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Abstract: Compression of remotely sensed astronomical images is an essential part of deep space ex-
ploration. This study proposes a wavelet-based compressed sensing (CS) algorithm for astronomical
image compression in a miniaturized independent optical sensor system, which introduces a new
framework for CS in the wavelet domain. The algorithm starts with a traditional 2D discrete wavelet
transform (DWT), which provides frequency information of an image. The wavelet coefficients are
rearranged in a new structured manner determined by the parent–child relationship between the
sub-bands. We design scanning modes based on the direction information of high-frequency sub-
bands, and propose an optimized measurement matrix with a double allocation of measurement rate.
Through a single measurement matrix, higher measurement rates can be simultaneously allocated to
sparse vectors containing more information and coefficients with higher energy in sparse vectors.
The double allocation strategy can achieve better image sampling. At the decoding side, orthogonal
matching pursuit (OMP) and inverse discrete wavelet transform (IDWT) are used to reconstruct the
image. Experimental results on simulated image and remotely sensed astronomical images show
that our algorithm can achieve high-quality reconstruction with a low measurement rate.

Keywords: remotely sensed astronomical image; wavelet; compressed sensing; image compression;
deep space exploration

1. Introduction

Light-small is the development direction of the optical sensor system in deep space
exploration [1–3]. This requires the system to execute multiple functions on the same
hardware platform [2]. In our previous work, we proposed a miniaturized independent
optical sensor system that can provide altitude and navigation information for spacecraft
based on optical imaging measurement [3]. Those remotely sensed astronomical images
are crucially important for future studies of celestial bodies [4]. Therefore, the system has
the functions of image compression and transmission.

Remotely sensed astronomical images impose an urgent demand for compression
considering the rapid increase of data, the complexity of the deep space environment,
and the performance limitations of airborne equipment [5–9]. Remotely sensed images of
extraterrestrial celestial bodies, especially planets, have some unusual features. A typical
remotely sensed astronomical image is composed of background and a celestial body [10].
We can significantly reduce the amount of data in the background without losing important
information such as geometric structure, edges, and surface textures, which are of great
significance for navigation accuracy analysis and scientific exploration [11–13]. Therefore,
we hope that an optical sensor system will compress remotely sensed astronomical images
with a low compression ratio (CR) and low computational complexity while preserving as
much information as possible.
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Remotely sensed astronomical image compression has been widely studied and
applied. Lossless compression can accurately preserve image information and ensure
maximum fidelity, but it will hardly meet CR requirements for future deep space explo-
ration [14–17]. Lossy compression is mainly based on discrete wavelet transform (DWT)
and its improved method, which can extract important information through multi-level
promotion and meet different compression requirements [18–21].

Donoho proposed the compressed sensing (CS) theory in 2006, suggesting that a sparse
enough signal can be recovered from a small number of measurements, far fewer than
required by Nyquist–Shannon sampling theory, substantially reducing sampling frequency
and cost of data transmission [22,23]. CS is a linear observation with simple coding and
low complexity, and much computation is transferred to the decoding side [24,25]. This is
especially suitable to compress remotely sensed astronomical images with a large amount
of data and high redundancy. At present, the CS method has a certain application in deep
space exploration [18,26–30]. CS has two applications for data compression in deep space
exploration. First is analog domain compression, such as the single-pixel aerial remote
sensing applied by Ma [28]. Second is digital domain compression, such as CS for 2D
compress remotely astronomical data, as proposed by Bobin et al. [29] and Ma et al. [30].
Starck et al. [18] introduced CS that is closely related to sparsity in spatial data compression.
CS has the potential for high-efficiency compression of compress remotely astronomical
images and leads to performance far exceeding that of JPEG2K [29].

