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Abstract: Automatic extraction of the road surface and road centerline from very high-resolution
(VHR) remote sensing images has always been a challenging task in the field of feature extraction.
Most existing road datasets are based on data with simple and clear backgrounds under ideal condi-
tions, such as images derived from Google Earth. Therefore, the studies on road surface extraction
and road centerline extraction under complex scenes are insufficient. Meanwhile, most existing
efforts addressed these two tasks separately, without considering the possible joint extraction of road
surface and centerline. With the introduction of multitask convolutional neural network models, it
is possible to carry out these two tasks simultaneously by facilitating information sharing within
a multitask deep learning model. In this study, we first design a challenging dataset using remote
sensing images from the GF-2 satellite. The dataset contains complex road scenes with manually
annotated images. We then propose a two-task and end-to-end convolution neural network, termed
Multitask Road-related Extraction Network (MRENet), for road surface extraction and road centerline
extraction. We take features extracted from the road as the condition of centerline extraction, and the
information transmission and parameter sharing between the two tasks compensate for the potential
problem of insufficient road centerline samples. In the network design, we use atrous convolutions
and a pyramid scene parsing pooling module (PSP pooling), aiming to expand the network receptive
field, integrate multilevel features, and obtain more abundant information. In addition, we use a
weighted binary cross-entropy function to alleviate the background imbalance problem. Experimen-
tal results show that the proposed algorithm outperforms several comparative methods in the aspects
of classification precision and visual interpretation.

Keywords: multitask learning; convolutional neural networks; road surface extraction; road centerline
extraction; VHR remote sensing images

1. Introduction

Urban information construction requires the rapid acquisition of a large amount of
basic geographic information data. Extracting ground objects using remote sensing images
has several advantages, such as large detection range, wide spatial coverage, timeliness, and
low cost, making it an important means to construct and update geospatial databases [1].
Road extraction is of great significance for GIS database updates, image matching, target
detection, and digital mapping automation, to list a few. It is widely used in traffic
management, land use analysis, and other fields [2–5]. With the increasing maturity of
remote sensing technology and its applications, more and more scholars started to extract
road information directly from very high-resolution (VHR) remote sensing images [5,6].

However, urban roads are generally distributed in a plane shape, especially in VHR
images. The rich details of ground features add further complexity to the image information.
As for spectral characteristics, there are a large number of the same objects with different

Remote Sens. 2021, 13, 239. https://doi.org/10.3390/rs13020239 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5751-3905
https://orcid.org/0000-0002-4323-382X
https://doi.org/10.3390/rs13020239
https://doi.org/10.3390/rs13020239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13020239
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/2/239?type=check_update&version=2


Remote Sens. 2021, 13, 239 2 of 18

spectra and the same spectra of different objects in the image. For example, the spectral
characteristics of roads and buildings are very similar, while the spectral signature inside
the road greatly differs. The existence of a large number of geometric topological features
around the road leads to more challenges in road extraction [7–9]. In addition, roads tend
to be covered by the shadow cast from the adjacent three-dimensional structures in modern
cities. Due to the aforementioned influencing factors, extracting road-related information
from VHR remote sensing images has been considered to be a rather difficult task [4].

Extracting road-related information from remote sensing images includes two major
tasks: (1) road surface extraction and (2) road centerline extraction. Road surface extraction
aims to generate pixel-level results, while road centerline extraction aims to extract road
skeleton [6].

