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Abstract: The collapse of buildings caused by earthquakes can lead to a large loss of life and
property. Rapid assessment of building damage with remote sensing image data can support
emergency rescues. However, current studies indicate that only a limited sample set can usually
be obtained from remote sensing images immediately following an earthquake. Consequently,
the difficulty in preparing sufficient training samples constrains the generalization of the model in
the identification of earthquake-damaged buildings. To produce a deep learning network model
with strong generalization, this study adjusted four Convolutional Neural Network (CNN) models
for extracting damaged building information and compared their performance. A sample dataset
of damaged buildings was constructed by using multiple disaster images retrieved from the xBD
dataset. Using satellite and aerial remote sensing data obtained after the 2008 Wenchuan earthquake,
we examined the geographic and data transferability of the deep network model pre-trained on the
xBD dataset. The result shows that the network model pre-trained with samples generated from
multiple disaster remote sensing images can extract accurately collapsed building information from
satellite remote sensing data. Among the adjusted CNN models tested in the study, the adjusted
DenseNet121 was the most robust. Transfer learning solved the problem of poor adaptability of
the network model to remote sensing images acquired by different platforms and could identify
disaster-damaged buildings properly. These results provide a solution to the rapid extraction of
earthquake-damaged building information based on a deep learning network model.

Keywords: earthquake; disaster-damaged buildings; transfer learning; CNN; VHR images

1. Introduction

Earthquake disasters can cause damage to buildings and a series of secondary disas-
ters, as well as pose a great threat to the safety of human life [1,2]. According to related
statistics, the main cause of population loss after an earthquake is the collapse of buildings,
which can injury and kill people [3]. Therefore, a rapid assessment of building damage
after an earthquake can help reduce the number of casualties and provide strong support
for post-earthquake emergency rescue operations [4].

Remote sensing data can observe the earth’s surface remotely, and when the disaster
happens, it can provide a pattern of the disaster when people cannot get there immediately
after the disaster [5]. In recent years, with the rapid development of multi-platform
and multi-sensor remote sensing technologies, it has become possible to acquire remote
sensing data from satellite and aerial platforms quickly after an earthquake occurs [6,7].
Recent studies have focused on the interpretation of the distribution of damaged buildings
based on different sensors, very high-resolution (VHR) optional images [5,8,9], synthetic
aperture radar (SAR) [4,10–13], and LiDAR [14–16]. However, considering the cost and
difficulty of interpretation, satellite or aerial high-resolution optical remote sensing images
are more widely used [17,18]. Generally speaking, according to different input data,
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there are two kinds of methods for obtaining the damage situation of buildings after an
earthquake from remotely sensed imagery: methods based on pre-earthquake and post-
earthquake dual-date images [19–21] and methods based on the post-earthquake single-
date image. However, applications are often limited since pre-earthquake data are often
not available [22]. Moreover, pre-earthquake and post-earthquake images can be difficult
to co-register due to the inconsistency of sensors, acquisition time, and other factors [23].
With improvements in sensor resolution, remote sensing images can contain more spectral
and spatial information [24], serving as a powerful data source for the identification
of damaged buildings only based on post-earthquake images. Some researchers have
conducted studies on the extraction of damaged building information from post-earthquake
images [13,22,23,25–29].

As for the classification methods, conventional parametric and non-parametric clas-
sifiers were adopted in the identification of earthquake-damaged buildings from VHR
imagery [13,15,30–35]. However, the traditional classification methods usually need to
establish a classification rule set [31], but human subjectivity has a great influence on
the establishment of rule sets, and the selection of a large number of parameters is also
time-consuming. Shallow machine learning methods such as Random Forest (RF) [36] and
Support Vector Machine (SVM) [37] can achieve relatively high accuracy without setting a
large number of parameters, so lots of attempts have been conducted in earthquake damage
assessment [32–35,38–41]. However, the extraction of manual features from VHR images
is time-consuming and requires a high level of prior knowledge. Moreover, the extracted
features are generally not universal enough and are effective for only a specific area, and
the transferability to other geographic areas is difficult to guarantee [42]. Therefore, it is
still difficult to apply traditional machine learning methods to quickly assess building
damage soon after an earthquake [29].

Deep learning technology has recently been widely used in VHR remote sensing image
applications [43–45]. Lots of explorations in disaster assessments were performed in the
literature [22,23,25–29,42,46–54]. Convolutional Neural Network (CNN) is a deep learning
technique that can automatically learn the most effective features from samples while
training. Therefore, CNN has the potential to overcome the above-mentioned problems
of traditional parametric and non-parametric classification algorithms [55]. A study on
the Haiti earthquake was implemented to compare the performance of CNN features and
traditional textural features as the input of an RF classifier to distinguish collapsed from
intact buildings [47]. The results showed that CNN features outperformed traditional
textural features. In the research on the identification of damaged buildings in the Yushu
Earthquake in China, CNN also showed better classification ability than traditional machine
learning such as SVM, RF, and Decision Tree [25]. To obtain a reliable CNN model, a large
number of training samples are needed. However, in the actual scene, the number of
samples of earthquake-damaged buildings is very limited. This brings the problems of
small sample size and imbalance among categories in the training of the CNN network.
Based on the building samples of the Haiti earthquake imagery, some studies tested the
methods to overcome the sample imbalance problem, namely up-sampling, data down-
sampling, and cost-sensitive methods. The research showed that the three methods did not
significantly improve the overall accuracy of classification, but improved the identification
of collapsed buildings [26]. Transfer learning is another approach for small sample training.
Some studies used samples in the study area to fine-tune a VGGNet that had been pre-
trained on the ImageNet dataset [48]. The result showed that the fine-tuned pre-trained
VGGNet model was superior to the VGGNet model trained from scratch.