We fully utilize the energy distribution of the remotely sensed astronomical images in
the frequency domain and propose a wavelet-based CS algorithm that provides an opti-
mal sampling scheme for an optical sensor system in deep space. Our contributions are
summarized as follows. According to the parent–child relationship between the sub-bands
and the scanning modes of the high-frequency sub-bands, the wavelet coefficients are rear-
ranged to construct a new sparse vector. An optimized measurement matrix with double
allocation measurement rates simultaneously allocates a higher measurement weight to
sparse vectors with higher texture detailed complexity and coefficients with higher energy
in sparse vectors.

The remainder of the paper is organized as follows. Section 2 introduces DWT and CS.
Section 3 describes the proposed algorithm. Section 4 presents our experimental results
and discussion. Section 5 relates our conclusions.

2. Preliminaries
2.1. Discrete Wavelet Transform

The wavelet transform is a powerful time-frequency analysis method that was devel-
oped to overcome the Fourier transform’s lack of local capability in the time domain. It has
the important property of good localization characteristics in time and frequency domains,
and it can provide frequency information of each sub-band of a signal. The discrete wavelet
transform (DWT) discretizes the scale and translation of the basic wavelet [31,32].

Figure 1 shows the realization of DWT and inverse discrete wavelet transform (IDWT).
The image I0

j−1 (or low-frequency sub-band LLj−1 of the j− 1 level) uses low-pass filter lk
and high-pass filter hk to convolve each raw of the image, and performs downsampling
(2 ↓ indicates column sampling, keeping all even columns). The columns of the image are
convolved with lk and hk and downsampled (↓ 2 indicates row sampling, keeping all even
rows). Finally, we obtain four sub-images with a size one-fourth of I0

j−1, including: Low-
frequency sub-band LLj, horizontal high-frequency sub-band HLj, vertical high-frequency
sub-band LHj, and diagonal high-frequency sub-band HHj. The process of reconstruction
is opposite that of decomposition. The sub-image is upsampled in the column direction
(↑ 2 means row interpolation, i.e., 0 is filled between adjacent elements), convolved with
low-pass filter Lk and high-pass filter Hk, and finally upsampled in the row direction
and convolved with Lk and Hk [33]. This step is performed for each layer to obtain the
reconstructed image I0

j−1.
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The DWT of image I(x, y) is [33]

WTϕ(j) =
1√
mn ∑m−1

x=0 ∑n−1
y=0 I(x, y) ϕj(x, y), (1)

where j is an arbitrary scale, m× n is the size of the image, WTϕ(j) is the approximate
coefficient at scale j, and ϕj(x, y) is the scaling function. DWT offers an effective method
for 2D matrix transformation from the space domain to the time domain to separate signals
according to low and high frequency.

The low-frequency sub-band retains the content information of the original image,
and the energy of the image is concentrated in the sub-band. The horizontal and vertical
sub-bands maintain the high-frequency information in the horizontal and vertical direc-
tions, respectively. The diagonal sub-band maintains high-frequency information in the
diagonal direction.

2.2. Compressed Sensing

CS shows [22,23] that if a signal is sparse in a certain transform domain, an observation
matrix is used to project the signal linearly. By solving a convex optimization problem,
the signal can be recovered [34]. CS effectively solves the limitation of the Nyquist theorem
on the sampling rate and the waste of data caused by conventional compression.

This sparse representation of the signal is the basis of CS. Assuming that signal S ∈ RN

is sparse under the sparse basis Ψ = {ψ1, ψ2 · · ·ψN}, the sparse representation is

S = ∑N
i=1 ψiαi, (2)

where N is the length of S. The matrix form is

S = Ψα, (3)

where α is the sparse representation of S.
T is a measurement matrix of size N1 x N (N1 � N). Sampling (measurement) is

a process of linear projection. The compressed signal is

Ms = TS = TΨα = Θα, (4)

where Θ is a sensing matrix. It is a problem of an ill-conditioned underdetermined equation.
If T and Ψ satisfy the restricted isometry property (RIP), i.e., for any constant δk ∈ (0, 1),

