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Abstract: Total variation (TV) is an effective super-resolution method to improve the azimuth res-
olution and preserve the contour information of the target in airborne radar imaging. However,
the computational complexity is very high because of the matrix inversion, reaching O(N3). In this
paper, a Gohberg–Semencul (GS) representation based fast TV (GSFTV) method is proposed to make
up for the shortcoming. The proposed GSFTV method fist utilizes a one-dimensional TV norm as
the regular term under regularization framework, which is conducive to achieve super-resolution
while preserving the target contour. Then, aiming at the very high computational complexity caused
by matrix inversion when minimizing the TV regularization problem, we use the low displacement
rank feature of Toeplitz matrix to achieve fast inversion through GS representation. This reduces
the computational complexity from O(N3) to O(N2), benefiting efficiency improvement for air-
borne radar imaging. Finally, the simulation and real data processing results demonstrate that
the proposed GSFTV method can simultaneously improve the resolution and preserve the target
contour. Moreover, the very high computational efficiency of the proposed GSFTV method is tested
by hardware platform.

Keywords: super-resolution; airborne radar; total variation; GS representation

1. Introduction

Airborne radar plays an important role in many fields for its all-day and all-weather
imaging ability [1,2]. In general, airborne radar collects the echo through antenna scanning
along with the platform movement. In range direction, the antenna continuously transmits
a large bandwidth signal. After pulse compression, the range resolution is negatively
correlated with the bandwidth, i.e.,

ρr =
c

2B
(1)

where ρr is range resolution, c is light speed and B is the bandwidth of transmitted signal.
Therefore, high range resolution can be achieved with large bandwidth signals. In azimuth,
the resolution is limited to antenna size. According to Rayleigh criterion, the adjacent
targets with an interval less than Rayleigh distance (RD) cannot be distinguished, where
RD is the space between the peak of the antenna pattern and the first zero-crossing [3,4].
In order to distinguish adjacent targets with small spacing, radar needs to emit a narrow
beam. However, narrower beams require a larger antenna aperture. Due to platform
limitations, the antenna aperture of airborne radar is usually limited, resulting in lower
azimuth resolution.

The application of super-resolution technology can make the resolution break Rayleigh
limit [5,6], which makes it possible to improve the azimuth resolution without increasing
the aperture of airborne radar. In fact, many super-resolution methods have been proposed
in recent years. In [7], the Tikhonov regularization (TREGU) method was proposed to
improve the resolution. However, this method encounters over smoothing, which makes
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the improvement of resolution limited. In [8], truncated singular value decomposition
(TSVD) was utilized. This method suppresses the noise amplification by truncating small
singular values, but its performance is poor in the condition of low signal-to-noise ratio
(SNR). Iterative adaptive approach (IAA) can further suppresses noise, but it suffers from
high computational complexity [9]. The sparse regularization method introduces the prior
information of the target, and has a good effect of improving the resolution of the sparse
target [10,11]. However, all of the above methods only consider the improvement of
resolving ability, and do not consider the preservation of target contour information. Total
variation (TV) method, which introduces the gradient constraint of targets, can effectively
preserve the contour of targets. Recently, TV method has been widely used in imaging
restor and radar imaging [12–14]. In [15], we proposed a one-dimensional TV method
to improve the azimuth resolution of airborne radar. Unlike optical image restoration,
in airborne radar imaging, range resolution has been improved by pulse compression, so
the proposed TV method only introduces azimuth TV norm. The experiments show that
the TV method can preserve the target contour information of airborne radar. However,
the computational complexity is very high due to matrix inversion, and the computational
complexity is O(N3). For airborne radar imaging, the azimuth samples N is determined
by scanning range Φ, scanning speed ω and pulse repetition frequency (PRF), i.e.,

N =
Φ
ω

PRF (2)

Usually, N is large, which leads to the inefficiency of the algorithm. Therefore, it is
necessary to study how to realize fast inversion to reduce the computational complexity.

In recent years, many researches have devoted to solve the problem of high com-
putational complexity caused by matrix inversion. These methods utilized the special
structure of coefficient matrix to achieve fast inversion, the computational complexity then
can be decreased [16–18]. In previous research, we have found that the coefficient matrix
of TV method has an approximate Toeplitz structure, which makes it possible to achieve
fast inversion using the Toeplitz structure. In fact, literature [19] indicated the concepts
of displacement structure and displacement rank, as well as revealing that the operation
can be compressed by using a Toeplitz matrix. Subsequent research has proven that the
displacement rank of a Toeplitz matrix is very small and, so, its inverse matrix also has a dis-
placement structure, showing that the inversion of Toeplitz matrix can be fast realized [20].
Utilizing the low displacement rank features of Toeplitz matrices, the fast inversion of
Toeplitz matrix has been achieved using Gohberg–Semencul (GS) representation [21,22].