With the great progress of space technology, mankind entered the era of space remote
sensing in the 1970s [10]. Scholars have carried out in-depth studies on road surface
extraction models via a variety of approaches that include template matching [11–13],
knowledge-driven methods [14,15], and object-oriented methods [5,16–18]. Inspired by the
roads seen on satellites, Ruzena et al. [1] designed a computer program for the recognition
and description of roads and their intersections in 1976. Helmut et al. [19] used snakes
to make up for the gap caused by the shelter of buildings and trees. Trinder et al. [20]
proposed a knowledge-based method to extract roads in an automatic manner. Their
approaches consist of low-level image processing for edge detection and linking, mid-level
processing for the formation of road structure, and high-level processing for the recognition
of roads. Based on the anti-parallelism rule and the proximity rules, Dal Poz et al. [21]
achieved great results by taking advantage of the characteristics of parallel edges of roads
leveraging road seed extraction and road network combination. Rasha et al. [18] extracted
roads from VHR images through three steps: feature extraction, graph-based segmentation,
and post-processing. Li et al. [5] viewed road areas as binary segmentation trees and
combined them with various features to provide an effective method to extract roads
from VHR satellite images in densely populated urban areas. Cao et al. [22] chose GPS
data for rapid centerline extraction to face challenges such as complex scenes and variable
resolution. Liu et al. [23] conducted road surface extraction based on the generalized Hough
transform, which has low computational complexity and high time efficiency. In recent
years, the advancement of deep learning offers a new solution to road surface extraction
tasks. In 2010, Minh et al. [24] attempted to apply neural network technology to road
surface extraction tasks with the city-level spatial coverage. Since then, more and more
studies have been conducted to extract roads from remote sensing images via convolutional
neural networks. Wei et al. [25] built the road-structure-based loss function by embedding
the geometric structure of roads and proposed a road structure refined convolutional
neural network approach for road surface extraction from aerial images. To facilitate the
extraction of tree-blocked roads, Zhang et al. [6] proposed a semantic segmentation neural
network that combines the advantages of residual learning and Unet [26] to extract the
road area. Cheng et al. [27] proposed a new cascading end-to-end convolutional neural
network named CasNet, which handles road surface extraction and centerline extraction
tasks simultaneously. Liu et al. [28] proposed RoadNet, a multitask convolutional neural
network to predict the road surfaces, edges, and centerlines. Lu et al. [29] adopted U-Net as
the basic network of multitask learning and improved the robustness of feature extraction
by applying multiscale feature integration. Batra et al. [30] conducted joint learning on the
location and division of roads and further improved the connectivity of roads. Focusing on
the modeling of road context information, Qi et al. [31] proposed a well-designed spatial
information reasoning structure. More recently, Zhang et al. [32] developed a novel road
surface extraction method based on improved generative adversarial networks.

In the aspect of road centerline extraction from remote sensing images, the research
method mainly focuses on obtaining the linear road skeletons by applying two general
steps: (1) thinning and (2) tracking, where the thinning is often carried out after the extrac-
tion of road surfaces [33]. Amini et al. [34] used the parallel line theory to obtain the road
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skeleton in rural areas after the process of road refinement. Zheng et al. [35] extracted road
centerlines from VHR satellite images using support vector machine and tensor voting
techniques. Miao et al. [36] first identified potential road sections and then applied multi-
variate adaptive regression splines to extract the centerlines of the road in VHR images.
Cheng et al. [37] targeted the problems of the existence of burr and the inability in the
extraction of intersections. They obtained the segmentation results through semisuper-
vised segmentation, multiscale filtering, and multidirection nonmaximum suppression in
another study [38]. Gao et al. [39] proposed a semiautomatic road centerline extraction
method combining edge constraints and fast marching. Zhou et al. [40] reconstructed roads
via boundary distance field and tensor field after obtaining preliminary road and road
centerline results. The advance of deep learning has largely facilitated the extraction of
road centerlines, especially in the last five years. Wei et al. [41] obtained the confidence
map of road centerline based on an end-to-end convolutional neural network and then
achieved accurate road centerline extraction by nonmaximal inhibition. Zhang et al. [42]
proposed a learning-based road network extraction framework via a multisupervised
generative adversarial network, jointly trained by the spectral and topology features of
the road networks. Cascading deep learning framework based on multitask networks has
been the mainstream idea to solve road-related tasks [27–29], which builds the foundation
of our work.

