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Abstract: Red tide causes significant damage to marine resources such as aquaculture and fisheries
in coastal regions. Such red tide events occur globally, across latitudes and ocean ecoregions. Satellite
observations can be an effective tool for tracking and investigating red tides and have great potential
for informing strategies to minimize their impacts on coastal fisheries. However, previous satellite-
based red tide detection algorithms have been mostly conducted over short time scales and within
relatively small areas, and have shown significant differences from actual field data, highlighting
a need for new, more accurate algorithms to be developed. In this study, we present the newly
developed normalized red tide index (NRTI). The NRTI uses Geostationary Ocean Color Imager
(GOCI) data to detect red tides by observing in situ spectral characteristics of red tides and sea water
using spectroradiometer in the coastal region of Korean Peninsula during severe red tide events.
The bimodality of peaks in spectral reflectance with respect to wavelengths has become the basis for
developing NRTI, by multiplying the heights of both spectral peaks. Based on the high correlation
between the NRTI and the red tide density, we propose an estimation formulation to calculate the red
tide density using GOCI data. The formulation and methodology of NRTI and density estimation in
this study is anticipated to be applicable to other ocean color satellite data and other regions around
the world, thereby increasing capacity to quantify and track red tides at large spatial scales and in
real time.

Keywords: red tide; Geostationary Ocean Color Imager (GOCI); ocean color; red tide index; red
tide density

1. Introduction

Red tides can have severe negative ecological, economic, and human health impacts [1–5],
and their frequency is increasing globally [6–10]. Red tides are the most common type of
harmful algal bloom (HAB), caused by proliferation of phytoplankton (mostly dinoflagel-
lates and some diatoms) showing red or brown color [11–14]. Red tides produce toxic or
harmful effects on marine animals and may lead to human illness or even death in extreme
cases (e.g., Alexandrium tamarense) [15,16]. Although some red tide species are non-toxic
(e.g., Prorocentrum micans) [16], massive volumes of red tide block the sunlight through the
water column and cause hypoxia during the decomposition of dead cells [17,18]. These
impacts have caused serious damage to marine ecosystems, fisheries, and mariculture.
Therefore, effective monitoring methods need to be developed for red tide detection in the
coastal regions as well as in the offshore regions.

Due to the extreme impacts of red tides on local fisheries, many previous studies
have been aimed at monitoring the spatial distribution of red tides and forecasting or
creating an early warning system for red tide outbreaks [19,20]. Various studies have
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investigated potential linkages between red tides and multiple variables. For example,
eutrophication of sea water with many nutrients can be one of the causes of a red tide
outbreak [21]. The nutrients are supplied to sea water in the offshore regions through
riverine freshwater discharge from land and the upwelling process of nutrient-rich deep
water [22]. Strengthened stratification of the sea water column inhibits vertical mixing by
entraining nutrients in the euphotic zone, which affects the onset, intensity, and duration of
red tide events [8,23]. In addition, changes in physical variables such as sea surface winds,
tidal currents and mixing, and sea water temperatures are related to the bloom of red tide
as environmental factors [8]. These relationships are still poorly understood and should be
further studied.

It is essential to expand our ability to collect data on the onset, duration, spatial extent
and intensity of red tides. A broadly applicable red tide detection strategy has not yet been
developed, due to the extremely high spatiotemporal variability in environmental factors,
in the distribution and intensity of events, and their large spatial extent [8,24]. Another
difficulty in red tide monitoring is related to the current inefficient in situ sampling of red
tides, which requires intensive time and effort, often leading to these studies being restricted
to relatively small areas or short time periods [20,25]. Accordingly, it is necessary to develop
more efficient and cost-effective methods that can be combined with field observations.

Satellite monitoring can serve as an alternative or complementary tool to monitor
red tide across large geographic scales [26]. With this technique, broader areas can be
observed simultaneously and at relatively high frequencies ranging from an hour to a
few days. Several studies have attempted to derive adaptive algorithms for red tide
detection using near-polar orbiting satellites [5,27]. However, satellite remote sensing of
red tides has been previously limited to using alternative parameters such as chlorophyll-a
concentration, fluorescence line height (FLH), and sea surface temperature (SST) as proxies
for characterizing the spatial distribution of red tides or a specific event [28–31]. Therefore,
the development of more targeted and sensitive red tide detection algorithms, broadly
applicable to different satellite images, is needed.

