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Abstract: The Tibetan Plateau (TP) is an important area that affects global sustainable development.
Quantifying spatiotemporal patterns of urbanization is crucial for maintaining the sustainability on
the TP. This study took Xining City, the largest city on the TP, as an example to understand the urban
expansion in this region in the past 50 years. We combined the high-resolution spy satellite data and
China’s long-term urban land dataset (CULD) to quantify the urban expansion of Xining City. The
object-oriented random forest classification was performed to extract urban land from spy satellite
data in 1969, and the inter-annual correction was used to combine urban land information from 1969
to 2017. We found that the proposed approach can accurately quantify the urban expansion of Xining
City over the past half century with an overall accuracy of 91% and a kappa coefficient of 0.86. Such
high accuracy benefits from the fine resolution of spy satellite data and the consistency of CULD. We
also found that Xining City experienced accelerated and fragmented urban sprawl to higher altitude
areas, as a result of socioeconomic development and topographical limitations. The acceleration of
urban expansion was more obvious, and the urban landscape fragmentation was more serious at high
altitude areas. Such urban expansion encroached on cropland and grassland, and caused increased
risks of landslides and other geological disasters. Therefore, Xining City urgently needs to promote
the development of compact cities to control urban sprawl at higher altitude areas and provide a
reference for improving urban sustainability across the TP. In this study, we analyzed the urban
expansion of Xining city from 1969 to 2017, and provided a reliable way to understand the long-term
spatiotemporal urbanization based on remote sensing, which has the potential for wide applications.
In addition, the extracted urban information can help to improve the urban sustainability of Xining
City and the entire TP.

Keywords: Tibetan Plateau; urban landscape sustainability; urbanization; multi-scale; long time
series; Keyhole/Corona spy satellite; dryland

1. Introduction

The Tibetan Plateau (TP), also known as the “Roof of the World”, “Water Tower of
Asia” and “Third Pole”, is perceived as an important ecological security barrier, a strategic
resource reserve base and a protected place for Tibetan cultural heritage [1,2], which
is also an important area that influence global sustainable development [3]. Driven by
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China’s “Belt and Road Initiative”, “New-type Urbanization” and “Western Development
Program”, the TP is experiencing a rapid urbanization [4]. Despite regional socio-economic
development, this process has led to a series of ecological and environmental issues (e.g.,
loss of natural habitats, decline in biodiversity, air pollution and deterioration of water
quality), putting pressure on regional sustainability [5]. Understanding the characteristics
of urban expansion (UE) on the TP is the basis for optimizing the spatiotemporal pattern of
urban land, which is important for promoting sustainable development on the TP.

Xining, with its low altitude and favorable climate, is considered the most livable city
on the TP [6]. With the rapid socioeconomic development, Xining City has become the
city with the largest population, the highest gross domestic product (GDP) and the largest
urban land area on the TP [7]. Whilst the area of Xining City only accounts for 0.3% of
the area of the TP, its urban population is about 22.7% of the total urban population of the
entire TP, its GDP accounts for 26.9% of the TP’s GDP [8], and its urban land area accounts
for 19.3% of the total urban land area on the TP [9]. Since Xining City represents a typical
city on the TP, quantifying the spatiotemporal pattern of UE in Xining City may provide a
scientific basis to promote its healthy development and understand the characteristics of
UE on the TP.

Previous studies have investigated some aspects of the UE of Xining City. For example,
Fu et al. [10] analyzed the changes of urban land area in Xining City from 1999 to 2005.
Meng and Chen [11] examined the characteristics of urban land changes in Xining City
from 1996 to 2004. Feng et al. [12] analyzed the UE and its driving mechanism of Xining
City from 1977 to 2007. Gao et al. [7] analyzed the UE of Xining City from 1990 to 2015
and its impacts on the environment. Whilst these studies have laid a good foundation for
understanding the UE in Xining, in-depth analysis of the characteristics of the UE is limited.
Firstly, existing studies mainly analyzed the change of urban land area, ignoring the multi-
scale analysis of spatial patterns of the urban landscape and the spatial differentiation of
UE at different altitudes. Secondly, they mostly analyzed the UE over a short time period,
and therefore lacked a complete understanding of the long-term UE in Xining City.

Historical high-resolution remote sensing data and the recently released China medium-
and high-resolution long-term urban land dataset (CULD) provide new data sources for
characterizing the UE of Xining City in the past 50 years. Briefly, the historical high-
resolution remote sensing data were collected by the military Keyhole series satellites
launched by the United States. The imaging time of the archived data was from August
1960 to May 1972. They were panchromatic images with a spatial resolution of 1.8 to
12.2 m [13]. These data were released and made accessible to the public in February
1995 [14]. These data can clearly portray the texture characteristics of ground objects and
provide a reliable data source for obtaining urban land information in historical periods.
Using these data, Brinkmann et al. [15] successfully extracted the land use/cover informa-
tion of four urban areas in West Africa in the 1960s, Hepcan et al. [16] extracted the land
use/cover information of Izmir, Turkey in 1963, Saleem et al. [17] successfully extracted the
land use/cover information of Iraqi Kurdistan in 1969, and Rendenieks et al. [18] analyzed
the rates and determinants of forest cover change along the Latvian–Russian border in
1967–2015. In addition, Gong et al. [9] produced a high-precision urban land area dataset
with a spatial resolution of 30 m over the period 1978–2017 based on the Google Earth
Engine platform, and its overall accuracy exceeds 90%. By combining these two types of
data, we can accurately quantify the UE of Xining City in the past 50 years.