However, most existing road datasets under ideal conditions cannot provide more
possibilities for the task of road extraction, and the image information is not fully utilized
when two related tasks are extracted separately. In this paper, we propose a two-task
and end-to-end convolution neural network, termed Multitask Road-related Extraction
Network (MRENet), for road surface extraction and road centerline extraction. Inspired by
the main structure of Unet [26], we use atrous convolution to expand the receptive field of
feature extraction in the encoder and apply pyramid scene parsing pooling module (PSP
pooling) to fuse global context information for pixel-level annotations in the decoder [14,43].
Through information transmission and parameter sharing between the two tasks, the
characteristics and the results of road surface extraction are fed into the road centerline
network by a concatenating operation to achieve a rapid extraction of single-pixel road
centerlines. We select the complex road scenes in China from remote sensing images in
GF-2 (details can be found in Section 2.3) and manually annotate the acquired images as the
dataset. In terms of the loss function, we use a weighted binary cross-entropy function to
alleviate the background imbalance of the datasets. Although Chinese cities were selected
as experimental area, the proposed model is expected to be applicable in other complex
urban scenes.

The contributions of this paper mainly include the following three aspects:

(1) We introduce a new challenging dataset derived from GF-2 VHR images. The intro-
duced dataset contains complicated urban scenes, which can be better considered as a
reflection of the real world, providing more possibilities for road-related information
extraction, especially under less ideal situations.

(2) We propose a new network named MRENet that consists of atrous convolutions and a
PSP pooling module. The experiments suggest that our approach outperforms existing
approaches in both road surface extraction and road centerline extraction tasks.

(3) We conduct a group of band contrast experiments to investigate the effect of incorpo-
rating NIR band on experimental results.

The remainder of this paper is organized as follows. Section 2 describes road features
and data sources. Section 3 elaborates on the proposed network. Section 4 presents
the experiments and analysis, detailing our comparative experiments and analysis of
experimental results. Further discussions are arranged in Section 5. Finally, Section 6
presents a summary of our work.
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2. Materials

One of the main reasons for the great success of deep learning lies in the massive train-
ing data. The performance of deep learning algorithms is largely dependent on the scale
and annotation of the training dataset [44]. Open-source databases in the computer vision
domain have greatly stimulated the development of deep learning. Unlike conventional
natural images, VHR remote sensing images own unique characteristics, such as diverse
scales [45], special perspectives [46], and complex backgrounds [47]. Thus, training deep
learning models on remote sensing images often requires specialized databases. DOTA [44],
AID [48], and other similar datasets, to a certain extent, greatly enriched the database of
remote sensing images.

However, it is worth noting that road datasets from VHR remote sensing images are
still rare and do not meet the demand. Existing datasets for road extraction, such as the
datasets proposed in CasNet [27] and RoadNet [28], contain images that were taken under
ideal conditions. Similarly, the datasets used by Das et al. [7] and Cheng et al. [27] use
images with simple and clear backgrounds without any occlusion. The dataset proposed
by Liu et al. [28] is more challenging as its images include the situation of tree occlusion.
The images in the aforementioned road datasets were mainly collected from Google Earth
with RGB bands. However, modern urban complex road scenes (e.g., overpass and ring
road) and the impact of municipal facilities and road greening are often not included. Thus,
their low complexity is inadequate to be considered as a reflection of the real world [44].

Complex urban roads are characterized by composite lane structures, dense traffic,
and complex color scheme. In addition, the shadow from the vegetation on both sides of
the road, along with the shelter of high-rise buildings, further adds complexity, making
road extraction a very challenging task. With the abundant remote sensing data, it is of
great importance to establish a challenging dataset with complex scenes, benefiting road
extraction tasks in complex environments.

In the following sessions, we summarize the characteristics of the road surface and
road centerline under the complex urban scenes of VHR remote sensing images.