In this paper, a GS representation based fast TV (GSFTV) method is proposed realize
fast super-resolution imaging as well as preserve the contour information in airborne radar
imaging. Firstly, the received signal of airborne radar is analyzed. It can be found that the
azimuth echo can be modeled as a convolution of target scattering and antenna pattern.
Secondly, the azimuth gradient constraint of the target is introduced in the regularization
framework to transform the super-resolution problem into a TV regularization problem,
and the TV regularization problem is solved by split Bregman algorithm (SBA). Thirdly,
to solve the problem of high computational complexity caused by matrix inversion, we
approximate the coefficient matrix to Toeplitz matrix, and use GS representation to realize
fast inversion. The computational complexity will be decreased from O(N3) to O(N2).
Then we will prove that the error caused by the approximation is quite small and can be
ignored through numerical analysis. Finally, the performance of the proposed GSFTV is
demonstrated by experiments.

The reminder of the paper is organized as follows. Section 2 analyzes the received
signal and models the echo model of airborne radar imaging. In Section 3, the traditional
TV method is reviewed and the computational complexity is analyzed. In Section 4,
the proposed GSFTV is deduced in detail. In Section 5, some experiments are conducted
to verify the superior performance of the proposed GSFTV method. The conclusion is
discussed in Section 6.
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2. Signal Model of Airborne Radar Imaging

Airborne radar scans the imaging region along with the movement of the aircraft.
The schematic diagram of airborne radar imaging is shown in Figure 1. The aircraft flies
at altitude H and speed v. ω is the scanning speed of the antenna and ϕ is pitching angle.
When the antenna is scanning the target P, we define the azimuthal angle is α0, and the
distance between the target and the radar is r0. After time t, the radar moving distance is
vt. At this time, the distance between radar and target P is r(t), and the azimuth angle of
the radar beam is α(t) with α(t) = α0 + ωt.

α0 

P 

α(t) 

φ 

φ 

φ 
r0 r(t) 

v 

H 

ω 

z 

x 

y 

Scanning region 

β0 β 

Figure 1. Schematic diagram of airborne radar scanning imaging.

According to the trigonometric relation, the range history at time t can be obtained as

r(t) =
√

r2
0 + (vt)2 − 2r0vt cos β0 (3)

where cos β0 = cos α0 cos ϕ.
It can be approximated as

r(t) ≈ r0 − vt cos β0 +
V2sin2β0

2r0
t2 (4)

In practical applications, since the time for the antenna beam to sweep across the
target is very short and the radar has a large working distance, the quadratic term in (4) is
very small and can be ignored. Thus the range history can be finally approximated as

r(t) ≈ r0 − vt cos β0 (5)

Considering both the range resolution and working distance, the radar transmits
linear frequency modulated (LFM) signal, i.e.,

s(τ) = rect
(

τ

Tr

)
exp

(
j2π f0τ + jπKrτ2

)
(6)

where rect(·) is a rectangle window, τ is the fast time, f0 is carry frequency and Kγ is chirp
rate. After antenna scanning, the received signal is

s(τ, t) = u0h(t)rect
(

τ − τd
Tr

)
× exp

[
jπKr(τ − τd)

2
]
× exp(−j2π f0τd) (7)

where u0 is the target scattering distribution, h(t) represents the modulation effect of
antenna pattern and τd = 2r(t)/c is time delay.
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Matched filtering is a widely utilized technology to obtain high range resolution.
After matched filtering, the received signal becomes

s(τ, t) = u0h(t)sinc[B(τ − τd)]× exp(−j2π f0τd) (8)

For airborne radar, antenna scanning is accompanied by platform movement, which
results in the echo of the same range unit being dispersed in different units. Therefore,
range walk correction is needed to eliminate the influence of platform motion. After that,
the received echo can be modeled as a convolution of antenna pattern and target scattering
distribution [3,23], i.e.,

s = Au + n (9)

where n is the noise and A is the convolution matrix structured by antenna pattern, i.e.,

A =



h1 0 · · · 0

h2 h1
. . .