This study aimed to quantify the spatiotemporal pattern of UE in Xining City from
1969 to 2017. To achieve this goal, we first combined the high-resolution spy satellite data
and CULD to obtain the urban land information of Xining City from 1969 to 2017. Then, we
examined the driving mechanism of the UE from both socio-economic development factors
and location factors, and quantified the occupation of other land use/cover types in the UE
of Xining City. Finally, we discussed the reliability of combining these two types of data,
summarized the basic characteristics of Xining’s UE in the past 50 years, and put forward
corresponding policy recommendations. This study can be used to understand the UE
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of Xining city since 1969, reveal the main characteristics and driving forces of urban land
use change in Xining city in a long time series, and provide a scientific basis for the future
urban planning of Xining city. This study can also assist understanding the characteristics
of UE on the TP.

2. Materials and Methods
2.1. Study Area

Xining City (Latitude: 100◦54′E–101◦56′E, Longitude: 36◦13′N–37◦23′N, average
elevation: 2295 m) belongs to the TP and Loess Plateau crisscrossed area, the Yellow River
Basin and the agro-pastoral transitional zone of northern China, and is a typical plateau
valley city (Figure 1) [19,20]. The mean annual temperature is 6.1 °C, and the annual
precipitation is about 400 mm [21]. In 2017, the main land use/cover types in Xining
City were grassland (53.0% of total area) and cropland (23.2% of total area) [22]. Its total
population was 2.4 million.

During the period of 2000–2017, the urban population of Xining City increased from
1.1 million to 1.7 million (or an increase of 49.6%). The proportion of urban population
has increased from 56.6% to 71.6% (or an increase of 15.0%). The GDP of the secondary
and tertiary industries has increased from 9.4 billion yuan to 124.3 billion yuan (or an
increase of 12.3 times). The proportion of GDP of the secondary and tertiary industries has
increased from 92.0% to 96.7%, an increase of 4.7% [23]. The urban land has increased from
86.7 km2 to 231.0 km2, an increase of 1.7 times [9]. In November 2015, Xining City was
approved as the second batch of national pilot cities for new-type urbanization. In March
2018, the State Council issued the “Lanzhou-Xining Urban Agglomeration Development
Plan”. Thus, Xining City is expected to experience a more rapid development in the future.

2.2. Data Sources

The remote sensing data used to extract the urban land area of Xining on May 17,
1969 were from the panchromatic remote sensing image of Xining taken by the Keyhole
satellite, with a spatial resolution of 2.7 m. Geometric correction and orthorectification were
performed by Beijing Lanyu Fangyuan Information Technology Co., Ltd. (http://www.
kosmos-image.com/). The urban land data (period: 1978–2017; spatial resolution: 30 m;
accuracy: >90%) were obtained from the CULD [9] (http://data.ess.tsinghua.edu.cn/). The
Digital Elevation Model (DEM) data used here (spatial resolution: 30 m) were downloaded
from the Geospatial Data Cloud Platform (http://www.gscloud.cn).

The socio-economic data were gathered from the Xining Statistical Yearbook [23]. The
data include the GDP, urban population, saving deposits of urban residents, etc. The basic
geographic information data (e.g., highways, railways, national roads and rivers) and the
administrative boundaries were obtained from the National Basic Geographic Information
Center (http://ngcc.sbsm.gov.cn).

2.3. Methods
2.3.1. Extracting Urban Land

Based on the historical Keyhole satellite images, we extract the urban land of Xining
City in 1969 using the object-oriented random forest classification method (Figure 2). Since
topography has significant influence on the spatial distribution pattern of urban land in
Xining City, we follow Shruthi et al. [24] and Dronova [25] and combine remote sensing im-
ages and DEM data to perform classification. We use the Ecognition software’s multi-scale
segmentation module to set different segmentation scales to segment the combined data.
By comparing the multiple segmentation results, we select the segmentation scale with the
best performance for segmentation, and adopt the segmentation results for classification
(see Appendix A). Based on topography conditions, colors, shadows, sizes, shapes, textures,
patterns, positions and combinations of features in remote sensing images, we select 100
urban objects and 100 non-urban objects as training samples [26] (Appendix B). Based
on the training samples, we apply the random forest classification method to classify the
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image according to the spectral features, shape features and texture features of the image.
Then, we revise the classification results by visual interpretation. After that, we resample
the extracted urban land data in 1969 to a resolution of 30 m using the maximum-value
resampling approach, to ensure that the urban land data from 1969 to 2017 share the same
spatial resolution.

