5.80 4.54 5.79 0.046

Stratiform

NE 1191.9 0.79 0.50 0.79 0.003
SE 486.2 0.80 0.46 0.92 0.005
SW 5928.4 0.78 0.49 0.79 0.001
NW 5740.0 0.83 0.54 0.80 0.001
XX 3700.8 0.84 0.52 0.89 0.002

3.2. Rain Microstructure Variation With Rain Type and Wind Direction

Stratiform rain had smaller drops and lower drop concentrations compared to convective rain
(Figure 5). The average D0 for stratiform rain was 0.77 mm compared to 1.24 mm in convective
rain. Normalized drop concentration Nw in stratiform rain was around 2.24 × 104 mm−1 m−3,
while convective rain had an average of 1.4 × 104 mm−1 m−3. The overall average of D0 (0.81 mm) and
Nw (2.17 × 104 mm−1 m−3) were closer to the values of stratiform rain since most rain intervals were of
the stratiform type. The clusters in the values of D0 that appear in Figure 5 emerge from the combined



Remote Sens. 2020, 12, 3572 9 of 25

effect of the diameter range bins of the disdrometer measurements, and the logarithmic scales on the
horizontal axis.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 25 
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The distributions of D0 and NW values within each wind direction and rain type are illustrated in
Figure 6. Similarly, the mean values of D0 and NW for different ranges of rain intensity within each
wind direction and rain type are provided in Figure 7.

For stratiform rain, westerly circulations had larger drops and lower drop concentrations compared
to easterly circulations. Especially SW had the largest mean D0 and the lowest NW. Easterly circulations
were clearly characterized by the smallest drops and the greatest NW. The same pattern was present
even when inspecting different classes of rain intensity within stratiform rain (Figure 7). With higher
rain intensity, D0 increased too while NW decreased.

For convective rain, only few differences in the previously described patterns were obvious
especially when examining the rain microstructure for different ranges of rain intensities. With the
exception of SE which had a limited number of convective intervals compared to the remaining wind
directions, the median diameter D0 was still the largest in SW and the smallest in NE, while NW

was the largest NE and the smallest in Sw. XX and NW had similar NW values but NW exhibited
larger drop sizes on average. The wind direction SE did not show any consistent pattern across rain
intensity ranges.

When fitting a gamma function to the average rain drop size distribution within each wind
direction in stratiform rain (Figure 8), easterly circulations had relatively lower concentrations of drops
with a D0 larger than 1 mm compared to westerly circulations. On the other hand, westerly circulations,
especially SW, had the lowest concentration of drops with D0 less than 1 mm. In convective rain,
northerly circulations exhibited higher proportion of small drops (D0 < 1 mm) and a smaller proportion
of large drops compared to southerly circulations. Fitting gamma distribution to rain microstructure
was also performed event by event. An example of the fitting for individual events is presented in
Figure A1, and the density plots of the gamma distribution parameters are provided in Figure A2.
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Vertical thick lines show parameters averaged over all locations for convective (solid red line) and
stratiform (dashed thick blue) rain and light lines represent averages for individual locations.
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Figure 7. Rain microstructure for different rain intensities in stratiform and convective rain. Symbols on
each colored line represent summary statistics for a wind direction. Each symbol represents the average
median drop size D0 and the normalized drop concentration for a rain intensity range. The intervals
were chosen to represent six equal sample sizes and were colored by mean rain intensity. Selected
symbols that correspond to equal rain intensity were connected with differently dashed black lines
for comparison.
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Figure 8. Raindrop concentration per millimeter diameter and cubic meter for each wind direction
in stratiform rain and convective rain. Points represent the one-minute average concentrations for
each diameter range colored by wind direction. Colored lines represent the corresponding gamma
distribution fits.