(1− δk) ‖ S ‖2
2≤‖ ΘS ‖2

2≤ (1 + δk) ‖ S ‖2
2, (5)

then K coefficients (the sparsity of S is K (K � N1)) can be accurately reconstructed.
The minimum value of δk is the RIP constant. The equivalent of RIP is that T and Ψ
are orthogonal.
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Signal reconstruction is an optimal solution problem of l0, but it is NP-hard [25].
Therefore, it is often replaced by the optimal solution problem of l1:

Rs = arg min‖ S ‖1, s.t. Ms = Θα, (6)

where Rs is the reconstructed signal and ‖ · ‖1 is the l1 norm of S. Most reconstruction
algorithms are iterative greedy, convex optimization, or combination algorithms. Iterative
greedy algorithms obtain the sparse vector support set of the source signal, and use the
least squares estimation algorithm with limited support to reconstruct the signal [35]. Rep-
resentative algorithms include matching pursuit [36] and orthogonal matching pursuit
(OMP) [37]. Convex optimization algorithms convert a non-convex problem to a convex
problem that is solved to approximate the source signal. Representative algorithms include
basis pursuit [38] and gradient projection [39]. Combined algorithms have a high recon-
struction speed, but they obtain a high probability rather than an accurate reconstruction.

3. Proposed Technique

In deep space exploration, our focus in the image compression of the optical sensor
system is the compression (sampling) process. CS uses sparsity to perform linear compres-
sion at encoding, and nonlinear reconstruction at decoding. It effectively saves the cost of
encoding and transfers the calculation cost to decoding. Therefore, it is highly suitable for
remotely sensed astronomical images with a large amount of data and high redundancy in
deep space exploration.

The encoding of CS has two main parts: The sparseness and the measurement matrix.
The sparseness of DWT is better than that of other sparse bases, but conventional sparse
vectors do not define a structure for wavelet coefficients. A method was proposed to
average the wavelet coefficient matrix to construct sparse vectors [40]. Such methods do
not consider the dependency between sub-bands and the direction information of high-
frequency sub-bands, which will lead to poor performance in image compression. However,
the fixed and improved measurement matrix cannot optimally allocate the measurement
rate, and no measurement matrix is available to consider both sparse vectors and their
elements. Therefore, we combine a new structured manner sparse vector and an optimized
measurement matrix to design an optimal sampling scheme. The details of our proposed
algorithm are as follows.

3.1. A New Sparse Vector Based on the Rearrangement of Wavelet Coefficients

The real signal in nature has sparseness in the transform domain. We can perform
compression sampling for the sparse signal. The sparse representation is the essential
premise and theoretical basis of CS. In this section, we construct a new sparse vector by
rearranging the wavelet coefficients according to the energy distribution of the image
after DWT.

For a given m× n remotely sensed astronomical image Ip, the j-level DWT is applied

to obtain the transformed image WI j
p, which has 3j + 1 sub-bands. The size of Ip satisfies

m = 2l1 and n = 2l2 , where l1 and l2 are natural numbers. The dimension of the i-level
sub-band is m

2i × n
2i . WI j

p includes the low-frequency sub-band LLj, which reflects the
approximate information of the image, and high-frequency sub-bands LHi, HLi, and HHi,
i = 1, 2, · · · , j, reflecting the detailed information.