Figure 1. Study area.
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Figure 2. Flow chart.

Following He et al. [27], we combine the urban land information from 1978 to 2017,
and correct the time series of urban land data (Figure 2). The basic assumption of the
inter-annual correction is that the urban land grows continuously, and urban land that
appeared in one period will not disappear in the next period. The dynamic information of
the urban land from 1969 to 2017 can be obtained from the correction. The specific formula
is expressed as:

UL(n,i) =


0 UL(n+1,i) = 0

1 UL(n+1,i) = 1&UL(n−1,i) = 1

UL(n,i) otherwise

, (1)

where UL(n,i), UL(n+1,i) and UL(n−1,i) represent whether the i-th pixel is urban land in year
n, n + 1 and n − 1, respectively. A value of 1 means urban, and 0 means non-urban. Based
on the corrected data, we can obtain the dynamic information of Xining City’s UE from
1969 to 2017.

2.3.2. Quantifying UE

Following Liu et al. [28], we select five landscape metrics, i.e., the percentage of area
(PLAND), patch density (PD), landscape shape index (LSI), mean patch size (MPS) and
landscape expansion index (LEI), to characterize the urban land area, urban fragmentation
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degree, urban patch shape, urban patch size and UE mode, respectively. Among these
landscape metrics, the calculation formula of PLAND [29] is:

PLAND =

n
∑

j=1
aij

A
× 100%, (2)

where aij represents the area of the corresponding urban patch, and A represents the total
landscape area. The calculation formula of PD is:

PD = N/A, (3)

where N represents the total number of urban patches in the landscape. The calculation
formula of the LSI is:

LSI = 0.25E/
√

A, (4)

where E represents the total length of the urban patch boundary in the landscape. The
calculation formula of the MPS is:

MPS =

n
∑

j=1
xij

ni
, (5)

where n represents the number of urban patches, and xij represents the area of the corre-
sponding urban patches. The calculation formula of the LEI is:

LEI =
Ao

Ao + Av
× 100%, (6)

where A0 represents the area where the buffer area of newly added urban land intersects
with existing urban land and Av represents the area where the buffer area intersects with
non-urban land. Based on different LEI values, the UE mode can be categorized into
three modes: leapfrog (LEI = 0), edge expansion (LEI between 0 and 50) and infilling
(LEI ≥ 50) [30].

Using the above indicators, we first analyze the UE of the whole city in the past 50
years, and then explore it in different altitude areas and time periods. Since the newly
added urban land in this region from 1969 to 2017 was mainly distributed below 2800 m
(the area of newly added urban land within the area of 2100–2800 m accounted for 99.6%
of the total area of new urban land in this region), we follow Liao and Sun [31] and Zhao
et al. [32], and divide the area of 2100–2800 m above sea level into seven parts at intervals of
100m. From there, we analyze the UE at different altitudes. On the temporal scale, we split
the data (1969–2017) into five periods (i.e., 1969–1978, 1978–1990, 1990–2000, 2000–2010,
and 2010–2017) and investigate the UE each period (Figure 1).

2.3.3. Analyzing the Driving Forces of UE

We analyze the main drivers of Xining’s UE from two aspects, i.e., socio-economic
factors and location factors. First, we collect and organize the socio-economic policies
related to the UE of Xining at the national, regional and local scales, and qualitatively
examine the impacts of these policies on the UE of Xining. Secondly, we follow Huang
et al. [33] and use regression analysis to quantify the impacts of socio-economic factors
on the UE. Based on the Xining Statistical Yearbook data, with the area of urban land as
the dependent variable, 18 indicators in four categories (economy, population, fixed asset
investment, and people’s living standards) are selected as the independent variables for
regression analysis. Among them, the economic indicators include GDP, GDP of secondary
industry, GDP of industry, GDP of construction industry, GDP of tertiary industry, and
per capita GDP. The population indicators involve total population, urban population,
and registered urban population. The fixed asset investment indicators consist of fixed
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asset investment, urban fixed asset investment, and real estate development investment.
The people’s living standard indicators cover total urban household income, per capita
disposable income of urban households, per capita consumption level of urban residents,
per capita residential area in the urban area, saving deposits, and saving deposits of urban
residents.

Similar to Kamusoko and Gamba [34] and Zhang et al. [35], we adopt the random
forest approach to quantify the influences of location factors on UE. According to related
research Huang [33] and available data, eight location factors that affect the process of
regional UE are selected from four aspects, i.e., transportation, topography, city center and
river. The transportation factors comprise distance to national road, distance to railway
and distance to highway. The topographic factors include elevation, slope and aspect. The
city center factor is the distance to the city center. The river factor is the distance to the
river. The impact analysis of location factors based on random forest mainly includes the
following four steps. First, 66% of the location factor data are randomly selected as the
sample dataset, while the remaining data (34%) are used as out-of-bag data (i.e., test data).
Second, we construct 100 decision trees and train them using the sample dataset, and use
the out-of-bag data to evaluate the accuracy of the trees. In this study, when the out-of-bag
score exceeds 0.85, the accuracy satisfies the requirements. Third, we use the out-of-bag
data and each decision tree to calculate the error (e1). We randomly change the order of
a certain factor j in the out-of-bag data to obtain new out-of-bag data, and calculate the
error again (e2). Fourth, the importance of factor j can be obtained by standardizing the
difference between e1 and e2 of each decision tree. In this study, the importance score of a
factor is used as an indicator to determine the degree of influence of a certain factor on the
UE. The higher the score, the greater the influence of the factor on the UE.