Currently, some studies on CNN-based identification of damaged buildings for specific
disaster events suggest certain accuracy [23,27,50]. However, there still exist some research
gaps. First, most of the current studies trained CNN models based on building samples
captured from specific study areas, and the transferability of those CNNs to a new disaster
area is still unclear. When an earthquake happened in a region that the building patterns are
different from where the CNN models were built, we had no idea about the generalization
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of those models, which is the performance of the model applied to new, previously unseen
data [56]. If a model cannot be used directly, the acquisition of training samples of buildings,
sample labeling, and model training are still time-consuming, so it might fail to meet the
demand of grasping the building damage quickly after an earthquake. Therefore, when a
CNN model is developed, the generalization of the model must be considered. In other
words, CNN models for disaster-damaged building identification should learn more
comprehensive features from sufficient building samples over different areas. In addition,
a series of networks have been proposed or tested to deal with the extraction of disaster-
damaged buildings, but the comparison of those networks is difficult to achieve with the
limited number of samples. Among the currently existing networks which one is robust
enough is still an open topic and needs to be further studied.

Moreover, once a disaster occurs, secondary disasters may follow. For example, an
earthquake may cause a tsunami, landslide, forest fire, etc., which will further cause
damage to buildings [57]. While the secondary disasters further complicate the pattern of
damaged buildings, they also give new inspiration for constructing a CNN model with
strong generalization capacity. That is, to use other disaster building samples to expand
the input samples so that the model is more likely to grasp more general characteristics of
damaged buildings. Some researchers have examined the effectiveness of the CNN models
being trained based on the building samples obtained from earthquakes and explosion
disasters [51]. The results show that the prediction results of the models are affected by the
composition of training samples used in the network, and the model trained by integrating
disaster data from different locations performs best. As the acquisition of high-resolution
disaster images is very expensive, the research on integrating multiple disaster types is
very limited. The xBD disaster public dataset provides strong support for the exploration
in this field [46,49,52,53]. In one of the latest applications related to xBD, five disaster types
(i.e., hurricane, tornado, flood, tsunami, and volcanic eruption) were chosen to explore the
applicability of the models trained by different combinations of input building samples [52].
The results indicate that the accuracy of the CNN model is independent of the geographic
areas and satellite parameters (e.g., off-nadir angle). The effective combination of different
disaster data has the potential to obtain a CNN model with strong generalization. However,
the building damaged due to earthquakes was excluded in that work, which needs to be
further examined.

The objective of this paper is to establish a CNN model with high generalization, which
can rapidly capture the damage information of buildings after an earthquake. To address
the problem of the lack of earthquake-affected building samples, remote sensing images of
various disaster events provided by the xBD dataset are used to prepare a sample set of
damaged buildings. Four typical CNN structures that have been already applied in the
previous disaster-damaged building identification are selected and tested for performance.
Based on the satellite data of Wenchuan County and the airborne photos of Beichuan
County, where the 2008 Wenchuan earthquake took place on 12 May 2008, this study will
explore the geographic and data transferability of the CNN models being pre-trained on
the samples obtained from the xBD dataset. Hopefully, a valuable CNN approach can be
constructed and useful for identifying earthquake-damaged building information.

2. Study Area and Data Processing

The training and testing datasets for developing and evaluating the CNN models in
our study are prepared from the xBD public dataset, and from the remote sensing images
of the damaged areas in Wenchuan and Beichuan County in the 2008 Mw7.9 Wenchuan
earthquake in Sichuan province, China.
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2.1. xBD Dataset

The xBD dataset is a large-scale disaster dataset, containing eight types of disasters,
including earthquakes, tsunamis, floods, landslides, wind, volcanic eruption, wildfire, and
dam collapse. It contains pre-disaster and post-disaster RGB satellite images (e.g., World-
view, Quickbird, GeoEye) of 19 disaster events with a resolution equal to or less than
0.8 m [52,57]. The dataset also contains building polygons developed with the pre-disaster
images and damage grade interpreted from post-disaster images. The level of the build-
ing damage was determined based on the Joint Damage Scale, which comprehensively
considers a variety of disaster-damaged building classification standards (such as FEMA’s
Damage, Assessment Operations Manual, the Kelman scale, and the EMS-98). The level of
the building damage after a disaster is classified into four categories, namely no damage,
minor damage, major damage, and destroyed [57].

According to the Joint Damage Scale, the calibration of building damage from floods
and volcanoes involves the interaction between water bodies and magma. This means that
even if a house is structurally sound, the building was assigned to be a disaster-damaged
one because it was surrounded by water or magma, which would disturb the learning
process of the network models. Therefore, volcanoes and floods in the xBD dataset are not
considered in this paper.

As the pre-disaster images are not always available, to improve the applicability of the
method in practical applications, the input data in our study only used the post-disaster
single-date building samples obtained from the post-disaster images.

2.2. The Wenchuan Earthquake Dataset

The Wenchuan County and Beichuan County, the two most severely affected counties
by the 2008 Wenchuan Mw7.9 earthquake were selected to validate the models in our study.
The 2008 Mw7.9 Wenchuan earthquake hit the Longmenshan Mountains at the eastern
margin of the Tibetan Plateau in Sichuan Province, China on 12 May 2008. It is the most
recent and destructive earthquake in the last 100 years, which was reported with more than
87,000 casualties, and tens of thousands of buildings damaged in the earthquake [58].