Figure 2a shows the tree structure of the three-level DWT. Low- and high-frequency
sub-bands LL3 and HH1 are at the upper-left and bottom-right corners, respectively.
There is a parent–child relationship between sub-bands. The direction of the arrow is from
parent to child. Except for LL3, HL1, LH1, and HH1, one parent node (mo, no) corresponds
to four child nodes: (2mo, 2no), (2mo, 2no + 1), (2mo + 1, 2no), and (2mo + 1, 2no + 1).
In low-frequency sub-band LL3, each node has only three child nodes: HL3, LH3, and HH3.
When HL3, LH3, and HH3 are regarded as parent sub-bands, the corresponding child
sub-bands are HL2, LH2, and HH2, respectively. Similarly, HL1, LH1, and HH1 are child
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sub-bands of HL2, LH2, and HH2, respectively. High-frequency sub-bands HL1, LH1,
and HH1 have no child sub-band. The idea of this parent–child relationship is that the
parent sub-band node and the corresponding child sub-band nodes reflect the same area
information of the image. The parent sub-band has a higher importance than the child
sub-band. At the same level of sub-bands, the low-frequency has the highest impor-
tance, and the importance of high frequency sub-bands, in descending order, is HLj, LHj,
and HHj [41]. The parent–child relationship is the basis for calculation of the texture
detailed complexity and design of the measurement matrix.
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We design a data structure to represent sparse vector, F, according to the parent–
child relationship. Figure 2b shows the first column, F1, of the sparse vector, F, and its
arrangement order is as follows (j = 3):

F1 =
{

LLj; HLj; LHj; HHj; hz
(

HLj−1
)
; vz
(

LHj−1
)
; dz
(

HHj−1
)
; · · · ; hz(HL1); vz(LH1); dz(HH1)

}
, (7)

where hz(·), vz(·), and dz(·) represent the horizontal, vertical, and diagonal z-scan modes,
respectively. For example, dz(HH1) represents the diagonal z-scan mode to arrange the
coefficients of the block in HH1. When we design a sparse vector, we must specify the block-
scanning mode. This is based on the direction information of the high-frequency sub-bands.
The horizontal z-scan mode is used for HL, and reflects horizontal direction information;
the vertical z-scan mode is used for LH, and reflects vertical direction information; sub-
band HH, which reflects diagonal direction information, adopts the diagonal z-scan mode.
Conventional CS sampling (measurement) is performed on each column (or each column
of the sub-bands) of the coefficient matrix obtained by the DWT of the image [42,43]. High-
frequency sub-bands contain the direction information of the image [44]. The performance
of CS can be further improved if this characteristic can be used. Therefore, we use different
scanning modes for blocks in high-frequency sub-bands. The horizontal, vertical, and
diagonal z-scan modes are shown in Figure 3. The solid line in Figure 3c represents the
actual scan order.
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In the new sparse vector, the number of elements contained in Fi (i = 1, 2, · · · , l) is

NO.(Fi) = 4j, (8)

where l = mn/4j. The new sparse vector is

F = [F1, F2, · · · , Fl ]. (9)

Table 1 shows the number of sparse vectors and their lengths for different wavelet
decomposition levels.

Table 1. Total number of vectors and their lengths for an m× n image.

Level 2 3 4 5 6

Number of vectors mn/16 mn/64 mn/256 mn/1024 mn/4096
Vector lengths 16 64 256 1024 4096

3.2. Measurement Matrix with Double Allocation Strategy

The measurement matrix is used to observe the high-dimensional original signal to
obtain the low-dimensional compressed signal. That is, the original signal is projected onto
the measurement matrix to obtain the compressed signal. In this section, depending on the
parent–child relationship between sub-bands and scanning modes for high-frequency sub-
bands, we design a new sparse vector to achieve an optimal measurement rate allocation
scheme. The new sparse vector has some unique characteristics. Each sparse vector
is composed of a low-frequency sub-band coefficient and multiple high-frequency sub-
band coefficients. Elements in the same sparse vector have different importance degrees.
The elements of each sparse vector are the frequency information of the same area in the
image. The sparse vectors have different importance to image reconstruction; image areas
with rich texture are more important.

Therefore, we propose an optimized measurement matrix with a double allocation of
measurement rates, which has the advantage that the effects of sparse vectors and their
elements on the measurement rate allocation are considered simultaneously. For differ-
ent sparse vectors, we allocate higher measurement rates to important sparse vectors.
In a sparse vector, more weight is given to important elements. The main steps are as
follows.