Unprecedented red tide events occurred in the coastal areas of the Korean Peninsula
(Figure 1) in summer 2013. Due to these red tides, high-density aquaculture was extensively
damaged in these coastal regions (Figure 2a). Compared to previous red tide events, the
events of 2013 are considered to be among the most severe, resulting in extensive damage
(about 28 million fish died) and an extremely high impact on local economy related to
fisheries [32]. A histogram of the intensity of red tide events shows the extremely high
and unprecedented red tide density in 2013 (Figure 2b). The red tide phenomena of 2013
initiated about a month earlier than the previous typical events and lasted for 52 days along
the southern and eastern coasts of Korea with 34,800 cells mL−1 maximum cell density
(Cochlodinium polykrikoides) (NIFS, https://www.nifs.go.kr/redtideInfo).

Most of the satellite remote sensing methods of red tide species have used near-polar
orbiting satellites such as SeaWiFS, MODIS, and Landsat [5,27]. In the seas around the
Korean Peninsula, the geostationary satellite Geostationary Ocean Color Imager (GOCI)
has beneficially provided hourly observations and high spatial resolution of about 500
m over 10 years since 2010 [33,34]. A common challenge is posed by variation in local
conditions. The seas surrounding the Korean Peninsula (Figure 1b) comprise three different
coastal regions: clear waters along the eastern coast with relatively deep water depths,
high turbidity and strong tidal currents along the western coast, and the southern coast
with many islands and complicated coastlines as well as cold coastal waters and fronts
confronted with northeastward-flowing Tsushima Warm Current [35,36]. Due to such
diverse environments, it has been difficult to detect red tides with high accuracy and a
standardized reproducible detection method for red tides is urgently needed.

This study aims to improve capacity in monitoring red tide events using GOCI in
seas around the Korean Peninsula, and, in future applications, other regions worldwide.
Specifically, our goals are to (1) evaluate the previous red tide detection methods applied
to GOCI in Korean waters; (2) develop a new red tide index for GOCI data based on
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in situ spectral characteristics of the red tide and sea water; (3) compare the performance of
existing and new methods; (4) validate the new red tide index with in situ measurements
of cell densities, and (5) suggest a formulation to derive red tide cell density through the
relation between density and the red tide index.
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Figure 1. (a) Geostationary Ocean Color Imager (GOCI) red–green–blue (RGB) image of the research area on 13 August 
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2. Data
2.1. Satellite Data

GOCI, onboard the Communication, Ocean and Meteorological Satellite (COMS), has
observed the seas around the Korean Peninsula (24.75◦N–47.25◦N, 113.40◦E–146.60◦E)
including the seas adjacent to China, Japan, Taiwan, and Russia with 500 m × 500 m spatial
resolution and a high temporal sampling capability of 8 times per day from 9:00 a.m. to
4:00 p.m. (KST, Korean Standard Time) since June 2010 (Figure 1a). It has six visible (412,
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443, 490, 555, 660, and 680 nm) and two near-infrared (NIR) channels (745 and 865 nm) with
a bandwidth of 20 nm. For this study, 1440 images of level 2 atmospherically corrected [37]
remote sensing reflectance (Rrs) (Version 2.0) from the Korea Ocean Satellite Center (KOSC)
were utilized from 2012 to 2015. Unprecedented severe red tide events appeared in the
southern and eastern coasts along the Korean Peninsula and offshore regions in the East
Sea in 2013. Among hourly GOCI images on 13 August 2013, we selected an image with
less cloudy conditions at a time of 04 UTC (local time, 1PM).

2.2. Spectroradiometer Measurements

In order to collect and understand spectral characteristics of red tides as a function of
wavelength, we conducted cruise campaigns to collect in situ spectral measurements-water
leaving radiance (LwT(λ)), sky radiance (Lsky(λ)), and irradiance (Ed(λ))-to calculate Rrs(λ)
and match its values with satellite observed reflectances (Lsat(λ)) [38–40], along the southern
coast of the Korean Peninsula during the red tide period from 2013 to 2015 on 8 August
2013 and 13 August 2015 (Figure 3). To develop the algorithm for red tide detection, it
is indispensable to collect a wide spectrum of red tide characteristics. At the same time,
it is also important to obtain spectral measurements from reference conditions, such as
normal sea waters with chlorophyll-a concentration, suspended particulate matter (SPM),
CDOM within normal ranges. The algorithm for red tide detection can be constructed by
identifying peculiar characteristics, distinct from the usual sea water spectrum. Therefore,
we collected the spectral reflectance of both turbid and clear waters when red tide did not
appear during a period between 2013 to 2015.
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Figure 3. Schematic diagram of on-board measurement procedures for water leaving radiance (LwT),
sky radiance (Lsky), irradiance (Ed), and satellite-observed radiance (Lsat).