2.2.1. Wenchuan Dataset

The Ikonos satellite images covering part of the Wenchuan area was acquired on
23 May 2008, 11 days after the Earthquake. The image resolution is 1 m after Gram-Schmidt
pan-sharpening. Only the RGB bands were used in the study (Figure 1A).

To explore the geographic transferability of the CNN models for the identification
of damaged buildings, this study selected six research sub-regions in the Wenchuan area,
covering landslide, building collapse, including rural buildings and industrial workshops,
which can better cover different post-disaster building patterns (Figure 1B). To get a more
reliable ground truth data, the labeling of building damage partly referred to the work in
literature [22].

2.2.2. Beichuan Dataset

The image used in Beichuan County was an aerial photo acquired on 13 May 2008, one
day after the Earthquake, at a spatial resolution of 0.5 m. Only the aerial photos covering
the Zhangcha Town and surrounding area were chosen and processed (Figure 1C).



Remote Sens. 2021, 13, 504 5 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. Location of the study area and the remote sensing images after the 2008 Mw7.9 Wen-
chuan Earthquake: (A) the composite image of the Northeast of Wenchuan County; (B) images for 
T1–T6 sub-study areas in the Wenchuan County; (C) the image of the Beichuan County. 

2.3. Sampling 
Generating the training samples is an important part of deep learning classification 

tasks. The quality of the training samples has a direct impact on the learning effect of a 
network model. Currently, there are several methods to prepare the samples at the build-
ing-level [25,26,29]. Such as (1) the whole image was divided into sub-images by using the 
tile-based image split analysis technique. With the help of the post-earthquake ground 
survey data, tiles containing buildings were selected as samples [29]; (2) the whole image 
was clipped by block vector data, then a fixed-size sliding window was used to scan and 
cut the minimum bounding box of each block to derive sub-images. The samples were 
then screened by a threshold of their overlapping area with the block unit [25], and (3) the 
sample set was developed based on a single building, all the samples had a fixed size, 
pixels outside the building were padding by 0 [26].  

In our study, the training samples were prepared based on the single building 
method. First, the minimum bounding rectangle of the building polygon was obtained, 
and then the rectangle box was expanded to a certain extent through the expansion coef-
ficient. Finally, the post-disaster building sample was clipped. The detailed description is 
shown in Figure 2.  

Figure 1. Location of the study area and the remote sensing images after the 2008 Mw7.9 Wenchuan
Earthquake: (A) the composite image of the Northeast of Wenchuan County; (B) images for T1–T6
sub-study areas in the Wenchuan County; (C) the image of the Beichuan County.

2.3. Sampling

Generating the training samples is an important part of deep learning classification
tasks. The quality of the training samples has a direct impact on the learning effect of
a network model. Currently, there are several methods to prepare the samples at the
building-level [25,26,29]. Such as (1) the whole image was divided into sub-images by
using the tile-based image split analysis technique. With the help of the post-earthquake
ground survey data, tiles containing buildings were selected as samples [29]; (2) the whole
image was clipped by block vector data, then a fixed-size sliding window was used to scan
and cut the minimum bounding box of each block to derive sub-images. The samples were
then screened by a threshold of their overlapping area with the block unit [25], and (3)
the sample set was developed based on a single building, all the samples had a fixed size,
pixels outside the building were padding by 0 [26].

In our study, the training samples were prepared based on the single building method.
First, the minimum bounding rectangle of the building polygon was obtained, and then
the rectangle box was expanded to a certain extent through the expansion coefficient.
Finally, the post-disaster building sample was clipped. The detailed description is shown
in Figure 2.
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Figure 2. Workflow for preparing the building samples from the dataset of this study.

Compared with the method of adding 0 to the pixels around the building, this method
can take environmental information around the building into account. A dynamic ex-
pansion operation according to the size of the building itself can also control the amount
of surrounding environment information in a suitable range. At the same time, when a
building is seriously damaged or collapsed, the shape of the building changes so much that
it extends beyond the polygon. Expanding the boundary can contain the damage pattern
more completely. Through the test, the ultimate expansion coefficient was identified to be
0.4. At this scale, there is not too much background interference around the undamaged
building samples; in the case of completely collapsed buildings, the sample also covers the
whole picture of the damage pattern better.

Table 1 shows the basic information of the samples obtained from the xBD dataset,
the Wenchuan and Beichuan images. The intact or slightly-damaged buildings in the
Wenchuan and Beichuan area were labeled as one level since it is too hard to distinguish
those two types from the post-disaster RS images.

Table 1. Number of samples in various damage levels.

Dataset
Number of Samples

No. 1 Minor. 2 Major. 3 Destroyed Total

xBD 165,844 17,929 14,173 17,634 215,580

Wenchuan

T1 15 15 5 35
T2 9 8 3 20
T3 11 10 10 31
T4 4 1 10 15
T5 5 3 5 13
T6 3 5 8 16

Beyond T1–T6 - 261 534 795
Beichuan 204 36 117 357
1 No Damage; 2 Minor Damage; 3 Major Damage. The samples for No damage and Minor damage
are merged in Wenchuan and Beichuan.