...
... h2

. . . 0

hL
...

. . . h1

0 hL
... h2

...
. . . . . .

...
0 · · · 0 hL


Based on the convolution model of airborne radar imaging, the target distribution can

be recovered by deconvolution, but this process is extremely ill-posed.

3. One-Dimensional TV Method

Aiming at the ill-posedness of deconvolution, the one-dimensional TV method is used
to relax the ill-posedness, and the computational complexity is analyzed.

3.1. Deduction of the Method

TV method has been widely used in imaging restoration because it has a good effect
in contour preservation. In airborne radar imaging, an one-dimensional TV method is
proposed since the range resolution has been improved by matched filtering. The one-
dimensional TV method requires minimizing following optimization problem,

û = min
u

µ

2
‖Au− s‖2

2 + ‖∇u‖1 (10)

where µ is regularization parameter.
For minimizing (10) using SBA, a variable v is employed to decouple the u and∇u, i.e.,

û = min
u

µ

2
‖Au− s‖2

2 + ‖v‖1

s.t v = ∇u
(11)

We obtain a constrained optimization problem (11). Usually, it can be transformed
into unconstrained optimization problem, i.e.,

û = min
u

µ

2
‖Au− s‖2

2+
λ

2
‖∇u−v‖2

2 + ‖v‖1 (12)

where λ is a positive parameter.
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Then based on Bregman distance, the iteration strategy is obtained [3],(
uk+1, vk+1

)
= min

u,v

µ

2
‖Au− s‖2

2 +
λ

2

∥∥∥vk −∇u− bk
∥∥∥2

2
+‖v‖1

bk+1 = bk +∇
(

uk+1
)
− vk+1

(13)

It can be minimized by cross iteration:

uk+1 =
(

µAT A− λ∆
)−1(

µATs− λW
(

vk − bk
))

(14)

vk+1 = ζ
(
∇
(

uk+1
)
+ bk, 1/λ

)
(15)

bk+1 = bk +∇
(

uk+1
)
− vk+1 (16)

where W = −∇∗, ζ(x, κ) = sign(x)max(|x| − κ, 0), and

∆ =



−1 1

1 −2
. . .

1
. . . 1
. . . −2 1

1 −1


3.2. Analysis of Computational Complexity

Traditional TV method achieves super-resolution by iterating (14) to (16). However,
the main computational complexity comes from (14). As for (15) and (16), they only cover
simple basic operation, and their computational complexities are inappreciable compared
with (14).

For (14), the iterations is K. First, we need to calculate one AT A and ATs, for which
the computational complexities are O

(
N log N + N3) and O(N log N), respectively; where

ATs can be calculated by an N-point fast Fourier transform (FFT) as AT is a circular matrix.
Secondly, for each iteration, the computational complexity of

(
µAT A− λ∆

)−1 is O(N3 +

3N2). The computational complexity of
(

µATs− λW
(

vk − bk
))

is O(N(2N − 1) + 4N).

Finally, the main computational complexity of traditional TV method is O
(
(K + 1)N3+

5KN2 + 3KN + 2N log N
)
.

It can be seen that the computational complexity of traditional TV method is quite high,
which will seriously affect the real-time performance of the algorithm in practical application.

4. Proposed GSFTV Method

To decrease the computational complexity of traditional TV method, the proposed
GSFTV method is deduced in this section.

4.1. GSFTV Method

In view of the high computational complexity of tradition TV method comes from (14),
we rewrite it as

uk+1 = Z−1gk (17)

where
Z = µAT A− λ∆

and
gk = µATs− λW

(
vk − bk

)
.
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From the structure of A, we can obtain that the matrix AT A also has Toeplitz structure.
As for ∆, it also can be regarded as a Toeplitz matrix by approximation, i.e.,

∆̃ =



−2 1

1 −2
. . .

1
. . . 1
. . . −2 1

1 −2


(18)

Thus (17) can be rewrite as
ũk+1 = Z̃−1gk (19)

where
Z̃ = µAT A− λ∆̃

By approximation, Z̃ has the Toeplitz structure, its inversion thus can be fast ob-
tained by GS representation. The Levinson–Durbin algorithm is first utilized to obtain the
autoregressive coefficients a and prediction error r from the YuleWalker-AR equations:

e1 + a2e∗2 + · · ·+ aXe∗L = r (20)
e1 e∗2 · · · e∗X−1

e2 e1 · · ·
...