Spectral characteristics of seawater can strongly reflect its physical and biological
state [41]. Figure 4 shows the bin-averaged distribution of Rrs against wavelengths, esti-
mated from in situ spectral measurements for the red tides in 2013 and 2015, turbid waters,
and clear sea waters. The bars represent the mean errors of Rrs values in each bin of
wavelength. For example, clear water (blue lines in Figure 4) shows a decreasing Rrs at
relatively shorter wavelengths of less than 600 nm and a relatively flat shape at higher
wavelengths. Seawater with red tide clearly shows a different spectral shape, which reveals
bimodal peaks at 560 and 680 nm (red and magenta lines in Figure 4). By contrast, spectral
values corresponding to turbid water (green lines in Figure 4) show high values of about
0.008 sr−1 near 500–550 nm. All of these measurements were combined to derive a robust
algorithm of red tide detection for GOCI data.
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respectively. The upper and lower limits of the bars stand for the range of mean errors of Rrs with 1
standard errors at each wavelength.

2.3. In Situ Water Sampling and Analysis of Red Tide Species

To identify the red tide species and estimate the red tide density in the study area,
we collected water samples in the southern coastal region of the Korean Peninsula on
8 August 2013 and 11 August 2014 during red tide events. We also sampled the sea water
on 27 October 2013 during normal conditions after the disappearance of the red tides. To
filter out the impact of chlorophyll-a concentration and SPM, we also estimated the two
concentrations to be applied to derive the red tide density during the cruise periods [42,43].
Sample analysis showed that the main species of the red tides, comprising over 5 percent,
are Skeletonema costatum, Cochlodinium polykrikoides, Pseudonitzschia species, and Thalassiosira
species in the coastal region [5].

2.4. In Situ Red Tide Observation

To quantify the spatial distribution and density of the red tide species, we used reports
from the National Institute of Fisheries Science (NIFS) about red tide events in Korea. The
reports have been produced on a daily basis since 2006 (http://www.nifs.go.kr/redtideInfo)
and contain information about the locations of red tide appearance acquired through ship
cruises, aircraft, and observations on land as well as a range of red tide density by analyzing
the sample sea water with vast red tide abundance [44]. Figure 5 shows an example of
the digitalized map of the daily red tide report from NIFS. Red circular or elliptic patterns
indicate the locations where red tide was observed during the ship cruise surveys.
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3. Methods

To compare the previously developed methods and the method from this study,
we selected five different red-tide detection algorithms such as Band Ratio Index (BRI),
MODIS Red tide Index (MRI), Red tide Index (RI), and alternative index using Fluorescence
Line Height (FLH) [30,31,45–49]. The performance of these algorithms is investigated by
applying them to GOCI data, and then comparing with the newly developed algorithm
from this study, called the Normalized Red Tide Index (NRTI).

3.1. Previous Methods of Red Tide Detection

Among previous red tide indices, we chose 4 representative indices to test if the
algorithms are applicable to GOCI data. Since most of the following methods have been
developed for different near-polar orbiting satellites such as SeaWiFS and MODIS, we
selected GOCI band data with wavelengths closest to the band of each satellite for the
calculation of the following red tide index.

3.1.1. Band Ratio Index (BRI)

The Band Ratio Index (BRI) uses three visible channels of SeaWiFS designed for red
tide in the Northwestern Pacific Ocean including seas around the Korean Peninsula [46].
The BRI is a ratio composed of the three bands as follows:

BRI =
Lw510
Lw555 − α·Lw443
Lw510
Lw555 + α·Lw443

(1)

where Lw(λ) is water leaving radiance and α is coefficient. The BRI value is close to 1, which
means a stronger red tide occurred. In the beginning stages of red tide monitoring using
GOCI data, the KOSC tried to distribute the red tide data by modifying the coefficient and
channels for GOCI as a level-3 parameter in the GOCI data processing system. Due to
lack of Lw510 in GOCI, Lw510 was replaced with Lw490 and the coefficient α is assigned to
0.375 [50].