1. An mi × 4j(mi < 4j) random Gaussian matrix Gi is constructed.
2. In a sparse vector, the importance of the elements decreases from the front to the back.

Increasing the coefficient of the first half of the measurement matrix can preserve
more important information of the image. To do this, and to satisfy the incoherence
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requirement of any two columns of the measurement matrix, we introduce an mi ×mi
optimized matrix,

Wi =



z1 z1 . . . z1 z1
z2 z1 · · · z1 z1
... z2

. . . z1 z1

z2
...

. . . z1 z1
z2 z2 . . . z2 z1


mi×mi

, (10)

where z1 and z2 are different prime numbers. Since z1 and z2 are relatively prime,
any two columns of Wi are incoherent [45,46].

3. The upper left mi × mi part of Gi is dot-multiplied with Wi, and other coefficients
of Gi remain unchanged, to obtain an optimized measurement matrix G′i . Because
z1 > 1 and z2 > 1, the coefficients of the upper-left mi ×mi part of G′i are increased.

4. mi is the size of Wi. It is determined by the measurement rate of each sparse vec-
tor. When the total measurement rate is certain, the measurement rate is allocated
according to the texture detail complexity of the image. We calculate mi as follows.

• The elements in the sparse vector correspond to the frequency information of
the same area in the image. The high-frequency coefficients reflect the detailed
information. The energy of high-frequency coefficients is defined to describe
the texture detailed complexity of the sparse vector. Taking F1 as an example,
the energy of the high-frequency coefficients of F1 is

TF1 =
1

4j − 1 ∑4j

i=2 F1(i)
2, (11)

where F1(i) represents the i-th element in F1.
• If the total measurement rate is Rtotal , then the total measurement number is

Ntotal = mnRtotal , (12)

Ntotal is divided into two parts: Adaptive distribution and fixed distribution. The
measurement number used to adaptively allocate according to the complexity of
the texture is

N1 = k1Ntotal , k1 ∈ (0, 1), (13)

The measurement number of fixed allocation is

N2 = Ntotal − N1 = (1− k1)Ntotal , k1 ∈ (0, 1), (14)

i.e., N2 is evenly allocated to each sparse vector.
• The higher the texture detailed complexity, the higher measurement rates are al-

located to ensure retention of more details. Image areas with low texture detailed
complexity, such as the background and smooth surface areas, are allocated lower
measurement rates. The measurement rate is adaptively allocated according to
the texture detailed complexity. A linear measurement rate allocation scheme
is established based on this principle. The measurement number of the sparse
vector Fi is

NFi = k2N1 +
N2(

mn/4j
) , (15)

where mn/4j is the number of sparse vectors, and

k2 =
TFi

∑mn/4j

i=1 TFi

, (16)
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is a proportionality coefficient. Then the measurement number of Fi is

NFi =
k1mnRtotalTFi

∑mn/4j

i=1 TFi

+
(1− k1)mnRtotal(

mn/4j
) , (17)

and the final measurement number of Fi is round(NFi), i.e.,

mi = round(NFi). (18)

5. The sparse vectors are compressed by the optimized measurement matrix, and the
compressed value of Fi is

F′i = G′i Fi (i = 1, 2, · · · , l). (19)

3.3. Image Reconstruction

The reconstruction is an optimal solution problem for solving l1,

RFi = argmin ‖ Fi ‖1, s.t. F′i = G′i Fi. (20)

where RFi is the recovered sparse matrix, s.t. is the abbreviation of “subject to”. We use
the OMP algorithm to reconstruct sparse vectors [25]. OMP is a classical greedy iterative
algorithm that follows the atomic selection strategy of the matching tracking algorithm.
Each iteration selects an atom, and the selected atomic set should be normalized in each
iteration to ensure the optimization of each iteration result, thus reducing the number of
iterations and accelerating convergence. OMP performs vector orthogonalization during
each iteration. OMP has higher space and time complexity than the matching pursuits
method. In deep space exploration, our optical sensing system compresses remotely sensed
astronomical images and transmits the compressed data, and associated calculation costs, to
the ground. The recovered vectors are rearranged into a discrete wavelet coefficient matrix,
and the reconstructed image is obtained through an inverse discrete wavelet transform.