3.3. Z–R Parameter Variation With Location, Rain Type and Wind Direction

To investigate the influence of rain microstructure variability per wind direction on the rain
intensity retrieval equation Z–R, the values of A and b were obtained for 2449 events (see Section 2.4).
A density plot of the R and dBZ values for all the 9914 h included in these events is provided in
Figure A3. An example of the Z–R equation fitting for one event using two methods is provided in
Figure A4.

The average value of the prefactor A was clearly larger in convective rain (309) than in stratiform
rain (239), while the exponent b value was similar for both rain types (1.53). The values of A and b
were averaged for each location (black points in Figure 9; Figure 10), for each wind direction (colored
points in Figure 9; Figure 10), and for each combination of location and wind direction (colored stars in
Figure 9; Figure 10) in order to demonstrate the variability of A and b with these factors.

In stratiform rain, the range of both mean A and b for each of the ten locations (the grey area in
Figure 9) is comparable to the range of the average values for the wind directions (the red rectangle in
Figure 9). However, A and b value are smaller in eastern circulation (NE, SE) compared to remaining
general wind directions, and they are outside of the range associated with the spatial variability.

In convective rain, no clear pattern was detected for the average values of A and b associated
with the five wind directions. The range of A and b values for the different locations is much larger
than the range associated with the five general wind directions, indicating a larger spatial variability
compared to the variability associated with general wind direction.

When averaging the values of A and b for each combination of location and wind direction,
a greater range is observed. In the case of stratiform rain, the pattern of these values is comparable
to the one observed for the five general wind directions; SW circulations have larger A values,
easterly circulations have smaller A values, while XX and NW circulations fall closely in between.
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The range of A and b values for each combination of the location and wind direction is larger in the
case of convective rain. However, the small number of convective events needs to be considered in this
case (see Table A1).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 25 
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Figure 9. The parameters A and b of the radar rain intensity retrieval equation (Z = ARb) in both rain
types using the first method of fitting (Equations (13)–(19)). A and b values are averaged by location
(black dots), wind direction (colored circles), and the combination of both (colored stars). The grey area
represents the range of A and b for the ten locations. The red rectangle represents the range of A and b
for the five general wind directions.
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Figure 10. The parameters of the radar rain intensity retrieval equation (Z = ARb) in both rain types
using the second method of fitting (Equations (20)–(25)). A and b values are averaged by location
(black dots), wind direction (colored circles), and the combination of both (colored stars). The grey area
represents the range of A and b for the ten locations. The red rectangle represents the range of A and b
for the five general wind directions.
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4. Discussion

Our data indicate high frequency and high contribution of westerly and especially SW circulations
to the rainy days over Bavaria, Germany. Easterly circulations have the least frequency and especially
SE has the lowest share of rainy days. This is in agreement with the frequency of wind directions and
proportions of rainy days of long-term studies for Germany for the period between 1995 and 2017 [28].
The high frequency and high contribution of westerly and southwesterly circulations to the number of
rainy days is expected for this region since the main moisture flux is westerly [76].

Convection is responsible for 40% of rain amount in this region despite occupying only 10% of
rain duration. Similar contributions of convective rain were reported for the Czech Republic [77]
and in Switzerland [17]. Convective rain has typically higher rain rates and a distinct microstructure
compared to stratiform rain. It is therefore essential to separate convective and stratiform rain prior
to addressing rain microstructure, especially considering the variation in convective rain proportion
with wind directions [17]. Southerly circulations generally have a higher proportion of convective
rain compared to northerly circulations. A possible explanation is the strengthening and inhibition of
convection and radiative cooling under different wind directions, which in turn has a major influence
on the precipitation diurnal cycle over Germany [49]. Southerly circulations carry along warm air
masses which intensify convection in the afternoon and inhibit radiative cooling in the early morning.
Northerly circulations, in contrast, transport cold air masses, and therefore suppress convection and
intensify radiative cooling.