3. Methods

In this section, we firstly present an overview chart of our work (Figure 3). The CNN
base models and training methods used in our experiments were illustrated in Sections 3.1
and 3.2, respectively. Finally, the adjusted CNN models, experiment setting, and accuracy
metrics are described in detail in Sections 3.3 and 3.4.
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3.1. CNN Base Models

A significant advantage of the CNN is that it can automatically extract deep level
characteristics of the images without the manual feature extraction required in traditional
machine learning algorithms. At the same time as model training, the most effective
abstract features can be extracted, and then these features can be used for classification [54].
A basic CNN includes convolution layers, pooling layers, and full connection layers
(FCL). Through the combination of layers, a variety of network models can be constructed.
Four networks, namely VGG16 [59], Inception V3 [60], DenseNet121 [61], and Resnet50 [62]
were chosen as the base networks to explore the feature extraction ability of different CNN
network structures. These four networks are represented in the structure, and all of them
have already been adopted in damaged building identification in some studies [25,48,49,51].
Currently, these four base networks are readily available alongside pre-trained weights
for utilization in the Keras library. Figure 3B shows the base unit of each network in the
baseline rectangle box.
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3.2. Training Method for the Networks

A CNN contains a large number of parameters. Training from scratch to produce a
well-performing CNN requires a lot of training data, usually in the order of millions [63].
For a specific task without a large amount of training sample, the use of a pre-trained
network is a good solution. The pre-trained network is usually based on large datasets.
The spatial hierarchical structure of the features learned by the network can be effectively
used as a general model of the visual world to deal with other computer vision problems.
There are two ways to use the pre-trained network. One is to use the pre-trained CNN
model as a feature extraction tool in which the weight of the convolution basis of the
pre-trained network is frozen so that it can only participate in the forward propagation but
not in the backward propagation. When the new data are run on it, features are directly
extracted and assigned to the new classifier to realize the classification and recognition
of the target task. In this paper, this training strategy is termed “CNN-F”. The other way
is to fine-tune the pre-trained models [42]. Layers near the top are unfrozen and trained
together with the fully connected layers to obtain new model weights for the target task.
This training strategy is termed “CNN-T”.

We compared the performance of the two strategies of applying the pre-trained CNNs.
The initial weights of the four base networks were the network weights pre-trained on the
ImageNet dataset. Previous studies showed that the more layers are fine-tuned, the better
the model is [48]. Thus, all layers were set to be trainable in the fine-tune steps.

3.3. The Adjusted CNN Models and Experimental Settings

When using the pre-trained network, the number of neurons in the fully connected
layer should be adjusted according to the target task. Moreover, the architecture of the pre-
trained network can be adjusted by adding or removing layers to make the network more
suitable for the target task [42]. In this study, for each base network, we firstly replaced the
last layer of the base network with three fully connected layers. The number of neurons in
the last fully connected layer, namely the output layer, is set to 2 or 3 as this study aims at
classifying the disaster-damaged buildings into two or three categories. The function of the
other two fully connected layers prior to the output layer is to avoid the information loss
caused by the sudden decline of dimensions. The dimension of the two added layers were
1024 and 256 respectively. The activation function of these two layers is ReLU, while the
activation function in the output layer is determined according to the number of neurons.
When the target is two classes, the activation function is Sigmoid, while for 3 classes it
is Softmax. The dropout ratio is 0.5. Figure 3B shows the adjusted architecture in detail.
The model was built under the Keras 2.3.1 and TensorFlow 2.3.1 framework on NVIDIA
GTX 1080ti GPU. Table 2 is a detailed summary of the experiment settings.

Table 2. Settings of the CNN Networks in the Experiment.

HPC Resource NVIDIA GTX 1080ti GPU
DL Framework Keras 2.3.1, Tensorflow 2.3.1

Compiler Jupyter Notebook 6.0.3
Program Python 3.7.0

Optimizer Adam
Loss Function Cross-entropy
Learning rate 0.0001

Batch size 32

In the model training, we used data augmentation to overcome the overfitting prob-
lem [64]. The ImageDataGenerator tool under the Keras framework can realize a real-time
amplification of the data. In our study, according to the characteristics of the buildings, flip
and rotation operations were used for the training samples. In addition, each sample is
centralized and normalized. The parameters of the training network were set as follows:
the learning rate was set to 0.0001, the batch size was 32, the loss function was cross-entropy.
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The optimizer was Adam, which combined the advantages of momentum and RMSprop,
and made the model quickly and stably descend. To shorten the training time, we used
the early stopping strategy. When the accuracy of the validation set does not change
significantly, the training process was stopped to save the training time.

3.4. Accuracy Metrics

In the field of deep learning, model evaluation is as important as model training.
In our study, overall accuracy, F1 score [65], and Kappa coefficients [66] were selected to
measure the performance of the training samples. Overall accuracy is the proportion of
correctly classified samples in all predicted samples. Sometimes, the performance of the
model cannot be well evaluated by using accuracy alone. When the number of samples is
not balanced, the F1 score and Kappa coefficients can better reflect the actual advantages
and disadvantages of the model. The F1 score is calculated based on recall and precision.
Precision refers to the proportion of “true” samples judged by all systems to be true. Recall
refers to the proportion of “true” in all really true samples. The Kappa coefficient tests
the consistency between the predicted and the actual results, usually in the range of 0–1.
The consistency of the results is above moderate with a Kappa coefficient greater than 0.4.
The calculation is based on the confusion matrix. In the confusion matrix, True positive (TP)
is the positive sample predicted by the model, True negative (TN) is the negative sample
predicted as negative by the model; false positive (FP) is the negative sample predicted as
positive by the model, and false-negative (FN) is the negative sample predicted as positive
by the model. See Equations (1)–(5) for relevant calculations:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
1

1
P + 1

R
(4)

Kappa =
Accuracy − ∑m fi gi

n2

1 − ∑m fi gi
n2

(5)

In Equation (5), n is the total number of samples, m is the number of classification
categories, fi is the sum of elements in row i of the corresponding confusion matrix, and gi
is the sum of elements in column i.