4. Experimental Results and Analysis
4.1. Evaluation Standard

The peak signal to noise ratio (PSNR) and structural similarity (SSIM) [47] are em-
ployed as evaluation indexes of the reconstructed image quality. The PSNR is widely
used to measure the distortion effect after compression. As a quantitative measure to the
subjective quality, the SSIM demonstrates the quality of detailed information such as the
textures and edges of the reconstructed image [48].

The PSNR of an m× n image is

PSNR = 10 log
2552

MSE
, (21)

where
MSE =

1
mn ∑m

i=1 ∑n
j=1[I(i, j)− RI(i, j)]2, (22)

is the mean square error, and I and RI, respectively, represent the original and reconstructed
image. For a color image,

MSE =
1

mn

{
∑3

L=1 ∑m
i=1 ∑n

j=1[IL(i, j)− RIL(i, j)]2
}

/3. (23)

where L = 1, 2, 3 stands for the three channels in the image. In this paper, we converted
RGB images to YUV channels for processing.
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The SSIM evaluates the luminance, contrast, and structure of the image. It can be
represented as:

SSIM =
(2µIµRI + a1)(2σIRI + a2)(

µ2
I + µ2

RI + a1
)(

σ2
I + σ2

RI + a2
) , (24)

where µI , µRI , σ2
I , σ2

RI , and σIRI are the local mean, variance, and cross-covariance for I
and RI. {

a1 = (δ1Y)2

a2 = (δ2Y)2 . (25)

where Y is the maximum value of pixel gray, δ1 = 0.01, δ2 = 0.03. For a color image,
the SSIM value is the average of the three channels.

4.2. Experimental Data and Evaluation

Experiments were performed on a simulated celestial body image, the gibbous moon,
and images of planets, and the experimental results were evaluated subjectively and
objectively by comparing three algorithms. Image compression in deep space detection
is mainly based on JPEG2K, an algorithm with wavelet transform as the core technology.
Starck et al. [29] analyzed the application and advantages of traditional CS algorithms on
astronomical images. Traditional CS algorithms compress each column of the sparse matrix
after DWT and use a random Gaussian measurement matrix with a fixed measurement
rate. A DWT-CS algorithm proposes [40] to construct a sparse vector, giving more weight
to higher energy coefficients. Three-level DWT is performed on an image using a coif5
wavelet. The prime numbers z1 and z2 of the measurement matrix are 2 and 3, respectively.
The images of moon and planets are taken from Celestial, which is an open-source software
for astronomical works supported by NASA Technology [49]. The PSNR and SSIM are the
average of 1000 experiments.

4.2.1. Simulated Images of Celestial Bodies

A simulated celestial body image can be obtained by calculating the number of
photoelectrons on each illuminated pixel [10]. The number of photoelectrons is

NPc = (Qe)(F0)TpSpixel(∆t), (26)

where Qe is the quantum efficiency of the image sensor, F0 is the fill factor, Spixel is a single
pixel area, ∆t is the exposure time, and the total photon flux hitting the pixel is

Tp = Rlτ
π

4
(

Ad
f0

)
2
cos4θ0, (27)

where Rl is the radiance of the reflected light, τ is the transmittance of the optics, Ad is the
aperture diameter, f0 is the focal length, and θ0 is the angle between the line-of-sight vector
and the observer surface normal [10].

The celestial body imaging model is the convolution of the cumulative energy distri-
bution of the optical sensor system with the PSF [3],

Ec(x, y) = NPc ∗ PSF(x, y), (28)

where PSF(x, y) is the point spread function of the optical system, and ∗ is the convolution
operation.