...
...

. . . e∗2
eL−1 eL−2 · · · e1




a2
a3
...

aL

 =


−e2
−e3

...
−eL

 (21)

Then we can obtain that

d =

[
1
ã∗

]
1√
r

∆
=
(

d1 d2 · · · dN
)T (22)

f =

[
1
a

]
1√
r

∆
=
(

f1 f2 · · · fN
)T (23)

Constructing matrixes

D =


d1 0 · · · 0

d2 d1
. . .

...
...

...
. . . 0

dN dN−1 · · · d1

 (24)

F =


f1 0 · · · 0

f2 f1
. . .

...
...

...
. . . 0

fN fN−1 · · · f1

 (25)

According to GS representation, the inversion of Z̃ can be fast calculated, i.e.,

Z̃ = DDH − FFH (26)

Finally, (19) can be obtained, i.e.,

ũk+1 = Z̃−1gk=
(

DDH − FFH
)

gk=DDH gk − FFH gk (27)
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As a result, the inversion of Z̃ is avoid, and ũ can be obtained by multiplying a matrix
with a vector. We would indicate that the product of matrix and vector can be achieved by
fast Fourier transform (FFT).

Define

D1 =



d1
d2 d1
... d2

. . .

dN
...

. . . d1
dN d2

. . .
...

dN



D2 =



d∗N
... d∗N

d∗2
...

. . .

d∗1 d∗2
... d∗N

d∗1
. . .

...
. . . d∗2

d∗1


According to the special structure of D1 and D2, it can be seen that D and DH can

be obtained by intercepting the first N rows and the N to 2N − 1 rows of D1 and D2,
respectively. Therefore, the multiplication of D and a vector can be obtained by intercepting
the 1 to N elements of the FFT of d and the vector. As for the multiplication of DH and a
vector, it can be obtained by the N to 2N− 1 elements of the FFT of d̃ and the vector, where
d̃ =

[
d∗N d∗N−1 · · · d∗1

]T . In the same way, FFH gk also can be obtained by two FFTs
and truncations.

4.2. Analysis of Computational Complexity

The proposed GSFTV method realizes fast inversion of matrix by GS representation,
that is, the target scattering distribution is estimated by iterating (27). Above analysis have
indicated that it can be calculated by four-times operations of Toeplitz and vector, so the
computational complexity is O(2N2 + 14N log 2N + 3N + N log N). Before that, the autore-
gressive coefficients a and prediction error e need to be obtained by Levinson–Durbin algo-
rithm, and the computational complexity is O

(
(N − 1)2

)
. As a result, the computational

complexity of the proposed GSFTV method is O
(
K
(
3N2 + N + 14N log 2N

)
+ N log N

)
.

4.3. Selection of Parameters

Each regularization method need to determine the regularization parameter µ. In this
paper, the regularization parameter µ is determined by combining maximum a posteriori
(MAP) estimation and noise estimation.

In radar imaging, usually the noise is Gaussian noise. With the assumption of Gaussian
noise, we can obtain the likelihood function

p(s/u) =
1√

2πσn2
exp

(
− 1

2σn2 ‖Au− s‖2
2

)
(28)

where σ2
n is the noise variance.
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Let p(u) = − exp(‖∇u‖1), then the target scattering distribution u can be obtained
by MAP estimation:

û=max
u

p(u/s) = max
u

p(s/u)p(u) = min
u
{− ln[p(u/s)]− ln p(u)} (29)

i.e.,

û = min
u

1
2σ2

n
‖Au− s‖2

2 + ‖∇u‖1 (30)

It can be found that (30) is equivalent to (10) when µ= 1/σ2
n . Therefore, the regular-

ization parameter µ can be determined by estimating the noise variance σ2
n . In this paper,

the variance σ2
n is estimated by the method proposed in literature [24]. As for the parameter

λ, a small λ means high resolution improvement, but poor contour preservation. In the
research, the setting of λ between 0.01 and 0.2 works well.

4.4. Evaluation of Computational Efficiency

Utilizing GS representation, the computational complexity is decreased significantly.
For comparison, the complexity is compared with some traditional super-resolution meth-
ods, including TSVD [8], IAA [9], sparse [25] and TV methods [15]. The computational
complexities and the typical parameter values of different methods are listed in Table 1,
where κ is the truncation parameter of TSVD, K is iterations.