3.1.2. Fluorescence Line Height (FLH)

Fluorescence Line Height (FLH, mW cm−2 µm−1 sr−1) is the height of the spectral
peak of normalized water leaving radiance (nLw(λ)) over near infrared, which can be
expressed by three channels of 667, 678, and 748 nm [45,47]:

FLH = nLw678 − nLw667 − (nLw748 − nLw667)
(678 − 667)
(748 − 667)

(2)

As one of the ocean color products from NASA, the FLH has been used for estimating
HAB distribution in several different seas and species. The FLH method was utilized
for surveying Karenia brevis in the Gulf of Mexico and multiple species in Monterey Bay
using MODIS [31,45]. However, GOCI has different near infrared channels from MODIS.
Therefore, we replaced the nLw667, nLw678, nLw748 values with nLw660, nLw680, nLw745,
respectively, for comparisons with the algorithm from the present study.

3.1.3. MODIS Red Tide Index (MRI)

Using two visible channels of MODIS, the MODIS Red tide Index (MRI) was suggested
as a procedure to discern red tide areas occurring along the coast of Korea [48]. The MRI is
defined as a ratio of the difference between nLw488 and nLw551 to their sum:

MRI =
nLw551 − nLw488
nLw551 + nLw488

(3)

A positive MRI index indicates that red tides have occurred. To apply the MRI to GOCI
data, we employed nLw490 and nLw555 instead of the nLw488 and nLw551 of MODIS.
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Then, two additional steps were implemented by specifying the thresholds of SST and
turbid areas. As the first limit of SST variations, the pixels of sea water with SSTs outside
the range of 22–26 ◦C were discarded. Additionally, turbid regions were excluded from the
red tide detection by employing the threshold of nLw667 (>0.15). Using the formulation
of (3), the MRI was estimated to compare the spatial distribution of the detected red tide
using GOCI data with that of other methods.

3.1.4. Red Tide Index (RI)

Using three visible channels (Rrs443, Rrs490, Rrs555) of GOCI, Red tide index (RI)
was suggested in the East China Sea where the red tide species of Prorocentrum donghaiense
are abundant [30]. The RI has the following formulation:

RI =
Rrs555 − Rrs443
Rrs490 − Rrs443

(4)

A negative RI value indicates that the status of sea water is normal and without red
tide. When RI is greater than 2.2 (4.0) at a certain region, sea water of the region was
considered to contain red tide. RI amounting to over 4.0 implies that red tide with an
extremely high density exists. The result of the derived RI was also compared with that of
other methods.

3.2. Development of a New Normalized Red Tide Intensity Index (NRTI)

A novel Red tide intensity index was calculated based on in situ spectral measurements.
In situ spectral measurements indicated peculiar spectral shapes of the red tide with
bimodal peaks at 550 and 680 nm, marked in red and magenta lines in Figure 4, as compared
with those of normal sea water. Such peaks are induced by the strengthened absorption
of solar insolation by red tide and change in fluorescence [1,49,51]. This implies a relation
between red tide density and the heights of the peaks. As red tide density increases,
so does the kurtosis of each peak. Considering the available channels of GOCI, the Rrs
of the red tide can be characterized by selecting the two distinct peaks at 555 nm and
680 nm in spectral reflectance as shown in Figure 6. Based on the spectral characteristics
of red tides, we designed a new Red Tide Intensity (RTI) index for GOCI data. The basic
index was composed of the multiplication of the two peak heights from the linear lines
between the reflectances of two adjacent bands at the center of the main bands (555 and
680 nm) (Figure 6):

P555 = Rrs555 −
(

Rrs660 +
660 − 555
660 − 490

(Rrs490 − Rrs660)
)

(5)

P680 = Rrs680 −
(

Rrs745 +
745 − 680
745 − 660

(Rrs660 − Rrs745)
)

(6)

RTI =
P555

Rrs490
× P680

Rrs660
(7)

where P555 (P680) represents the first (second) peak height. Considering that Rrs(λ)
ranges are different by atmospheric correction scheme and satellite sensors, we contrived
additional step as a kind of normalization:

NRTI =
RTI

Rrs555 − Rrs745
(8)

where NRTI refers to normalized RTI.
Before applying the NRTI to GOCI, speckles in the GOCI images were first removed

by using data on SPM [34] and then calculated chlorophyll-a concentration [52,53] using
a 3-band ocean color algorithm (called OC3 algorithm) (Figure 7). Pixels with negative
values of Rrs(λ) were regarded as failures of atmospheric correction and replaced with
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NaN values. At each step of the peak height calculation, Rrs(λ) of three consecutive
channels were used as shown in (5) and (6). Pixels with negative values of P555 and P680
were regarded as red tide free. To adjust and mitigate the heights of both peaks, the peak
height is designed to be normalized by dividing with Rrs(λ) of the shortest wavelength
among the three channels in each peak. In clear water, the values of P555 and P680 can
be potentially extremely high by being divided by too small of a denominator. To avoid
this situation, we assumed small values of Rrs490 and Rrs660 as 0.01 and 0.001, only if the
values are smaller than 0.01(Th1) and 0.001(Th2), respectively (Figure 7).
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4. Results
4.1. Inter-Comparison of Previous Methods

Prior to the comparison of a presently developed method with other methods, four rep-
resentative methods of red tide detection were investigated to determine if they accurately
captured the spatial distribution and intensity of the red tides.

4.1.1. Band Ratio Index (BRI)

The estimated values of BRI using GOCI data ranged from −1 to 1 in the seas around
the Korean Peninsula (Figure 8a). The spatial distribution of modified BRI values shows the
lowest indices of less than −0.2 in the southwestern coastal region. In contrast, the eastern
coastal, as well as offshore region (36◦N–37N◦), indicate a relatively high BRI of greater
than 0.5, with extremely high BRI (>0.9) as an indicator of the occurrence of distinctive
red tides. The most and least abundant red tide event occurring areas are matched with
in situ observation (Figure 5a); however, there are some areas showing discrepancies. One
of the most distinctive discrepancies is found in most of the southwestern offshore regions
in the East Sea where the BRI values are below zero. This method failed to detect the
red tide events that occurred in the southwestern region off of the Korean Peninsula. As
shown in Figure 5a, however, an extremely high red tide concentration occurred along the
southeastern coast of the Korean Peninsula. Another noticeable feature is the relatively
high BRI values, over 0.3, in the nearshore regions along the eastern coastline. In contrast
to this result, red tides were not reported in the northern part of the study area. In light of
these results, the BRI is not suitable for monitoring the red tide using GOCI data.
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4.1.2. Fluorescence Line Height (FLH)

The spatial distribution of the FLH values ranged from 0 to 2.5× 10−3 mW cm−2 µm−1 sr−1

as shown in Figure 8b. Most of the coastal regions presented relatively high values
(>0.8 × 10−3 mW cm−2 µm−1 sr−1) than those of offshore regions. Differently from
BRI, low FLH offshore makes broad red tide patterns more recognizable. The FLH method
shows the strengthening of the red tide in the coastal region. However, the highest FLH
values are along the southwestern coast of Korea in the Yellow Sea, where the red tide
event was not reported during summer 2013. This region is known for highly turbid water
with abundant SPM due to strong tidal currents and dominant vertical mixing at shallow
water depths. This result shows a reverse tendency, compared to the BRI index in the
southwestern coastal area. Considering the tendency, FLH is needed to be used in the
turbid water before being utilized for red tide monitoring in Korean water.

4.1.3. MODIS Red Tide Index (MRI)

Most MRI values are close to zero in the offshore region except for the western coast
of the Yellow Sea and the southwestern coasts of the Korean Peninsula (Figure 8c). MRIs
of less than 0.2 in the western side coincide with highly turbid waters. This suggests a
need to remove the effect of the SPM in the quality control process. However, without the
highly turbid areas, the MRI shows negative values in the most of red tide event observed
areas. When we applied the turbid water removal threshold of nLw667 (>0.15) directly
to GOCI [48], most regions were eliminated (Figure 8c shows MRI before applying the
threshold). It could be due to the instrumental characteristics of each of the satellite sensors,
so we decided not to apply turbid water removal process to MRI calculation to investigate
its overall spatial pattern. Relatively high values (>0.2) in the East Sea are not detected
along the coast, but rather in the offshore regions (36◦N–37◦N). In contrast to these MRI
values, the southwestern coast does not show any signs of red tide. The MRI shows even
negative values in the southern part of the east coast, inconsistent with the observed red
tide density on that day. Such differences probably originate from different satellite sensors
and spectral bands. Thus, the MRI index is not likely to be applicable to the GOCI data
directly as a representative formulation for red tide monitoring in Korean waters.