Westerly circulations need special attention when addressing rain and microstructure, especially
with the reported high contribution to rain duration and rain amount, and the expected increase in their
frequency over Europe [78,79]. Westerly circulations are associated with larger rain drops than easterly
circulations in stratiform rain, while easterly circulations have higher number of drops. This pattern is
consistent for both stratiform and convective rain and across the ranges of rain intensity, except for SE
circulations in convective rain, which was not well represented by data, accounting only for 0.6% of
convective rain amount observed in this study.

Rain microstructure dependence on synoptic weather patterns has previously been reported for
other locations in Europe. Northerly circulations in Leon, Spain, were associated with smaller drop
sizes, while westerly and southerly circulations had larger rain drops [15]. This pattern was explained
by the location of Leon to the south of the Cantabrian Mountains. Northerly circulation air masses
precipitate prior to reaching Leon, leaving less humidity, lower rain intensities and smaller drops.
Westerly and southerly circulations carry along higher humidity, leading to higher rain intensities
and larger drops. For the Cévennes-Vivarais region in France, easterly circulations were associated
with lower number of rain drops and larger drop size while most of the westerly circulations had the
opposite traits [16]. The associations of rain microstructure with large-scale weather patterns observed
in this and other studies are therefore not generally consistent, but region-specific. Different regions
have different associated general air-mass characteristics, for example influenced by proximity to the
sea or the presence of mountain massifs nearby. The origin of the air masses whether continental or
maritime influences the rain microstructure and eventually influences the estimation of precipitation by
radars [80,81]. Each class of wind direction used here has a mixture of both maritime and continental
origins. It is however assumed that westerly circulations have a larger proportion of air masses with a
maritime origin compared to easterly circulations.

The rain microstructure patterns in Bavaria have more in common with the patterns reported
for Lausanne, Switzerland. Despite using different disdrometer types, schemes for rain type
classification, and weather type classifications, and their different geographical locations in the
Alps, easterly circulations were associated with higher number of drops per interval and smaller drop
size compared to westerly circulations at both sites [17]. A plausible explanation for this is the variation
of humidity and aerosol content in air masses between these wind direction clusters. Aerosols are
particularly abundant in air masses which pass over Russia and Eastern Europe, especially over heavy
industrialized areas [82,83]. These aerosols act as cloud condensation nuclei [84]. High availability of
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cloud condensation nuclei increases the number of rain drops in the case of stratiform rain, increases the
size of drops in local convection, but has no significant influence on rain microstructure in organized
convection [85].

Differences in the load of cloud condensation nuclei under different circulations seem to be a
plausible explanation for the rain microstructure differences observed in this study, especially in
stratiform rain. The abundance of cloud condensation nuclei in easterly circulations in comparison
with westerly circulations leads to higher number of rain drops. This in combination with the high
(low) available humidity in westerly (easterly) circulations results in a larger (smaller) size of rain drops,
respectively. For convective rain, easterly circulations comprise two wind directions, NE which has the
smallest mean D0, and SE which has the largest mean D0. The larger size of raindrops in southerly
circulations indicates the intensification of convection when the warm air masses are transported from
the south, whereas northerly circulations bring colder airmasses. The rain type classification method
used in this study does not differentiate local and organized convection, which makes it impossible to
thoroughly compare with the findings of Cecchini et al. [85].

Our results may be useful for radar-based quantitative precipitation estimates (QPE), since Jaffrain
et al. [75] demonstrated that the variation of A and b values in the Z–R retrieval equation is an important
factor which should be accounted for. In their case study of Lausanne, Switzerland, spatial subgrid
variability of rain microstructure was observed, which considerably influenced the quality of the
estimation of rain rate. Using the same dataset, Ghada et al. [17] showed that the variability of A and b
was larger than the subgrid spatial variability (in an area less than 1 km2) when weather types are
considered. In our study, variation of rain microstructure parameters with wind directions in Bavaria
led to significant variation in the values of Z–R parameters. The variations in the prefactor A and
the exponent b by wind direction are of a similar magnitude as their spatial variations in the case
of stratiform rain, but smaller than the spatial variations in the case of convective rain. The same
patterns were obtained for the conventional and the alternative methods of Z–R parameters retrieval
despite the absolute differences in the values of A and b. These small differences occur because the
conventional method is more sensitive to the large values of Z while the alternative method is more
sensitive to the density of scatter points where R is below 2.5 mm/h [75]. This difference needs to
be addressed in future studies to quantify the exact influence on the estimation of rain intensity by
actual radar measurements. Alternatively, the least-rectangles linear regression could be applied as a
middle-ground solution.