2.3.4. Assessing the Impacts of the UE on other Land Use/Cover Types

Following previous studies [36–38], we generate a transition matrix between urban
land and other land use/cover types, and quantify the occupation of other land use/cover
types by urban land. First, we establish the interpretation standard using the color, shadow,
size, shape, texture, pattern, position and combination of the features in the Keyhole
satellite remote sensing image [26] (Appendix B). Then, according to the interpretation
standard, we extract the cropland, grassland, rural construction land, rivers, shrubland,
forest, bareland and lake in 1969. We apply the maximum-value resampling approach to
resample the extracted land use/cover information to a resolution of 30 m. Finally, we
spatially overlay the urban land data of different periods and different UE modes with the
land use/cover information in 1969. In this way, we analyze the impacts of UE in different
periods and different UE modes on other land use/cover types.

3. Results
3.1. The overall UE of Xining City

Xining City experienced rapid UE from 1969 to 2017 (Figure 3, Table 1). The urban
land area has increased exponentially from 19.9 km2 to 231.1 km2 with a mean annual
growth (MAG) rate of 5.3% (Figure 3b, Table 1). With the expansion of Xining City, the
degree of urban fragmentation has intensified, and urban PD has experienced growth
from 0.07 Num/km2 to 0.57 Num/km2 (Figure 3c). The shape of urban patches was more
irregular, and urban LSI has increased from 27.1 to 81.0 (Figure 3d). The average area
of urban patches gradually increased, and urban MPS increased from 4.0 ha to 5.6 ha
(Figure 3e). Xining City gradually expanded to high-altitude areas. From 1969–1978 to
2010–2017, the average altitude of newly added urban land has changed from 2323.3 m to
2407.6 m (or an increase of 84.3 m; Figure 3f). The UE model of Xining City has shifted from
leapfrog UE to edge expansion. From 1969–1978 to 2010–2017, the proportion of leapfrog
UE in the total UE area dropped from 45.9% to 19.4%, while the proportion of edge UE
area in the total UE area increased from 48.7% to 58.5% (Figure 3g, Table 1).
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Figure 3. Urban expansion in Xining City. (a) spatial patterns of urban land; (b) changes in urban land area; (c) changes in
patch density of urban land; (d) changes in the landscape shape index of urban land; (e) changes in the mean patch size of
urban land; (f) changes in the mean altitude of the newly-added urban land; and (g) the urban expansion model.

Table 1. The urban expansion area in Xining from 1969 to 2017.

Period
(Year)

Urban Expansion Area Urban Expansion Model

Area
(km2)

Proportion
in the Whole

Period (%)

Mean
Annual

Growth Rate
(%)

Leapfrog Edge-Expansion Infilling

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

1969–1978 22.93 10.86 8.91 10.52 45.87 11.18 48.74 1.24 5.39
1978–1990 24.39 11.55 3.83 4.55 18.67 11.19 45.86 8.65 35.46
1990–2000 19.85 9.40 2.62 2.98 15.03 9.24 46.55 7.63 38.42
2000–2010 41.81 19.79 4.00 7.81 18.69 26.64 63.72 7.35 17.59
2010–2017 102.27 48.41 8.71 19.83 19.39 59.83 58.51 22.60 22.10
1969–2017 211.25 100.00 5.25 45.71 21.64 118.08 55.89 47.47 22.47
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3.2. The UE at Different Altitudes

There were obvious differences in the UE of Xining City at different altitudes (Figure 4,
Table 2). First of all, the urban land area of the lower altitude area was growing at a uniform
rate, and the urban land area in the higher altitude area was growing at an accelerated
rate (Figure 4a,b). At 2100–2200 m, from 1969 to 1978, the urban land area increased by
1.9 km2 (with a MAG of 0.21 km2); the proportion of urban land area increased by 13.2%
(with a MAG rate of 1.5%). From 2010 to 2017, the urban land area increased by 2.3 km2

(with a MAG of 0.33 km2); the proportion of urban land increased by 15.9% (with a MAG
rate of 2.3%). The urban land area and the proportion of the urban land area in the two
time periods barely changed, and the city expanded at a uniform speed (Figure 4a,b). At
2300–2400 m, from 1969 to 1978, the area of urban land increased by 5.6 km2 (with a MAG
of 0.62 km2); the proportion of urban land increased by 2.2% (with a MAG rate of 0.2%).
From 2010 to 2017, the area of urban land increased by 35.0 km2 (with a MAG of 5.0 km2);
the proportion of urban land increased by 13.9% (with a MAG rate of 2.0%). The area
of urban land and the proportion of urban land increased significantly in the two time
periods (i.e., 1969–1978 and 2010–2017), and the UE speed was significantly accelerated
(Figure 4a,b).