4.1.4. Red Tide Index (RI)

The application of RI to Korean waters shows clear differences between nearshore
(<2) and offshore (>2) regions. Figure 8d shows the estimated RI developed for the East
China Sea using GOCI images according to the algorithm of [30]. However, the overall
distribution of the RI exhibits reverse trends opposite to the known features. Results show
that most of the inner nearshore regions have no relation to the red tide event. Only a few
areas of the coastal regions have RI values greater than 3, corresponding to the red tide
appearance, in the coastal regions near 36◦N in the East Sea and in the southern coastal
region around 127◦E. Most of the coastal area ranged from 0 to 2 (blue-green), indicating
that RI is also not suitable for the detection of red tides in this region. Application of these
existing red tide detection algorithms reveals persistent inconsistencies for GOCI images,
indicating that other methods should be developed for the red tide monitoring as well as
for the quantification of red tide intensity using the GOCI data.

4.2. Estimation of Normalized Red Tide Index

Based on in situ measurements by NIFS, the red tide was reported to appear in coastal
regions along the central portion of the southeastern coast and the eastern coast up to 37◦N,
with a maximum cell density ranging from 1020 to 20,000 cells mL−1 on August 13, 2020
(Figure 9a). Since the in situ observations had been conducted only in the coastal regions,
the red tide map should be carefully interpreted in that it did not carry the information on
the existence of the red tides in the offshore region far from the coastline. At 36◦N of the
eastern coast, red tide density amounted to the highest value of about 20,000 cells mL−1 as
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denoted in red in Figure 9a. The second highest value was found near Geoje Island in the
southern coast (34.8◦N, 128.7◦E, orange color in Figure 9a) with 17,280 cells mL−1.
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Figure 9. (a) Digitized red tide report map with highest density (cells mL−1) and (b) NRTI map on 13 August 2013.

The NRTI method was applied to detect red tide using GOCI level-2 Rrs data (GDPS
v2.0) on 13 August 2013. Most of the offshore regions were not associated with the
occurrence of red tide. The black colored region indicates NaN values in Figure 9b. When
focusing on the sites with in situ measurements (Figure 9a), with the visual exaggeration of
the observed red tide at the in situ stations in terms of spatial coverage, the highest value of
red tide density was detected along the eastern coast (36◦N–37◦N). The NRTI map revealed
concordance with the in situ measurements, i.e., by showing the highest value along the
eastern coast (36◦N–37◦N), the lowest value in the southwestern coast, and a very low
index free of red tide in the offshore region (Figure 9b–c). In contrast with limitations of the
previous methods in describing the spatial distributions of the red tide event, the present
index seems to adequately capture its spatial distribution, as well as the intensity. Detailed
relations between the NRTI and red tide density are depicted in the following section.

4.3. Retrieval of Red Tide Density

NRTI values tend to increase with red tide intensity, which suggests a high possibility
to derive red tide cell density or red tide concentration from satellite-observed NRTI.
Therefore, we first investigated the relationship between red tide concentration and the red
tide index. As shown in Figure 10, there is a significant positive relationship between red
tide density (RTD) and the NRTI values (p-value < 10−10 with 95% confidence interval).
The relationship can be expressed by the following linear function:

RTD = 192.2·NRTI + 8841 (9)
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Figure 10. Variations of in situ red tide density as a function of NRTI at the in situ red tide occurring
region (04 UTC, 13 August 2013). Solid line represents the mean and standard error of red tide
density within each NRTI bin. Dashed line indicates linear regression between NRTI and red tide
density Equation (9).

The Root Mean Square (RMS) error and bias between the regressed values and the
in situ red tide density are estimated at 2060 and −0.6913 cells mL−1 with R2 value of
0.7569, respectively. The probability of detection (POD) values of the red tide detection
amounted to 0.7068. The zero NRTI values indicate that the sea water would contain no
red tide species. Accordingly, the linear regression formulation reflects absorption of red
tide species with the deviation from the normal spectrum as compared with the spectra at
adjacent bands.

During the red tide events, chlorophyll-a concentration values from satellite data are
generally greater than those of normal sea water. Figure 11a presents the spatial distribu-
tion of the GOCI chlorophyll-a concentration using a three-band ocean color algorithm
(called OC3 algorithm). Most of the coastal regions along the Korean Peninsula showed
higher chlorophyll-a values over 0.2 log10 mg m−3 than those of offshore regions. Most
of the previous methods (FLH, MRI, RI) produced relatively high red tides, especially in
the southwestern coastal region and at 04 UTC on 13 August 2013 (Figure 8). However,
this is not coincident with in situ field observations. According to the in situ measurements
by NIFS, there were no red tides at the southern part of the western coast and the south-
ern coast (34◦N–35◦N, 125.5◦E–127.0◦E) at that time. Since NIFS started monitoring red
tides, red tides have been rarely reported in this region with strong tidal currents and
turbulence [36].