2.1. Characteristics of the Road Surface

The urban roads in the VHR remote sensing image mainly include the urban trunk
roads and the internal roads of the parcels. The challenges in road extractions from
VHR remote sensing images lie in the variance of road width and the existence of traffic
management lines, isolation belt, cars, and shadows (cast by poles, buildings, roadside
trees, and overpasses).

• In terms of geometric characteristics, urban roads are generally described as a narrow
and nearly parallel area with a certain length, stable width, and obvious edge. Both
the edge and the centerline have obvious linear geometric features, often with a large
length–width ratio;

• In terms of radiation characteristics, roads have distinct spectral characteristics com-
pared with vegetation, soil, and water, but they can be easily confused with artificial
structures such as parking lots. The grayscale of the road tends to change uniformly,
which generally shows the color of black, white, and gray. However, due to the
existence of a large number of vehicles and pedestrians on the surface, such noise
interference is inevitable;

• In terms of topological characteristics, urban roads are generally connected with each
other, forming a road network with high connectivity;

2.2. Characteristics of the Road Centerline

In remote sensing images, roads are symmetrically distributed in a geometric structure.
Road centerlines are important feature lines in the geometric design of road alignment.
The extraction of road centerlines is to obtain a linear road skeleton, which is a smooth and
complete symmetrical line with single-pixel width.
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Road centerlines are generally connected and have unique characteristics that include
strong connectivity, complex topology, accurate refinement, and the central axis. Thinning
and tracking are the two commonly used methods to extract the road centerlines, where
thinning is further expanded on the results of road extraction.

2.3. Description of Datasets

Given the small scale and low diversity in existing datasets [49], we developed a new
challenging dataset by collecting VHR images from the GF-2 satellite in complex scenes.
We manually marked the accurate reference map of road surface and road centerlines.
Our dataset consists of two subdatasets: (1) road surface extraction dataset and (2) road
centerline extraction dataset.

The spatial resolution of multispectral bands and the panchromatic band from the
GF-2 satellite are 4 m and 1 m, respectively, as shown in Table 1. The multispectral bands
for training and testing include four bands: near-infrared (NIR), red (R), green (G), and
blue (B). We further discuss the band selection and suitability analysis of remote sensing
images in Section 5.1. The road width ranges from 5 pixels to 50 pixels, and the width of
the road centerline is 1 pixel.

Table 1. Satellite parameters of GF-2.

Bands Resolution (m) Wavelength (µm)

Pan 1 0.45–0.90
Blue 4 0.45–0.52

Green 4 0.52–0.59
Red 4 0.63–0.69

NIRed 4 0.77–0.89

In the process of selecting areas and collecting samples, in order to avoid the problems
of poor generalization ability and overfitting caused by excessive imbalance background,
we deliberately select the concentrated area and typical area (e.g., overpasses, loops,
intersections, etc.) and ignore regions with an excessive background in the image, as shown
in Figure 1. Compared with other datasets, the image background of the GF dataset is
considered more complex, which can better represent the typical urban road situation in
developing countries and in other complex urban fabrics.

We apply data augmentation techniques to increase the amount of training data, fully
mine the multidimensional information of data, avoid model underfitting, reduce the
imbalance between samples, and further improve the generalization ability of the model.
In our experiment, we transform the image geometry without changing the content of the
image itself. The data augmentation includes flipping operation and rotation operation.
For direction-insensitive tasks such as image classification, the geometric transformation
has been proved to be a very effective data augmentation method.

All the testing images are not included in the training dataset, and they are uniformly
cut into 256 × 256 pixels with overlapping of 64 pixels. A total of 13,590 images are divided
into the training set, testing set, and validation set. 10,872 images are used to train the
network, and the rest are evenly allocated for validation and testing.
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Figure 1. Representative images in our dataset.