Second, the degree of urban fragmentation and irregularity increased first and then
decreased in areas with lower altitudes, while it continued to increase in areas with higher
altitudes (Figure 4). For example, the urban LSI and PD at 2100–2200 m have increased from
13.1 and 6.4 Num/km2 (in 1969) to 18.8 and 12.9 Num/km2 (in 1978), and then declined
to 13.1 and 6.2 Num/km2 (in 2017). By contrast, the urban LSI and PD at 2300–2400 m
have escalated from 12.8 and 0.4 Num/km2 (in 1969) to 59.5 and 7.0 Num/km2 (in 2017)
(Figure 4c,e).

Third, for areas with lower altitudes, the proportion of infilling UE area was higher.
For areas with higher altitudes, the leapfrog UE area accounted for a higher proportion
(Figure 5 and Table 2). Taking 2010–2017 as an example, at 2100–2200 m, the infilling UE
area accounted for 66.1%, while the leapfrog UE area accounted for 3.3%. At 2700–2800 m,
the infilling UE area accounted for 11.3%, while the leapfrog UE area accounted for 36.8%
(Figure 5).

Figure 4. The characteristics of urban expansion at different altitudes. (a) urban expansion area; (b) changes in the
proportion of urban land area; (c) changes in the urban landscape shape index; (d) changes in the average patch area of
urban land; and (e) changes in the patch density of urban land.
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Figure 5. Urban expansion model at different altitudes. (a) 2100–2200 m; (b) 2200–2300 m; (c)
2300–2400 m; (d) 2400–2500 m; (e) 2500–2600 m; (f) 2600–2700 m; and (g) 2700–2800 m.

Table 2. The urban expansion area by altitude in Xining City from 1969 to 2017.

Elevation
(m)

Urban Expansion Area Urban Expansion Model

Area
(km2)

Proportion
in the Entire
Region (%)

Mean
Annual

Growth Rate
(%)

Leapfrog Edge-Expansion Infilling

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

2100–2200 10.56 5.00 5.31 1.10 10.44 5.56 52.71 3.89 36.85
2200–2300 66.57 31.51 3.39 7.85 11.79 34.50 51.82 24.22 36.39
2300–2400 60.58 28.67 8.06 14.55 24.02 36.66 60.51 9.37 15.46
2400–2500 34.94 16.54 12.48 9.72 27.81 20.34 58.21 4.89 13.99
2500–2600 16.61 7.86 8.76 6.55 39.44 8.73 52.58 1.32 7.98
2600–2700 18.61 8.81 7.98 4.46 23.94 10.64 57.16 3.52 18.89
2700–2800 2.59 1.23 11.82 1.16 44.61 1.18 45.61 0.25 9.78

Entire
region 211.25 100.00 5.25 45.71 21.64 118.08 55.89 47.47 22.47
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3.3. Driving Forces of UE

Since the establishment of the People’s Republic of China, Xining’s urban space has
always followed the spatial organization model of “internal life and external production”,
with the idea of building Xining’s living and service functions around the city center at the
intersection of the four river valleys. Various industrial facilities were constructed at a cer-
tain distance from the living space. Before 1978, the western region mainly implemented the
“top-down” urbanization system led by the central government, and industrialization was
the key driving force for Xining’s urbanization. Multiple programs at different periods (e.g.,
reform and opening-up, western development, and pilot areas for new-type urbanization)
have supported the development of Xining City. The construction of some major infrastruc-
ture and important development zones (including the Qinghai–Tibet Railway, Beijing–Tibet
Expressway, Lanxin High-speed Railway, Xining National Economic and Technological
Development Zone, and the Lanzhou–Xining Urban Agglomeration Development Plan)
have directly contributed to the increase in urban land in Xining (Figure 6a).

Our quantitative analysis of socio-economic factors reveals that the urban land area
is significantly correlated with socio-economic indicators (Table 3), and all correlation
analysis results have passed the 0.001 level of significance test. Among the four types
of factors, the correlation coefficients between the urban land area and the indicators of
population, economy, and people’s living standards are relatively high (all >0.9). The
correlation coefficient between urban land area and fixed asset investment indicators is
relatively low (0.8–0.9). Among the economic indicators, the correlation between urban
land area and GDP of industry is the highest (at 0.98). Among the population indicators,
the urban land area has the highest correlation with the urban population (at 0.99). Among
the fixed asset investment indicators, the urban land area has the highest correlation with
real estate development investment (at 0.89). Among the indicators of people’s living
standards, the urban land area has the highest correlation with saving deposits of urban
residents (at 0.99) (see details in Table 3).