Since the western coast has high SPM concentration induced by strong tidal mixing
and current over shallow bathymetry, it was very difficult to detect red tide in turbid
waters. On the other hand, the red tide index as well as red tide density (Figure 11b),
retrieved by the new NRTI method, reproduce the red tide concentration satisfactorily
along the southern and eastern coasts up to 37◦N. In particular, extremely high red tide
concentrations at a range from 15,000 to 25,000 cells mL−1 were well captured by NRTI
in the East Sea, showing two branches stretching to the offshore region. The highest
concentration of in situ observed red tide density was about 20,000 cells mL−1 and appeared
at 36◦N along the eastern coast near the coastlines. This was remarkably coincident with
the actual observations. Therefore, it is expected that the present method of this study will
be able to detect red tide with much better performance than other conventional methods.
Furthermore, the study is notable in that it suggests a method to calculate the density of
red tide that has never been tried before.
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Figure 11. (a) Chlorophyll-a concentration (log10 mgm−3, OC3 algorithm), (b) estimated red tide density using NRTI
(04 UTC, 13 August 2013).

4.4. Retrieval Formulation of Red Tide Density

In the previous section, this study illustrated a relationship between NRTI and the
red tide density from 2012 to 2015. Figure 12 shows the red tide density with respect to
the estimated NRTI. Although mean error bars tend to increase as NRTI increases, overall
distribution reveals a linear relationship of the red tide density to the NRTI as follows
(p-value < 10−43 within 95% confidence interval)

RTD = 10.11·NRTI + 5694 (10)
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Figure 12. Variations of in situ red tide density (cells mL−1) as a function of NRTI at the matchup
locations between satellite data and in situ measurements of red tide from 2012 to 2015, where the
dashed line represents the least-squared linear fit between the NRTI and the red tide density, and the
bars of each bin represent the mean errors expressed as the upper and lower limits of the 1 standard
error of the in situ red tide density.
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The RMS error and bias between the regressed values and the in situ red tide density
are estimated to 1118 and 0.1421 cells mL−1 with R2 value of about 0.3882, respectively. The
POD values of the observation amounted to 0.7637. It is noted that the calculated NRTI can
represent the red tide density. This implies that we can estimate the red tide concentration,
similar to the chlorophyll-a concentration formulation if the red tide index is calculated
from the equation we suggested in this study.

5. Discussion

The newly developed red tide index (NRTI) shows high correlation with in situ red
tide observation in spatial distribution as well as its density in various conditions of local
seas around the Korean Peninsula, which enables us to provide detailed spatial structure of
the red tide abundance despite the offshore location, which is logistically time consuming
and costly to monitor. In the case of the lack of in situ measurements, the NRTI can fill the
spatial data gap with high accuracy.

Utilizing previous algorithms developed for other satellites or different waters to
GOCI and Korean waters has several potential shortcomings. Due to different spectral
characteristics of satellite sensors, the coefficients of the present formulation of red tide
density in this study are not expected to be directly used for other sensor data. In case
of chlorophyll-a concentration, many of the algorithms have diverse formulations and
different coefficients such as the ocean color algorithm (OCx). In addition, atmospheric
correction procedure can produce change in reflectance at each band. In case of GOCI,
reflectance values by Versions 1.3 and 2.0 of the atmospheric correction schemes show
a significantly different range of reflectances. V1.3 produced much higher values than
V2.0 according to our investigations, which induced the different heights of the spectral
peaks. To avoid such differences, this study considered the effect of atmospheric correction
difference in the normalization procedure. The present results suggest a possibility that
the formulation of the NRTI method can be utilized as one of the representative red tide
detection methods for other ocean color satellites as well.

Although spectral bimodal peaks are typical characteristics of red tide species, con-
sidering that different species have different cell volume or pigment amount, the red tide
cell density algorithm should be further retrieved by species or cell size. However, in the
seas in this study, C. polykrikoides has been one of the most dominant species of the red tide
blooms over a long period in the seas around Korea [32,44,54]. Dominance by this species
likely underlies the strong positive relationship we found between NRTI and cell density.
Repeated dominance of this species in Korean waters suggests this index can effectively
describe other red tide events in Korean waters.