3. Methodology

This section details the method proposed in this study. In particular, Sections 3.1 and 3.2
introduce the theory of the Resblock and the pyramid scene parsing (PSP) pooling module.
Section 3.3 explains the advantages of multitask learning. Section 3.4 presents the overall
architecture of Multitask Road-related Extraction Network (MRENet).

3.1. ResBlock

In the process of semantic segmentation using FCN, the input image is first convoluted
and further pooled, similar to the traditional CNN network. The convolution operation
extracts image features, and the pooling operation enlarges the receptive field by reducing
the image size. Two steps are repeated to obtain the most important features. In the
decoding part, it is necessary to enlarge the size of the pooled image to its original size via
upsampling. When the image size is reduced, the rich spatial information of pixels in the
original images is lost, potentially leading to imbalanced local and global features.

VGGNet [14] proves that using a small convolution kernel can effectively reduce
the computational complexity of convolution operation rather than using a large convo-
lution kernel. The deepening network structure and the regularization effect of a small
convolution kernel also improve the performance of the model.

To obtain a larger receptive field and more spatial information without pooling op-
eration, a common method is to introduce atrous convolution, a convolution that adds
holes to the standard convolution layer to extract features. As shown in Figure 2, compared
with the ordinary convolution layer, the atrous convolution can effectively expand the
receptive field of feature extraction, retaining the feature size and reducing the loss of
spatial information of features without increasing parameters. It has been proved to be
an effective feature extraction approach [50]. We use multiple parallel atrous convolution
branches in the Resblock module of the network to obtain the global characteristics of
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the road surface and road centerline in remote sensing images. As shown in Figure 3,
before each convolution operation, batch normalization and Relu activation function are
used. The dilation rate is set to 1, 3, 15, and 31. For example, when the dilation rate is
31, the receptive field size is 123 × 123, which fully covers the road width (5–50 pixels).
The parameters were derived from Diakogiannis et al. [43].
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The multiscale information can be obtained using different dilation rates on different
scales. Each scale is an independent branch. These branches are combined by the addition
operation and then connected by the next convolution layer. Such a design can effectively
avoid redundant information, improve the performance by identifying the correlation
among objects at positions in the image, effectively expand the receptive field of feature
extraction, and avoid the loss of semantic meaning of a single-pixel in distinguishing
small-scale feature extraction. In view of the problem of road extraction, more contextual
information can be obtained by expanding the acceptance domain of feature extraction,
which can well solve the problem of insufficient semantic features caused by the large
coverage of ground objects and tree occlusion.

3.2. PSP Pooling

In the last stage of encoding and decoding, we apply PSP pooling to integrate mul-
tilevel features [43,51]. As shown in Figure 4, the main idea of PSP pooling is to divide
the initial input into four subregions at varying levels in the feature space and obtain the
pooled features of these four subregions, respectively. A 1 × 1 convolution layer is used to
reduce the dimension of the context features to maintain the weight of the global features.
The size of the original image is further restored by a resize operation, and finally, the
pyramid pooling features are obtained by splicing and fusion in the channel dimension.

The size of receptive fields in a neural network represents the range of context in-
formation obtained, but extraction errors can also occur after the acceptance domain has
been expanded. The emphasis is on the need to fuse the key information received. The
PSP pooling module integrates four different pyramidal scale features, leading to better
characteristic expression ability. It can largely facilitate the integration of global context in-
formation of pixel-level annotation (low-level spatial information and high-level semantic
information) and improve the performance of the model to distinguish roads from other
ground objects [52].
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3.3. Multitask Learning

The basic idea of multitask learning is that when a task to be learned is similar or
related, cross-sharing of information between tasks in the model may be advantageous [53].
Multitask learning is achieved by learning tasks in parallel using shared representations.
The shared representations lead to effective joint learning among multiple tasks [54].