Table 3. Correlation between urban land area and socio-economic driving factors.

Economics (X1)

X11 X12 X13 X14 X15 X16
0.969 *** 0.977 *** 0.983 *** 0.915 *** 0.955 *** 0.973 ***

Population (X2)

X21 X22 X23
0.975 *** 0.985 *** 0.966 ***

Fixed asset investment (X3)

X31 X32 X33
0.892 *** 0.823 *** 0.894 ***

People’s living standards (X4)

X41 X42 X43 X44 X45 X46
0.977 *** 0.944 *** 0.978 *** 0.956 *** 0.964 *** 0.993 ***

Note: ***indicates significant correlation at the 0.001 level. Bold font indicates the largest correlation
coefficient in one category. X11 represents the gross domestic product (GDP), X12 represents the GDP
of secondary industry, X13 represents the GDP of industry, X14 represents the GDP of construction
industry, X15 represents the GDP of tertiary industry, X16 represents the per capita GDP, X21 represents
total population, X22 represents urban population, X23 represents registered urban population, X31
represents fixed asset investment, X32 represents urban fixed asset investment, X33 represents real
estate development investment, X41 represents total urban household income, X42 represents per
capita disposable income of urban households, X43 represents per capita consumption level of urban
residents, X44 represents the per capita residential area in the urban area, X45 represents saving
deposits, and X46 represents saving deposits of urban residents.
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Figure 6. Influencing factors of urban expansion in Xining City. (a) relevant policies and socio-economic factors; (b) the
importance of location factors for urban expansion in different time periods.

Transportation and topography are the main factors affecting the spatial pattern of UE
in Xining. Based on random forest approach, our results indicate that the most important lo-
cation factor from 1969 to 2017 was transportation (with an importance of 41.6%), followed
by topography (with an importance of 34.9%). On different temporal scales, the importance
of topography influencing factors has decreased, and the importance of transportation
influencing factors has increased. From 1969 to 1978, the importance of transportation
influencing factors was 33.8%, while the importance of topography influencing factors was
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42.0%. From 2010 to 2017, the importance of transportation influencing factors was 39.0%,
and the importance of topography influencing factors was 35.4% (Table 4, Figure 6b).

Table 4. The importance of location influence factors of urban expansion of Xining City in different time periods.

Location Factor 1969–1978 1978–1990 1990–2000 2000–2010 2010–2017 1969–2017

Topography

Aspect 0.99 1.32 1.54 1.05 1.31 1.10
Slope 7.31 6.17 6.82 10.51 7.78 7.58

Elevation 33.71 30.42 31.54 25.81 26.31 26.27
Sum 42.01 37.91 39.91 37.37 35.40 34.94

Transportation

Distance to national road 15.06 13.47 12.88 5.83 7.09 7.82
Distance to railway 18.69 20.82 17.83 14.46 13.47 12.73

Distance to highway 0.00 0.00 0.00 17.54 18.45 21.00
Sum 33.76 34.30 30.71 37.83 39.01 41.55

Distance to city center 18.84 22.83 22.91 18.25 18.91 18.38

Distance to river 5.39 4.96 6.47 6.55 6.69 5.13

3.4. Impacts of UE on Other Land Use/Cover Types

From 1969 to 2017, the UE of Xining City mainly encroached on cropland and grassland
(Figure 7a). The area of cropland took over by UE in the entire region was 117.3 km2,
accounting for 55.5% of the total area of UE. The UE in the whole region encroached on 62.3
km2 of grassland, accounting for 29.5% of the total UE area (Figure 7a). In different time
periods and at different altitudes, the UE of Xining City was dominated by the occupation
of cropland and grassland (Figure 7b,c). In 1969–1978, 1978–1990, 1990–2000, 2000–2010,
and 2010–2017, the cropland occupied by UE of Xining City accounted for 50.4%, 43.4%,
49.9%, 72.0% and 53.9% of the total area of UE, respectively. The grassland occupied by
the UE constituted 33.9%, 37.9%, 31.2%, 18.0% and 30.9% of the total UE area, respectively.
From 1969 to 2017, at 2100–2200 m, 2200–2300 m, 2300–2400 m, 2400–2500 m, 2500–2600 m,
2600–2700 m, and 2700–2800 m, the cropland occupied by the UE were 38.1%, 59.4%, 52.9%,
69.5%, 56.5%, 35.5% and 54.7% of the total area of UE, respectively; and the grassland
occupied by the UE made up 33.1%, 28.1%, 31.5%, 20.7%, 27.1%, 40.8% and 35.7% of the
total area of UE, respectively.