Assessing potential benefits of considering the variations in Z–R parameters, Jaffrain and Berne [75]
concluded that the subgrid spatial variability in rain microstructure may account for errors in rain
estimates between −2% and +15%. Variability due to large-scale weather patterns in Z–R parameters is
likely to exceed their subgrid spatial variability [17], and based on our study, is comparable with the
spatial variability of Z–R parameters in stratiform rain on a regional scale. Consequently, the potential
for a significant improvement in rain estimation when accounting for rain microstructure variability
by wind direction is expected to be high for radar quantitative precipitation estimates based only on
radar reflectivity Z.

However, using only disdrometer data for this purpose would be insufficient because disdrometers
provide a direct measurement of rain microstructure, from which R and Z are calculated. These values
are accurate local measurements if we assume an accurate measurement of rain microstructure.
The next logical research step would be a proper assessment of the improvement potential. This should
include the integration of empirical data of radar-based rain intensity estimates validated by ground
observations within the different rain types, locations, and large-scale wind directions, as well as a
thorough rain type classification based on available instruments, especially considering the available
network of dual polarization Doppler radars across Germany. Even for precipitation estimates based
on a rain-gauge adjusted system as currently operated by DWD [86], improving the Z–R relation would
likely have a positive impact in the final quality of the product.
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5. Conclusions

This research demonstrated that rain microstructure varies significantly between weather types
in both stratiform and convective rain. Easterly circulations had the highest drop concentration
and the smallest drop size while westerly circulations were associated with large drops and low
drop concentration. A plausible explanation for these differences is the high humidity content in
westerly circulations and abundant cloud condensation nuclei concentration in easterly circulation.
These finding offer potential new applications for radar-based quantitative precipitation estimates.
Z–R parameters vary substantially with synoptic weather patterns effectively summarized by regional
wind direction classes. This variation in Z–R parameters with wind direction approximates their
station-to-station spatial variability for stratiform, but not for convective rain. We therefore conclude
that building separate Z–R retrieval equation for regional wind direction classes should improve
radar-based QPE, especially for stratiform rain events. This approach should be feasible for operational
level forecasts, especially since daily large-scale weather types can be predicted with high accuracy
several days in advance.
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Appendix A

Table A1. Summary of events selected for the fitting of Gamma distribution and the two methods of
R–Z parameters extraction (see Section 2.4).

Wind Direction Rain Type Duration (h) # Events Mean R (mm h−1) Mean dBZ

SW Convective 144.8 236 6.1 30.7
NW Convective 85.7 131 5.0 29.3
XX Convective 33.7 43 6.6 30.7
SE Convective 11.1 10 6.5 31.6
NE Convective 8.6 11 5.4 29.8
SW Stratiform 3553.1 828 0.9 20.7
NW Stratiform 3063.6 618 0.9 19.6
XX Stratiform 2056.0 373 0.9 20.2
NE Stratiform 598.8 140 0.9 18.5
SE Stratiform 358.8 59 0.9 18.5

Total 9914.1 2449
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Figure A1. Raindrop concentration per millimeter and cubic meter for a selection of ten events;
one event for each combination of wind direction and rain type. The points represent the event average
one-minute concentrations for each diameter range colored by the relevant wind directions. The colored
lines represent the fitted gamma distribution for these points.
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Figure A2. The probability density of the fitted gamma parameters in stratiform and convective rain
colored by wind directions. The vertical lines represent the mean values of the three parameters based
on a selection of 2449 events (see Section 2.4).