We simulated a 256 × 256 celestial body image whose radius was 100 pixels. Figure 4
displays its normalized intensity distribution model. Tables 2 and 3, respectively, show the
values of PSNR and SSIM when CR is 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. In this paper, the CR is
the ratio of the compressed image to the original image.
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Table 2. PSNR (peak signal to noise ratio) (in dB) comparison based on different algorithms for
a range of compression ratio (CR) values applied to a simulation image.

CR

Method 0.1 0.2 0.3 0.4 0.5 0.6

JPEG2K 25.3267 27.2289 31.5126 36.0962 43.1136 52.8420
Compressed
Sensing (CS) 26.5761 28.5148 31.0717 35.7043 42.4761 46.2453

DWT-CS 28.3680 30.2784 33.9643 37.6612 44.2360 51.5039
Proposed 30.2346 32.1275 35.3267 41.9209 48.0359 55.9472

Table 3. SSIM (structural similarity) comparison based on different algorithms for a range of CR
values applied to a simulation image.

CR

Method 0.1 0.2 0.3 0.4 0.5 0.6

JPEG2K 0.7810 0.7998 0.8355 0.8759 0.9196 0.9810
CS 0.7902 0.8098 0.8309 0.8646 0.9150 0.9617

DWT-CS 0.8004 0.8352 0.8583 0.8802 0.9284 0.9786
Proposed 0.8135 0.8490 0.8618 0.9028 0.9680 0.9987

When CR is low, the CS, DWT-CS, and the proposed algorithm perform better than
JPEG2K because CS takes advantage of sparsity and can restore the original data through
a lower sampling rate. As CR increases, the reconstruction quality of JPEG2K improves
significantly. JPEG2K achieves low CR and high fidelity with difficulty, resulting in a long
transmission time or a poor image quality [50]. The proposed algorithm performs best
when CR is 0.1–0.6. It constructs a new sparse vector based on the energy distribution of the
image in the frequency domain and the information carried by the sub-bands, and double
allocation of the measurement rate can realize an optimal sampling scheme. When the total
measurement rate is determined, more measurement weight is given to the sparse vector
with richer surface texture and elements with higher energy, ensuring better reconstruction
quality at a lower CR.

4.2.2. Moon Image

As the starting point of human deep space exploration, the moon has great significance.
Figure 5 shows the moon image and a partial enlargement. The moon has abundant
features, such as texture, edges, and lunar mare.
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Table 4 compares the PSNR values of the four algorithms. The CR ranges from 0.1
to 0.6, and the interval is 0.1. The PSNR values of the four algorithms increase with
CR. Compared to JPEG2K, the PSNRs of the proposed algorithm improve by 7.2812 and
1.9110 dB when CR is 0.1 and 0.6, respectively. The PSNR of the proposed algorithm
improves by 2–6 dB compared to CS and DWT-CS.

Table 4. PSNR (in dB) comparison based on different algorithms for a range of CR values applied to
moon image.

CR

Method 0.1 0.2 0.3 0.4 0.5 0.6

JPEG2K 21.6909 24.4795 26.9634 29.5922 33.6692 35.1282
CS 24.2437 26. 2524 28.0572 30.1587 32.9893 34.8554

DWT-CS 25.8281 27.8570 29.2517 32.4487 34.3943 35.3095
Proposed 28.9721 31.5847 33.9489 34.7856 35.9889 37.0392

Table 5 shows the SSIM values of the four algorithms. When CR is 0.1, compared
with JPEG2K, CS, and DWT-CS, the SSIM values of the proposed algorithm are improved
by 0.1351, 0.0877, and 0.0583, respectively. When CR is 0.1–0.6, the SSIM of the proposed
algorithm show the best performance, which indicates that our algorithm can retain more
texture information at the same CR compared with other algorithms.

Table 5. SSIM comparison based on different algorithms for a range of CR values applied to moon image.