Different UE modes of Xining City had different impacts on other land use/cover
types. In general, leapfrog UE occupied more grassland, while edge and infilling UE
occupied more cropland (Figure 7d). From 1969 to 2017, the leapfrog UE in Xining City
occupied 17.4 km2 of grassland (approximately 38.0% of the total area of leapfrog UE)
and 21.4 km2 of cropland (about 46.9% of the total area of leapfrog UE). Edge UE invaded
32.0 km2 of grassland (about 27.1% of the total edge UE) and 68.0 km2 of cropland (roughly
57.6% of the total edge UE). The infilling UE invaded 13.0 km2 of grassland (~27.4% of the
total infilling UE area) and 27.8 km2 of cropland (accounting for 58.7% of the total infilling
UE area) (Figure 7d). Overall, the proportion of grassland encroached by leapfrog UE was
greater than that of edge and infilling UE, and the proportion of cropland encroached by
leapfrog UE was smaller than that of edge and infilling UE.
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Figure 7. Different land use/cover types occupied during the urban expansion of Xining City. (a) in the entire region from
1969 to 2017; (b) in the entire region in different periods; (c) at different altitudes from 1969 to 2017; (d) under different
urban expansion modes from 1969 to 2017.

4. Discussion
4.1. UE Quantification Using Historical Keyhole Satellite Data and CULD

The historical Keyhole satellite images have a high spatial resolution of 2.7 m, which
can clearly display the texture characteristics of ground objects [13,39]. Therefore, using
this data can accurately identify urban land [17]. The CULD, which used the “Exclu-
sion/Inclusion” algorithm and the Google Earth Engine platform, can also provide urban
land information with high accuracy [9].

By combining these data (above), we evaluate the accuracy and continuity of the
Xining urban land information in the past 50 years. Similar to earlier studies [40], we use
the socio-economic data and high-resolution remote sensing data to examine the accuracy
of Xining’s expansion from 1969 to 2017. First, we analyze the relationships between
urban land area and urban population, and the relationships between urban land area and
the GDP of the secondary and tertiary industries. Our results show that the correlation
coefficient between urban population and urban land area is 0.92 (Figure 8a), and the
correlation coefficient between the GDP of the secondary and tertiary industries and urban
land area is 0.97 (Figure 8b).

Following Li et al. [41] and Yao et al. [42], we select 50 samples for each of the
unchanged urban land, unchanged non-urban land and UE area of Xining City from
1969 to 2017. We apply the high-resolution data in 2017 from Google Earth for accuracy
assessment. Our assessment suggests that the user accuracy (UA) and producer accuracy
(PA) for UE areas are 86% and 91%, respectively, the UA and PA for unchanged urban
land are 90% and 92%, respectively, and the UA and PA for unchanged non-urban land
are 96% and 89%, respectively. The overall accuracy is 91%, and the kappa coefficient
is 0.86 (Figure 9). In general, our integrated urban land data have high accuracy and
reliable continuity. In this sense, these two datasets can provide support for in-depth
understanding of the UE of Xining City in the past 50 years. In addition, they should be
useful for quantifying the historical UE of other regions in China.
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Figure 8. Accuracy assessment based on socio-economic data of Xining City. (a) the relationship between urban population
and urban land area; and (b) the relationship between GDP and urban land area.

4.2. Policy Implications

The UE of Xining City in the past 50 years mainly exhibited the following charac-
teristics (see Figure 10). First, the area of urban land has experienced an accelerated
growth trend. The average annual UE area has accelerated from 2.55 km2 (in 1969–1978)
to 14.61 km2 (in 2010–2017), an increase of nearly five times. The per capita urban land
area has exceeded the national standard of 100 m2/person in 2012 [43], and reached
138.0 m2/person in 2017. Secondly, the urban land area was almost saturated at the lower-
altitude river valley area and the extension of urbanization to higher-altitude areas was
inevitable. The average altitude of the UE area has increased from 2323.3 m (in 1969–1978)
to 2407.6 m (in 2010–2017), an increase of nearly 100 m. Such accelerated expansion was at
the expense of a large amount of cropland and grassland. This has threatened the regional
food security and environment, and increased the vulnerability of urban residents living in
higher-altitude areas to landslides and other geological disasters.

Consistent with previous studies, our results indicate that Xining City is undergoing a
rapid UE process, posing a serious threat to the environment. For example, the research
of Zhang et al. [44] reported that Xining City entered a stage of rapid development after
2000, and, especially after 2010, the rate of UE increased further. The study by Gao et al. [6]
suggested that Xining is an important transportation hub on the TP and an important node
of the Qinghai–Tibet Highway, Qinghai–Tibet Railway and Beijing–Tibet Expressway. In
a sense, transportation construction has promoted the rapid development of Xining City.
Feng et al. [12] also showed that the UE of Xining City was at the expense of a large amount
of cropland, and that the reduction in cropland might threaten food production [45]. At
the same time, large-scale occupation of grassland can lead to degradation of habitat
quality and biodiversity, and aggravate ecological and environmental risks. In addition,
the Huangshui River Basin where Xining City is located has soft soil and sparse vegetation.
The disorderly expansion at higher altitude areas might cause Xining City to encounter
natural disasters, such as landslides and mountain torrents [46].
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Figure 9. Accuracy assessment based on high-resolution remote sensing data.
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Figure 10. The accelerated urban expansion to higher altitude areas in Xining City from 1969 to 2017.