The southwestern coast of the Korean Peninsula, characterized by high turbidity
and SPM, is one of the most difficult regions for the estimation of red tides as shown in
Figure 1b. In estimation of chlorophyll-a concentration and red tide density, the SPM can
be an obstacle since high SPM increases reflectance of sea water. To remove the effect of
high SPM, we normalized peak heights with the reflectance with the shortest wavelength
during the NRTI calculation procedure. The present result in Figure 11b reveals its high
potential to the application of the strong tidal mixing zone in the Yellow Sea as well as the
southern coastal regions off the Korean Peninsula, and similarly turbid waters in other
regions. Most of the previous methods have failed to discriminate the red tide under
highly turbid conditions. However, this formulation produced very low values of less than
10,000 cells mL−1 in spite of the high SPM in the strong tidal mixing zone. This implies
that the present method can enhance the capability of red tide detection by overcoming the
shortcomings of the existing methods.

One of the important specific questions raised is whether the high red tide density,
with relatively high concentration exceeding 2.2 × 104 cells mL−1 in the middle of western
coast around 36◦N and 126◦E in the Yellow Sea, is a realistic estimate. This region has
relatively small tidal currents compared to the region off the southwestern corner of the
Korean Peninsula, but it still has a medium range of SPM in shallow bathymetry. The
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report of NIFS on the red tide distribution confirmed the occurrence of red tides in the
region as shown in Figure 11b. The comparison of the present NRTI method showed a
good correlation with a positive relationship to in situ red tide density in terms of spatial
distribution in the coastal region of the Yellow Sea. According to the NIFS reports published
in 2013, the red tide species called C. polykrikoides was observed along the western coast.
This report supports the reasonable feasibility of the estimated NRTI and red tide density
in Figure 11b. To validate the red tide density along the western coast quantitatively,
more continuously collected in situ measurements will be needed. Most of the in situ
observations are concentrated along the southern and eastern coasts as a priority due to
previous large-scale damage to fishing farms by red tides. Previous NIFS reports have
already mentioned the sporadic appearance of the red tides at the western coast of Korea
in other years. More sampling works along the western coast are needed to improve our
understanding of the red tide features.

6. Conclusions

During severe red tide events, spectral characteristics of the red tide were investigated
through in situ spectroradiometer observations in the seas around the Korean Peninsula.
Inter-comparisons of previous representative methods for red tide detection reveal lim-
itations for GOCI data in the study area. Methods such as BRI, FLH, MRI, and RI show
discrepancies with in situ red tide observation data in spatial distribution. Moreover, the
previous index has not been used for the estimation of red tide concentration. A new
method of red tide detection is suggested by developing a red tide index that uses geo-
stationary ocean color satellite data and in situ observations. The newly developed NRTI
index is based on bimodal peaks in spectral characteristics at wavelengths from visible to
NIR. The results applied to GOCI data show good performance in red tide detection in
normal oceanic conditions as well as in highly turbid conditions over shallow bathymetry.
Importantly, this study identified a strong relationship with red tide cell density by regress-
ing the GOCI-based red tide index data to in situ red tide density. The estimated density
showed good agreement with the observed density, with a linear relation and relatively
small RMS and bias errors.

The NRTI has the potential to be broadly applicable to detecting red tide events
and estimating red tide density from diverse satellite data. An open question is whether
the present formulation can be applied to other seas and other satellites. However, we
anticipate that the fundamental concepts of the NRTI could be adapted and extensively
utilized for near-real time monitoring of red tide events. In addition to the NRTI, the red
tide density formulation can be applied to other coastal regions in other local seas and the
global ocean.

The seas around the Korean Peninsula have been highly utilized for aquaculture and
fisheries, but they frequently suffer from severe red tide events. Although the NIFS has
monitored red tide outbreaks, most of the in situ monitoring and surveillance has been
highly focused on nearshore regions due to high costs and effort. Once the reflectance
values of each satellite observation are obtained, it is possible that the present method can
be easily and reliably applied for real-time monitoring of red tides and estimation of red
tide cell density. In light of this, we anticipate that this red-tide monitoring method could
enable efficient management of fishery resources and mitigation of economic disasters in
many other coastal regions around the world.
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