4. Results

In this section, we first explored the performance of four adjusted pre-trained CNNs
and two training strategies for identifying disaster-damaged buildings based on the sam-
ples obtained from the xBD dataset. Second, the networks with better performance on
the xBD dataset were selected and used to explore the geographical transferability of the
network using the Wenchuan sample set, namely the prediction ability in locations not
seen before. Finally, based on the building samples obtained from the aerial photos in the
Beichuan area, we examined the applicability of the network trained with satellite image
samples to the identification of damaged buildings from the aerial imagery. Table 3 shows
the number of training, validation, and testing samples used in the experiment.
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Table 3. Summary for the corresponding numbers of training, validation, and testing samples used
in the experiment.

Dataset

Number of Samples

Training Validation Testing

No Damage No Damage No Damage

xBD 29,636 28,626 1647 1590 1646 1591

Wenchuan

T1

-

15 20
T2 9 11
T3 11 20
T4 4 11
T5 5 8
T6 3 13

Beyond T1–T6 - - 795

Beichuan

- - - 25 19 26 19
S1 25 19 25 19 26 19

S1,2 51 38 25 19 26 19
S1,2,3 76 57 25 19 26 19

S1,2,3,4 102 76 25 19 26 19
S1,2,3,4,5 127 96 25 19 26 19

S1,2,3,4,5,6 1 153 115 25 19 26 19

Note: 1 S1–S6 in the table is the sample subsets of the Beichuan samples used for transfer learning.
See 4.3 for more details.

4.1. CNN Performance on the xBD Dataset

A large number of no-damaged samples were generated from xBD, 10 times more
than that of the other three types (see Table 1). The imbalance of samples would affect the
training of the models. Considering that a greater number of samples leads to a longer
training time, we used the down-sampling method to test the performance of the four
adjusted CNN models. The specific method was to randomly select 15000 sample images
from the no-damage class, which were then integrated with samples in the other three
categories to form the training sample set. Among them, 90% of the samples were used
for training, 5% for validation, and 5% for testing. The specific number of samples can be
found in Table 3.

The four adjusted pre-trained networks were trained by the two training strategies
(i.e., CNN-F and CNN-T) based on the xBD sample set. Table 4 shows the prediction
results on the xBD test sample set. It can be seen that the pre-trained models trained by
CNN-F had a poor performance for disaster-damaged buildings. Among the four adjusted
pre-trained networks, the feature representation of the adjusted pre-trained VGG16 model
was relatively good for identifying disaster-damaged buildings with a Kappa coefficient
of 0.49, while the remaining three pre-trained networks cannot identify disaster-damaged
buildings well. Therefore, it is necessary to use post-disaster building samples to fine-tune
the weights of the CNN models.

After the fine-tuning process, each network learned the characteristics of disaster-
damaged buildings to varying degrees. The performance of each network was also im-
proved accordingly. In addition to the adjusted pre-trained ResNet50, the accuracy of
the adjusted pre-trained VGG16, Inception V3, and DenseNet121 are all over 80%; the
Kappa coefficient is greater than 0.6 (Table 4). In terms of the testing samples derived from
the xBD dataset, the fine-tuned VGG-16 model was slightly better than DenseNet121 and
Inception V3.
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Table 4. Accuracy assessment of the predicted results of the four adjusted pre-trained CNN models
on the xBD testing dataset using the metrics Accuracy (%), F1, Recall (%), Precision (%), and Kappa.

Network Type Acc. 1

(%)
F1

Recall Precision
Kappa

No. 2 Damage No. 2 Damage

VGG-16
CNN-F 74.7 0.746 73.8 75.6 75.8 73.6 0.49
CNN-T 83.6 0.825 88.3 78.6 81.0 86.7 0.67

Inception V3 CNN-F 62.0 0.622 60.4 63.7 63.2 60.8 0.24
CNN-T 80.3 0.789 85.2 75.1 78.0 83.1 0.60

ResNet50
CNN-F 54.8 0.530 35.2 75.1 59.4 52.8 0.1
CNN-T 63.5 0.523 95.0 37.3 61.0 87.0 0.33

DenseNet121
CNN-F 68.2 0.712 56.8 80.0 74.6 64.2 0.37
CNN-T 82.1 0.805 78.7 75.1 88.9 86.8 0.64

Note: 1 Accuracy; 2 No Damage.