Remote Sens. 2020, 12, 3572 20 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 25 

 

 

Figure A3. Density plot of reflectivity (dBZ) and rain intensity (R) for convective and stratiform rain. 

This plot includes the 9914 hours of rain within the selected 2449 events (see 2.4.). 

Figure A3. Density plot of reflectivity (dBZ) and rain intensity (R) for convective and stratiform rain.
This plot includes the 9914 h of rain within the selected 2449 events (see Section 2.4).



Remote Sens. 2020, 12, 3572 21 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 25 

 

 

Figure A4. The fitted Z–R lines for one event (start: 2014-09-20 08:48:30, duration: 54 min, rain type: 

stratiform, wind direction: SW) using both the conventional method (black line) and the alternative 

method (red line). 

References 

1. Arulraj, M.; Barros, A.P. Improving quantitative precipitation estimates in mountainous regions by 

modelling low-level seeder-feeder interactions constrained by Global Precipitation Measurement Dual-

frequency Precipitation Radar measurements. Remote Sens. Env. 2019, 231, 111213, 

doi:10.1016/j.rse.2019.111213. 

2. Steiner, M.; Smith, J.A.; Uijlenhoet, R. A Microphysical Interpretation of Radar Reflectivity–Rain Rate 

Relationships. J. Atmos. Sci. 2004, 61, 1114–1131, doi:10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2. 

3. Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop Size Distributions and Radar Observations of 

Convective and Stratiform Rain over the Equatorial Indian and West Pacific Oceans. J. Atmos. Sci. 2015, 72, 

4091–4125, doi:10.1175/JAS-D-14-0206.1. 

4. Ryzhkov, A.V.; Zrnić, D.S. Radar Polarimetry for Weather Observations; Springer: Cham, Switzerland, 2019; 

ISBN 978-3-030-05092-4. 

5. Steiner, M.; Smith, J.A. Convective versus stratiform rainfall: An ice-microphysical and kinematic 

conceptual model. Atmos. Res. 1998, 47-48, 317–326, doi:10.1016/S0169-8095(97)00086-0. 

6. Iacobellis, S.F.; McFarquhar, G.M.; Mitchell, D.L.; Somerville, R.C.J. The Sensitivity of Radiative Fluxes to 

Parameterized Cloud Microphysics. J. Clim. 2003, 16, 2979–2996, doi:10.1175/1520-

0442(2003)016<2979:TSORFT>2.0.CO;2. 

7. Jameson, A.R.; Larsen, M.L.; Kostinski, A.B. Disdrometer Network Observations of Finescale Spatial–

Temporal Clustering in Rain. J. Atmos. Sci. 2015, 72, 1648–1666, doi:10.1175/JAS-D-14-0136.1. 

8. Jaffrain, J.; Studzinski, A.; Berne, A. A network of disdrometers to quantify the small-scale variability of 

the raindrop size distribution. Water Resour. Res. 2011, 47, 2673, doi:10.1029/2010WR009872. 

Figure A4. The fitted Z–R lines for one event (start: 2014-09-20 08:48:30, duration: 54 min, rain type:
stratiform, wind direction: SW) using both the conventional method (black line) and the alternative
method (red line).

References

1. Arulraj, M.; Barros, A.P. Improving quantitative precipitation estimates in mountainous regions by modelling
low-level seeder-feeder interactions constrained by Global Precipitation Measurement Dual-frequency
Precipitation Radar measurements. Remote Sens. Environ. 2019, 231, 111213. [CrossRef]

2. Steiner, M.; Smith, J.A.; Uijlenhoet, R. A Microphysical Interpretation of Radar Reflectivity–Rain Rate
Relationships. J. Atmos. Sci. 2004, 61, 1114–1131. [CrossRef]

3. Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop Size Distributions and Radar Observations of
Convective and Stratiform Rain over the Equatorial Indian and West Pacific Oceans. J. Atmos. Sci. 2015, 72,
4091–4125. [CrossRef]
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