CR

Method 0.1 0.2 0.3 0.4 0.5 0.6

JPEG2K 0.6476 0.6994 0.7455 0.7942 0.8698 0.8969
CS 0.6950 0.7323 0.7657 0.8047 0.8572 0.8918

DWT-CS 0.7244 0.7620 0.7879 0.8472 0.8833 0.9002
Proposed 0.7827 0.8312 0.8750 0.8905 0.9128 0.9323

Figure 6 shows part of the reconstructed image when the CR is 0.1 and 0.6. When the
CR is low, the reconstructed image of JPEG2K has obvious distortion. With the increase
of CR, the quality of the reconstructed images by the four algorithms improves signifi-
cantly. Comparing the edge and surface textures of the reconstructed image, the proposed
algorithm performs better than the others. The scanning mode based on direction in-
formation and the measurement rate allocation strategy shows a significantly improved
reconstruction effect.
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4.2.3. Planet Image

Planets, especially Mars, are new directions for deep space exploration. Figure 7a–c
show original and partial enlarged views of Jupiter, Mars, and Mercury, respectively.
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Figure 7. Planetary images and partial enlargements: (a) Jupiter; (b) Mars; and (c) Mercury.

We analyze the average PSNR and SSIM of the three planets. Figure 8 shows the PSNR
values of the three planets when CR is 0.1–0.6 (with an interval of 0.1), and all increase
with CR. The proposed algorithm has evident advantages when CR is 0.1, with PSNR
values increasing by 6.3291, 4.2989, and 2.9640 dB, respectively, compared to JPEG2K, CS,
and DWT-CS. The values of the algorithms are relatively close when CR is 0.6, increasing
by 2.8765, 2.7942, and 1.6371 dB for the proposed algorithm over JPEG2K, CS, and DWT-CS,
respectively. Table 6 shows the SSIM values of the three planets. When CR is 0.1–0.6,
compared with the other three algorithms, the SSIM of the proposed algorithm have better
performance. When CR is 0.1, compared with JPEG2K, CS, and DWT-CS, the SSIM values
of the proposed algorithm are improved by 0.1010, 0.0839, and 0.0521, respectively. When
CR is low, the reasonable use of the measurement rate is particularly important. Our double
allocation scheme can optimally allocate the limited measurement rate to obtain a better
reconstructed image.

Figure 9 shows a partially enlarged view of the reconstructed images when CR is
0.1. We analyze the edges of Jupiter and Mars. The image edges reconstructed by the
four algorithms are all distorted. In particular, for JPEG2K, the edge distortion is more
serious, and the blocking effect is evident. Our algorithm also has distortions that can be
distinguished, but it performs better than the other algorithms. Impact craters are used to
analyze the reconstruction effect of Mercury. Compared to the original image, the other
algorithms have obvious distortions, and the reconstruction effect of our algorithm is
closest to the original image. Our algorithm preserves the shape of the impact crater and
obtains better reconstruction quality.
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5. Conclusions

We presented a wavelet-based sensing algorithm to compress remotely sensed astro-
nomical images, fully considering the characteristics of an image in the frequency domain
and using a sparse matrix construction method based on the parent–child relationship
between sub-bands and different scanning modes of high-frequency sub-bands. The op-
timized measurement matrix with a double allocation of measurement rates provides
an optimal measurement rate allocation strategy. The optimized measurement matrix
retains the most important information of the frequency domain at a low measurement
rate. An astronomical image was reconstructed by OMP and IDWT. The proposed algo-
rithm was verified on remotely sensed astronomical images. Experiments demonstrated
its advantages in PSNR and SSIM compared to JPEG2K, CS, and DWT-CS. We have pro-
vided a high-performance remotely sensed astronomical image compression algorithm for
a miniaturized independent optical sensor system in deep space exploration. The algorithm
has a certain reference significance for other images with a rich texture.
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