4.2. Geographic Transferability of the CNN Models

In the eight adjusted pre-trained networks trained with the xBD sample set, the ad-
justed pre-trained VGG16 (CNN-T), Inception V3 (CNN-T), and DenseNet121 (CNN-T)
with better performance were selected to explore their applicability in geographic areas
that the models had not seen before. Figure 4 shows the accuracy and F1 score of three
CNNs in six sub-study areas of Wenchuan County. The accuracy of the three CNNs in T1
and T2 was relatively low than that on the xBD testing set. The three models achieved
much better prediction in T4, T5, and T6. On the whole, the classification performance of
the adjusted pre-trained DenseNet121 in the six sub-study areas was relatively stable.
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Figure 5 shows the prediction results in the T1 and T2 regions. It can be seen that
T1 was a rural area, and the relatively small buildings in this area made it difficult to
manually interpret the building damage from post-earthquake satellite images. This
would lead to relatively large human errors, which were a very important reason for
the low classification accuracy in the T1 region. For the T1 area, comparing the three
adjusted CNNs, the performance of VGG16 was poor. After training, Inception V3 and
DenseNet121 had better recognition ability for disaster-damaged buildings and could
identify most of them correctly. In the T2 area, the structure of buildings showed a
different pattern from T1. Compared with other research areas, the buildings in the T2
area were relatively large, where the disaster damage of the building might be effectively
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evaluated from the remote sensing images. Unfortunately, due to the disordered internal
environment and the diversity of the shapes and structures of the buildings, it was also
difficult for the networks to correctly distinguish the earthquake-damaged buildings from
those complicated but intact buildings. Specifically, VGG16 had poor identification ability
which failed in identifying most of the damaged buildings. The recognition abilities of
Inception V3 and DensenNet121 were relatively better, but there were missing points of
no-damaged buildings. Some damaged buildings, such as Figure 6a,b, were not identified.
That might be because the structural damage was not very obvious.
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Figure 6. Examples of building misclassification in the Wenchuan area. (a,b) are damaged buildings
but wrongly classified as no damage in T2; (c) the building with no damage but was wrongly
classified as damaged in T4; (d) the building with no damage but wrongly was classified as damaged
in T5.

In the T3, T4, T5, and T6 regions, the model had good recognition ability for earthquake-
damaged buildings with only a few misclassifications. The qualitative analysis of the
misclassification showed that the error in Figure 6c was probably due to the sample making
process. When the sample was subset from the image, part of the adjacent building was
cut in, which caused the sample to look like a damaged building. Sample in Figure 6d was
also misclassified as damaged building. That might result from the complex surrounding
environment around the building with lots of debris.
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4.3. Applicability of the Models in Aerial Images

The adjusted DenseNet121 that is relatively stable with satellite images was used
to examine the transferability of identifying earthquake-damaged buildings from aerial
images. The 357 samples obtained from the Beichuan aerial photos were randomly divided
into eight sample subsets, named S1–S8. S1–S6 sample subsets were used to fine-tune
the network. S7 was used for validation and testing respectively. Table 5 shows the
results predicted by the adjusted DenseNet121 model pre-trained with xBD samples and
the fine-tuned model with samples from the Beichuan region. The pre-trained model
based on the xBD dataset had poor prediction on damaged buildings in the Beichuan
area, and consequently, it could not be directly applied to an aerial photo. This indicates
that even if the aerial photos have close sub-meter spatial resolution with the satellite
data in the xBD dataset, the performance of the model trained with samples from satellite
images is not good when the model was applied to the aerial photos. Therefore, it is
necessary to use a small number of building samples obtained from the aerial images after
the Earthquake to help the pre-trained network with satellite-image samples learn the
characteristics from the aerial photo. The performance of the network was much improved
after the transfer learning (see Table 5). The recall of the damaged buildings increased from
47.4% to about 80%. However, with the increase in the number of samples, the prediction
overall performance of the model remained at a relatively stable level. Compared with the
network only fine-tuned with S1, using the S1 and S2 to fine-tune the network improved
the recall rate of the no-damage class. Considering the cost of preparing training samples
and the accuracy of the model, our experiment shows that using only part of building
samples in the prediction area to fine-tune the adjusted DenseNet121 model pre-trained
with satellite-image samples could ensure rapid and relatively accurate identification of
damaged buildings from the aerial photo.

Table 5. Accuracy assessment of the prediction results of the adjusted DenseNet121 pre-trained by
satellite-image samples fine-tuned with the samples generated from the aerial image of Beichuan
using the metrics Accuracy (%), F1, Recall (%), and Kappa.

Network
Fine-Tune

Sample

Test
Accuracy

(%)

Test
F1 Score

Recall
Kappa

No Damage
(%)

Damage
(%)

DenseNet121

- 64.3 0.778 100 47.4 0.51

S1 82.2 0.8 80.8 84.2 0.64

S1,2 86.5 0.889 92.3 84.2 0.77

S1,2,3 82.1 0.844 84.6 84.2 0.68

S1,2,3,4 91.1 0.889 96.2 84.2 0.82

S1,2,3,4,5 88.9 0.857 96.2 78.9 0.77

S1,2,3,4,5,6 88.9 0.872 88.5 89.5 0.87

Figure 7 is the receiver operating characteristic (ROC) curve for the classification of all
the samples of Beichuan county predicted by the pre-trained adjusted DenseNet121 model
directly (see Figure 7a) and by the fine-tuned one with the S1 and S2 (see Figure 7b). It can
be seen that the result was improved with the fine-tuning process.