The tasks of road surface extraction and road centerline extraction are dependent to a
certain extent. The road extraction results play a decisive role in the centerline extraction,
while the centerline enhances the typical linear features of the road [29]. Therefore, it is
beneficial to introduce the concept of multitask learning towards a simultaneous extraction
of the road surface and road centerline. Through information transmission and parameter
sharing between the two tasks, massive training samples are not necessarily required, and
the risk of overfitting is reduced.

Specifically, the problem of road surface extraction and road centerline extraction is to
transfer the knowledge learned in the road surface extraction process to the road centerline
extraction process. By cascading of two tasks, the features extracted from road surfaces are
taken as the condition of centerline extraction, compensating for the potential problem of
insufficient road centerline samples. Given the existence of noises and the unbalanced ratio
between backgrounds and targets, deriving the optimal descent direction of the gradient is
often computationally demanding. Multitask learning facilitates the feature sharing and
transferring between road surface extraction and road centerline extraction, leading to the
retrieval of complete semantic features and model robustness.

3.4. MRENet Architecture

In order to better solve the tasks of road surface extraction and road centerline extraction
in complex scenes from VHR remote sensing images, we propose a new two-task, end-to-
end deep learning network by adopting the Resblock module and PSP pooling module in the
network based on the concept of multitask learning. The MRENet architecture is shown in
Figure 5. We regard the tasks of road surface extraction and road centerline extraction as two
binary classification tasks. For road surface extraction, we use an encoder–decoder structure,
i.e., a Resblock module, that uses multiple parallel atrous convolution branches to obtain
the relationship between the road and environment backgrounds. The PSP pooling module
further aggregates multiscale and multilevel features to obtain rich context information.
Meanwhile, our network structure retains the skip connection structure in Unet [26] and
transmits the feature map directly from the encoder to the decoder through the combination
operation. This information transmission achieves the integration of the deep and shallow
features, providing more fine features for segmentation.

For road centerline extraction, we believe that the features extracted by the encoder
in road surface extraction (e.g., road location, directionality, etc.) can be transferred and
utilized in the task of road centerline extraction. We aim to achieve this convolution layer
sharing to supplement the training difficulties caused by the lack of centerline samples.
Different from CasNet [27], we feed the road surface extraction results and the four con-
volution layers of the road network encoder into the road centerline network to achieve a
rapid extraction of single-pixel road centerlines, as shown in Figure 5.

Considering the unbalanced proportion of negative (background) and positive sam-
ples (road surface and road centerline) in the training dataset, we further improve the
binary cross-entropy loss function by adding a corresponding weight for each category,
which was determined by the proportion of the category in all samples.
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4. Experiments and Results

In this section, we evaluate the performance of the proposed MRENet on the devel-
oped road datasets. We introduce the evaluation metrics, detail the experimental settings,
and present the experimental results.

4.1. Evaluation Metrics

We use a confusion matrix to evaluate the model performance in the binary classifica-
tion problem. The labels are divided into positive samples and negative samples, while the
prediction results are divided into positive results (true) and negative results (false). We use
TP (true positive) and TN (true negative) to represent the correct predictions, while we use
FP (false positive) and FN (false negative) to represent the wrong predictions. To evaluate
the performance of the proposed model in extracting road surface and road centerline,
we adopt four evaluation indicators: precision, recall, F1-score and IoU [55–57].

Precision: Precision indicates how many positive samples are predicted to be positive.
It represents the proportion of labeled roads extracted from the model:

Precision =
TP

TP + FP
(1)

Recall: Recall indicates the number of the correct-predicted positive examples in the
sample. It represents the proportion of roads that are correctly labeled by the model:

Recall =
TP

TP + FN
(2)

F1-score: F1-score, a harmonic average of the precision and recall, is a widely used
index to measure the accuracy of the binary classification model:

F1 − score = 2 × Precision × Recall
Precision + Recall

(3)

IoU: IoU is a common evaluation metrics for semantic segmentation and target de-
tection, which measures the accuracy of the ground objects detected from the dataset and
quantifies the fit degree between the extraction results and the true labels. The larger the
value of IOU, the more overlapping areas of results.
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IoU =
TP

TP + FP + FN
(4)

Since the road centerline dataset is manually combined with the semiautomatic anno-
tation, we think that certain deviations exist between the derived centerline and the real
centerline. Thus, evaluating the accuracy of road centerline with single-pixel width is not a
good option. We apply a buffer width ρ as a matching area to evaluate the extraction of
road centerlines, as shown in Appendix A. Note that the aforementioned four indexes are
also used to evaluate the results of road centerline extraction after transforming the linear
precision evaluation to the planar precision evaluation.