Effective measures are needed to curb the disorderly spread of urban land in Xining
City, to reduce the occupation of cropland and ecological land by construction land, and to
reduce the risk of natural disasters. First, we need to promote the development of compact
cities, strictly control the scale of urban land in accordance with the per capita urban land
area indicators in national and regional planning, and establish bottom-line thinking that
is in accordance with the requirements of national landscape planning. Second, we should
adjust the spatial patterns of urban land in accordance with the ecological function zoning
and characteristics of urban land at different altitudes, and strictly maintain the three
control lines of ecological protection red line, permanent primary farmland protection red
line, and urban growth boundary [47]. Third, it is important to promote the development
of urban agriculture, and alleviate the contradiction between food supply and demand
and the imbalance between urban and rural development [48]. Finally, we should consider
optimizing the transportation layout to guide the orderly development of the city, while
promoting the construction of resilient cities and green cities, so that the risks of natural
disasters and environmental degradation caused by UE could be reduced [49–51].

4.3. Future Perspectives

This research analyzed the spatiotemporal pattern of UE in Xining City in the past
50 years, and the innovations are mainly reflected in the following two aspects. First,
by combining high-resolution Keyhole satellite data with CULD, a long-term analysis of
nearly 50 years has been achieved. Second, the characteristics of the UE in different altitude
regions were investigated, which can better reveal the regional differentiation law of UE.

Nevertheless, the current study contains some shortcomings. Firstly, the discrepancies
of the spatial resolution between Keyhole satellite images (2.7 m) and CULD (30 m) used
in this study may bring some uncertainties. In addition, the current study only evaluated
the direct occupancy of other land use/cover types by UE. Some in-depth analyses on the
deterioration of water quality, land degradation, air pollution, and degradation of habitat
quality caused by changes in land use/cover types were not covered here.

In a future study, the latest high-resolution remote sensing images can be used to
more accurately analyze the UE. Furthermore, we will use mathematical statistics, spatial
analysis and model-based simulation methods to evaluate the comprehensive impacts
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of UE on the social economy and ecological environment. In addition, based on the UE
simulation model, the future urban land change trend and optimization research will be
performed, and the urban growth boundary will be delineated. These would provide
science-based recommendations for coordinating the UE and ecological protection of the
TP.

5. Conclusions

Combining high-resolution historical Keyhole satellite imagery and CULD can accu-
rately reveal the UE of Xining City in the past 50 years. The urban land area of Xining City
from 1969 to 2017 obtained by combining the above two datasets is significantly correlated
with socio-economic data, and the accuracy of the spatial pattern of UE is high (>85%). The
current demonstration indicates that this data combination method can offer an effective
way to analyze the spatiotemporal pattern of long-term UE in other regions of China with
various socioeconomic contexts.

Under the comprehensive influence of social and economic development and location
factors (e.g., transportation and topography), Xining City has experienced large-scale UE in
1969–2017. The UE during this period revealed the following characteristics. First, the urban
land area and per capita urban land area of the entire region showed an accelerated growth
trend. The per capita urban land area exceeded the nationally prescribed 100 m2/person
in 2012, and the fragmentation of the urban landscape has increased. Second, Xining City
has expanded to higher altitudes, and the UE has obvious differentiation laws at different
altitudes. At higher altitude areas, the urban land has expanded faster, and the leapfrog
UE area was higher than that at lower altitude areas, and the degree of urban landscape
fragmentation was more serious.

The rapid urbanization in Xining City has exacerbated the contradiction between food
supply and demand, natural disaster risks and ecological risks, and could pose a threat to
regional sustainable development. Therefore, we believe that Xining City urgently needs
to promote the construction of compact cities, resilient cities and green cities, optimize
the transportation network, adjust the urban layout, and encourage urban agriculture, to
provide references for urban planning and promote sustainable development across the TP.
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Appendix A

Figure A1. Segmentation results at different spatial scales. (a–c) are three sub-regions listed in the top figure.
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Appendix B

Table A1. Interpretation standards for Keyhole satellite imagery.

Land Use/
Cover Type Panchromatic Image Color Shape and Texture Distribution

Urban land Light gray or white Rectangle, uniform
texture, spaced apart

Valleys on both sides of
the river

Cropland Black or dark gray
Rectangle, uniform

texture, no space
between each other

Flat land around both
sides of the river and

rural construction land

Forest Black Irregular and rough
texture Mountain

Grassland Gray Irregular shapes and
uneven texture

Widely distributed
throughout the region

Shrubland Black or dark gray Irregular and rough
texture

Around cropland and
rivers
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Table A1. Cont.

Land Use/
Cover Type Panchromatic Image Color Shape and Texture Distribution

Lake Black Irregular shapes
anduniform texture Around rivers

River Dark gray Ribbon, uniform
texture Valley

Rural
construction

land
Gray Irregular shapes and

rough texture Around cropland

Bareland Gray Irregular shapes and
rough texture Around rivers
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