Afterward, the adjusted DenseNet121 model fine-tuned with S1 and S2 sample sets
were utilized to produce a classification map of the Beichuan County (Figure 8). A visual
check indicates that most of the damaged and undamaged buildings can be identified well.
The buildings in red color and green color indicate correct identification of damaged build-
ings and intact buildings from the aerial photos using our proposedDenseNet121 model,
respectively. The buildings in orange color and blue color denote wrong identification of
the intact buildings and damaged buildings, respectively.
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5. Discussion

Due to the difficulty in preparing sufficient training samples of damaged buildings,
it is a pain for using CNN models to rapid retrieve disaster-damaged building information
from remote sensing images. In this study, we used samples generated from the public
disaster image dataset xBD to train and evaluate the adjusted models based on four
typical CNNs, namely VGG-16, Inception v3, DenseNet121, and Resnet50. After that, we
also examined the geographic transferability of the adjusted CNN models with better
performance in the Wenchuan County. Finally, the adjusted DenseNet with a relatively
stable performance was applied in the Beichuan area to figure out its data transferability to
aerial photos
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The imbalance of training sample distribution is quite common in the preparation
of training samples for earthquake disaster. It usually affects the training accuracy of a
network model. In addition, to meet the requirement of disaster loss assessment, it is
significant but difficult to classify earthquake-affected buildings into a more detailed
damage category from post-earthquake satellite or aerial image data. We will address these
two problems further in the following section.

5.1. Impact of Sample Imbalance

The building training samples prepared from the xBD dataset imagery dataset contain
a large number of intact building samples. The distribution of different types of samples
(i.e., no damage, minor damage, major damage and destroyed) is much unbalanced, which
could affect the learning process of the networks. As mentioned before, the methods that
deal with the imbalance problem can be divided into three categories: data level, algorithm
level, and a combination method [26]. The data-level method is mainly resampling, which
can be further divided into up-sampling and down-sampling. The up-sampling is to
expand the scale of the category with insufficient sample size by using data augmentation
and other methods, while down-sampling is to randomly select categories that contain
more samples to ensure that the number of samples in each category is balanced. The most
commonly used algorithm to solve the imbalance problem is the cost-sensitive method,
which assigns different weights to different categories according to their numbers of
samples, and applies them to the calculation of model loss function.

We only compared down-sampling and the cost-sensitive method. Data up-sampling
is not within the scope of this paper because of the large amount of data involved. Table 6
shows the prediction results of the adjusted DenseNet121 model trained without using
the balance method and trained with two balance methods. With the balance method,
the performance of the model was improved. Compared to the two balance methods,
the cost-sensitive method can enhance the ability to identify disaster-damaged buildings,
but it had a significant impact on the identification of no damage class. With higher
accuracy, F1 score, and Kappa coefficient in both the xBD test set and samples of Wenchuan,
data down-sampling ensured both the accuracy of the two categories and a shorter training
time, which is a better choice in our case.

Table 6. Accuracy assessment of the results of the adjusted DenseNet121 model without using balance method and with the
two balance methods based on the metrics Recall (%), Precision (%), Accuracy (%), F1, and Kappa coefficient. (a) xBD-testing
dataset and (b) Wenchuan dataset.

(a) xBD-Test

Model Balance Method
Recall (%) Precision (%)

Accuracy (%) F1 Kappa
No. 1 Damage No. Damage

DenseNet121
– 92.0 38.7 60.8 82.4 65.8 0.527 0.31

Down-sampling 88.9 75.1 78.7 86.8 82.1 0.805 0.64

Cost-sensitive 59.5 87.6 83.2 67.7 73.3 0.763 0.47

(b) Wenchuan

Network Balance Method

Recall (%) Precision (%)
T1-T6

Acc. 2(%)
T1-T6

F1
T1-T6
KappaT1-T6 Beyond

T1-T6 T1-T6

No. Damage Damage No. Damage

DenseNet121
– 77.5 82.9 77.5 90.8 63.0 79.2 0.716 0.56

Down-sampling 68.5 95.1 91.1 96.8 58.2 76.9 0.722 0.54

Cost-sensitive 17.9 1 99.5 36.0 43.8 43.8 0.529 0.12

Note: 1 No damage, 2 Accuracy.
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5.2. Detailed Classification of Building Damage Levels

Since four types of building labels in the public dataset xBD were predefined, this
study also attempted to explore the possibility of predicting more detailed levels of disaster-
damaged damage. Unfortunately, the prediction results of the adjusted DenseNet model
were not satisfactory when the model was trained on the three-class labels, i.e., no damage,
major damage, and destroyed damage. Figure 9 shows the confusion matrix of the ad-
justed DenseNet121 model tested on the xBD testing set, Wenchuan and Beichuan dataset.
The performance on the xBD testing set was relatively good. Most no-damaged and de-
stroyed buildings were predicted correctly, but the major damaged buildings were not
identified properly. Nearly half of the severely damaged buildings were classified as an
intact building, and a small part of that were misclassified as the destroyed ones. This
situation was more obvious in the research areas that the network had not seen. It can be
seen from the confusion matrices that the vast majority of severely damaged buildings in
the Wenchuan dataset were misclassified as collapsed buildings, while the buildings with
major damage in Beichuan were more likely to be predicted as the no damage type. As a
result, the number of buildings with major damage was seriously underestimated in the
prediction.
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We further analyzed the results to figure out the reason behind the unsatisfactory
results. When the disaster-induced building damage was classified into three categories,
the main reason for better performance in the xBD testing set was that the geographic loca-
tions of the testing samples and the training ones were the same. Consequently, the model
learned similar features from them, so it could identify the disaster-damaged buildings
in the testing set with higher accuracy. However, for areas that had not been seen by the
network, due to the differences in the size, structure, and surrounding environment of
buildings, it was difficult to accurately predict more detailed building damage classes
because the network had not learned the characteristics of the specific research areas, even
with the model trained based on samples from various satellite images. Secondly, the hu-
man error of identifying the seriously damaged buildings is unneglectable. Compared with
the completely collapsed buildings, the patterns of severely damaged buildings were more
complex and diverse, and the differences between them were more subjective. Whether
it was the xBD dataset or the testing data of the Wenchuan earthquake, it was difficult
to avoid the error in the process of label calibration, which also had a certain impact on
the prediction results of the model. For example, severely damaged buildings might be
misinterpreted as intact buildings because the damage was difficult to be visually iden-
tified from the post-earthquake remote sensing images, and some intact buildings might
be misinterpreted as damaged buildings because of their complex structure or special
architectural style.