4.2. Implementation

All experiments adopt the same parameter initialization method and optimizer in
the training process. The batch size is set to 3 with a learning rate of 1 × 10−3. Adam
function, the function with the highest accuracy stored in the validation set, is used for
weight initialization. The whole training process takes about 40 h with GPU acceleration.
The implementation of our model is based on TensorFlow v2.20 in Windows operating
system with Intel (R) Xeon (R) CPU E5-2687 V4 @ 3.00 GHz as CPU. GPU model is NVIDIA
GRID RTX8000-12Q with 12 G of memory.

4.3. Comparison of Road Surface Extraction

Figure 6 shows the visual comparison among the proposed model, i.e., MRENet,
with FCN, Unet, and SegNet. We observe that incomplete extractions exist in all methods.
However, in terms of road integrity, MRENet is able to obtain a more complete road
structure. Table 2 records the quantitative results of the comparison among the selected
networks. From these experimental indicators, MRENet achieves higher scores than other
methods in terms of IOU and F1-score.

We find that all four models can effectively extract straight and clear-cut roads. When
it comes to roads with bends and intersections with more shadows, however, their per-
formances differ. MRENet is able to effectively extract the main structure of the road,
preserving the details even in some challenging scenes, which proves the effectiveness and
superiority of our proposed method.

We attempt to explain the above experimental results, incorporating the specific
network structure. U-net and MRENet add a path between encoder and decoder, which
is conducive to the transmission of high-level information and low-level information,
presumably leading to better robustness. A large number of testing results reveal that
the extracted results are relatively better for scenes with smaller road width. We assume
that Resblock plays an important role, as it makes the receptive field expand, which is
more conducive to extract semantic information among objects. In addition, the extracted
information is better fused by the PSP pooling module, leading to faster convergence of
the network [43].

Table 2. Experimental results of road surface extraction with different networks.

Methods Precision Recall F1-Score IoU

FCN 0.7097 0.6455 0.6761 0.5107
SegNet 0.7447 0.6650 0.7025 0.5415

Unet 0.7591 0.6688 0.7111 0.5517
Ours 0.7554 0.6771 0.7141 0.5553
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4.4. Comparison of Road Centerline Extraction

As discussed in Section 4.1, we apply a buffer width ρ as a matching area to evaluate
the extraction of road centerlines, given that the road centerline dataset is developed using
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a semiautomatic approach. Figure 7 shows the visual comparisons of road centerline
extraction results with different networks at ρ = 1. We notice that MRENet well main-
tains connectivity at most intersections, as the extraction results from MRENet contain
considerably fewer breakpoints compared to other methods.
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Table 3 presents the quantitative results of road centerline extraction under different
ρ values. The results suggest that MRENet achieves great performance in all evaluating
metrics. This phenomenon can be explained by the fact that the image features extracted



Remote Sens. 2021, 13, 239 14 of 18

by the encoder component are shared in the latter part of the network, leading to the
correlation between the two output results to a certain extent.

Table 3. Experimental results of road centerline extraction with different networks under different
buffer widths (ρ).