In summary, for the building samples acquired from the xBD dataset, since there were
many more intact building samples, it is necessary to deal with the imbalanced learning
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problem. Our experiment indicated that the random data down-sampling method could
reduce down the impact of imbalance learning and guarantee both accuracy and efficiency
of the model. The attempt of using the CNN model trained with post-satellite-image
samples from xBD to identify more detailed damage levels of disaster-affected buildings
with post-disaster data did not yield a satisfactory prediction. We found that it was difficult
for the CNN model to correctly identify earthquake-affected buildings that were badly
damaged but not collapsed based on satellite remote sensing images. The collapsed or
close to collapsed buildings can be well-identified only. Buildings with slight and moderate
damage were prone to be confused with intact buildings. Severely damaged buildings
might be classified as either intact or collapsed buildings, depending on their damage form
and the complexity of the surrounding environment. Some new remote sensors or new
remote sensing systems such as Unmanned Aerial Vehicle (UAV) systems might enhance
the identification of detailed damage information of buildings in disasters. However, from
the perspective of emergency rescue and earthquake casualty estimation, the identification
of collapsed buildings can provide data support for casualty estimation.

6. Conclusions

This paper evaluated the performance of the four typical CNN networks in the iden-
tification of earthquake-damaged building information from satellite and aerial photos.
The public disaster dataset xBD was used to prepare sufficient training samples of building
images for training the four adjusted CNN models, namely VGG16, Inception V3, Resnet50,
and DenseNet121. The transferability of the CNN models pre-trained with xBD samples
was verified with the VHR satellite image samples of the Wenchuan area and aerial photo
samples of the Beichuan area acquired right after the 2008 Wenchuan Mw 7.9 earthquake.
The adjusted DenseNet121 pre-trained with the xBD samples performed best among four
chosen CNN models. The down-sampling method can be used to reduce the impact of
the imbalance problem between the classes “no damage” and “damaged” samples on
the model training process, and achieve better identification of collapsed buildings with-
out compromising the prediction accuracy of the class “no damage”. When the adjusted
DenseNet121 model pre-trained with the VHR satellite image samples generated from
the xBD dataset was directly used in the identification of damaged buildings from the
aerial photo data of the Beichuan area, it performed quite poor and had low transferability
between different sensor data (e.g., satellite versus aerial). However, our experiment in-
dicated that with the fine-tuning process, the performance of the adjusted DenseNet121
pre-trained on satellite-image samples can be improved with a small portion of building
samples from the aerial photos of Beichuan. The overall accuracy of the model without
and with fine-tuning was improved from 64.3% to 88.9% and the recall rate for the class
“damaged” building was ameliorated from 47.4% to 89.5%. The improved DenseNet121
model pre-trained with large xBD samples can meet the requirement for rapid understand-
ing of the locations of collapsed buildings in an earthquake disaster and provide important
support for emergency rescue.

We also found that a more detailed classification of earthquake-induced buildings
damage level (i.e., minor damage, major damage and destroyed) was not satisfactory
with the CNN models in the Wenchuan and Beichuan areas, where the 2008 Wenchuan
Earthquake took place on 12 May 2008. A certain proportion of major damaged buildings
were wrongly classified as intact or collapsed buildings. Future work may explore the
usefulness of some new remote sensors such as LiDAR and new remote sensing platforms
such as unmanned aerial vehicle systems in the identification of detailed damage levels of
buildings caused by disasters such as earthquakes.

Author Contributions: Conceptualization, implementation and draft preparation, W.Y., funding
acquisition, conceptualization, and review and editing, X.Z., and data curation, P.L. All authors have
read and agreed to the published version of the manuscript.



Remote Sens. 2021, 13, 504 18 of 20

Funding: This research and APC were funded by the National Key Research and Development
Program of Ministry of Science and Technology, China, grant number, 2017YFC1500902, and by the
Xinjiang Production and Construction Corps, China, grant number, 2017DB005.

Acknowledgments: We would like to give our thanks to the three reviewers for their constructive
comments on our work. We also appreciate the creators of the xBD dataset for producing this valuable
public data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
VHR Very-High Resolution
SAR Synthetic Aperture Radar
OBIA Object-Based Image Analysis
CNN Convolutional Neural Network
RF Random Forest
SVM Support Vector Machine
DL Deep learning
Mw Moment magnitude
RGB Red, green, blue
FEMA Federal Emergency Management Agency
FCL Full Connection Layer
OL Output layer
TP True positive
TN True negative
FP False positive
FN False negative
ReLU Rectified linear unit
AUC Area under curve
F1 Harmonic mean of precision and recall
HPC High-Performance Computing
ROC Receiver operating characteristic curve
UAV Unmanned Aerial Vehicle
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