Buffer Xidth Methods Precision Recall F1-Score IoU

ρ = 1

FCN 0.6488 0.5727 0.6084 0.4372
SegNet 0.7004 0.5911 0.6411 0.4718

Unet 0.7091 0.6164 0.6595 0.4920
Ours 0.7180 0.6160 0.6631 0.4960

ρ = 3

FCN 0.6820 0.6184 0.6486 0.4800
SegNet 0.7250 0.6258 0.6718 0.5057

Unet 0.7321 0.6354 0.6803 0.5155
Ours 0.7406 0.6377 0.6853 0.5213

ρ = 5

FCN 0.7118 0.6379 0.6728 0.5070
SegNet 0.7365 0.6465 0.6886 0.5251

Unet 0.7427 0.6571 0.6973 0.5353
Ours 0.7516 0.6566 0.7009 0.5395

5. Discussion

In this section, we explore the influence of different band selections and different
upsampling connection locations on the experimental results.

5.1. Comparison of Different Band Selection

As the NIR band in remote sensing images is becoming more and more popular, we
test the impact of this band on the results in this session. As shown in Tables 4 and 5,
compared with the detection results from RGB bands, the inclusion of the NIR band further
improves the model performance in both road surface extraction and road centerline
extraction tasks. Despite that the reasons behind are complex, it can be inferred that, on the
one hand, the NIR band makes the road information of the original data more abundant,
facilitating the interpretation of remote sensing image; on the other hand, the NIR band
records the spectral information of different ground objects, providing the distinguishing
ability between the road from nonroad.

Table 4. Experimental results of road surface extraction with different band selection.

Bands Precision Recall F1-Score IoU

RGB 0.7526 0.6480 0.6964 0.5342
RGB + NIR 0.7554 0.6771 0.7141 0.5553

Table 5. Experimental results of road centerline extraction with different band selection under
different buffer widths (ρ).

Buffer Width Methods Precision Recall F1-Score IoU

ρ = 1
RGB 0.7070 0.5933 0.6452 0.4762

RGB + NIR 0.7180 0.6160 0.6631 0.4960

ρ = 3
RGB 0.7290 0.6251 0.6731 0.5072

RGB + NIR 0.7406 0.6377 0.6853 0.5213

ρ = 5
RGB 0.7398 0.6448 0.6890 0.5256

RGB + NIR 0.7516 0.6566 0.7009 0.5395

5.2. Comparison of Different Upsampling Connection Locations

In the architecture of MRENet, the features extracted from the road encoder stage
are restored to the original image size via the upsampling operation. The road surface
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extraction is involved in the process of road centerline extraction to facilitate the fusion
of local and global information. This design of the road centerline extraction network is
to avoid that the extraction results of road centerline are completely determined by the
surface extraction results. Connecting the extraction results of the first three Resblocks can
compensate for the loss of some multilevel detail features in the road extraction process. We
notice that upsampling connection location has an unnoticeable influence on the results in
road surface extraction, while it has a trivial influence on the performance in road centerline
extraction (Table 6).

Table 6. Experimental results of road centerline extraction with different connection locations for
upsampling (ρ = 3).

Bands Precision Recall F1-Score IoU

MRENet_Conv 0.7144 0.6123 0.6594 0.4919
MRENet_Resblock 0.7180 0.6160 0.6631 0.4960

6. Conclusions

In this paper, we summarize the characteristics of the road surface and road centerlines
in VHR remote sensing images and propose a new challenging dataset derived from
VHR remote sensing images for road-related extraction to overcome the performance
saturation problem of the existing benchmark datasets. We propose a two-task and end-
to-end convolution neural network, termed Multitask Road-related Extraction Network
(MRENet), to bridge the extraction of both road surface and road centerlines by enabling
feature transferring. Through the Resblock and the PSP pooling module, the designed
network can expand the receptive field and integrate multilevel features, leading to the
acquisition of abundant information. Further, we explore the influence of different band
selection and different upsampling connection locations on the experimental results. The
experimental results show that the proposed model achieves great performance on the
proposed datasets compared with other state-of-the-art methods and we believe that our
model can also achieve good results in other complex urban scenes.
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