Table 1. Computational complexities of different methods.

Methods Computational Complexities Typical Parameter Values

TSVD O
(

N3 + (κ + 3)N2 + 2N
)

κ = 20
IAA O

(
K
(

N3 + N2 + N
))

K = 10
Sparse O

(
(K + 1)N3 + (3K + 2)N2 + KN + N log N

)
K = 15

TV O
(
(K + 1)N3 + 5KN2 + 3KN + 2N log N

)
K = 30

GSFTV O
(
K
(
3N2 + N + 14N log 2N

)
+ N log N

)
K = 30

The logarithmic computational complexity curves are shown in Figure 2. It shows
that the computational complexity of the proposed GSFTV method is much lower than that
of other methods. Typically, when N = 1000, the proposed GSFTV method improves the
computational efficiency by 11, 109.4, 175.4 and 340.4 times, as compared with the TSVD,
IAA, sparse and TV methods.
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Figure 2. Logarithmic computational complexity curves.

4.5. Evaluation of Approximated Error

The logarithmic computational complexity curves demonstrate the great advantage
of the proposed GSFTV method in computational complexity. However, in order to
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decrease the computational complexity, some approximations are also made, that is, ∆ is
approximated by ∆̃, which makes Z becomes Z̃. The error caused by the approximation is
evaluated. The error is defined a

r =
1

N2

∥∥∥Z̃−1 − Z−1
∥∥∥2

2
(31)

where r is the approximated error. The error curve with different N is shown in Figure 3.
It shows that the approximated error is extremely small. Even when N = 100, the error
lower than 2× 10−4. And the error decreases with the increase of N. In radar imaging,
usually the azimuth samples N is large, so the error can be ignored in practice.

500 1000 1500 2000 2500 3000
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E
rr

or
 r

#10-4

Figure 3. Approximated error with different N.

5. Performance Verification

In this section, the performance of the proposed GSFTV method is demonstrated by
experiments. We first conduct simulation and process real data on personal computer to
demonstrate the performance of resolution improvement and contour preservation. Then,
based on Field Programmable Gate Array (FPGA), a hardware platform is built to evaluate
the efficiency of the proposed GSFTV method.

5.1. Simulation

Considering both the resolution improvement and contour preservation, the real scene
of the simulation covers two adjacent targets and one isolated target, as Figure 4 shows.
The centers of the targets are located at −4◦, −1.2◦ and 4◦, respectively. The width of them
is 0.8◦. For the radar system, we assume that the radar works on X-band. The antenna
pattern is a sinc2 function, and its beamwidth is 3◦. Scanning region is ±10◦, and PRF is
1000 Hz.
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Figure 4. Real scene of simulation.
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The left two adjacent targets are used to test the distinguishable ability. From the
parameters, it can be seen that the interval of the adjacent targets is less than the beamwidth.
So according to Rayleigh criterion, they will not be distinguished in real-beam echo.
The real-beam echo is shown in Figure 5a. It can be seen that the isolated targets is
distinguishable, but the adjacent targets are not. Certainly, in order to be close to practical
application, white Gaussian noise is added in Figure 5a, and the SNR is 20 dB. The pro-
cessed results of TSVD, IAA, Sparse, TV and GSFTV methods are shown in Figure 5b–f.
It shows that TSVD smoothes the noise but cannot distinguish the adjacent targets. IAA
and sparse methods can distinguish the adjacent targets, however, the contour information
of targets cannot be preserved. TV and GSFTV can not only distinguish adjacent targets,
but also preserve contour information.
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Figure 5. Processed results of the simulation. (a) Real beam echo, (b) truncated singular value decomposition (TSVD),
(c) iterative adaptive approach (IAA), (d) Sparse, (e) total variation (TV), (f) Gohberg–Semencul (GS) representation based
fast TV (GSFTV).

Intuitively, it can be found that TV and GSFTV methods can distinguish adjacent
targets while preserving the target contour. Further, the isolated target is employed to
verify the performance of contour preservation. For the purpose, we define the contour
fidelity coefficient (CFC) as

ζ =
θ−3dB
θ−20dB

× 100% (32)

where ζ is CFC, θ−3dB and θ−20dB denotes the beam width at −3 dB and −20 dB, respec-
tively. The definition of CFC can be visually seen in Figure 6. It can be known that the
larger ζ, the better the contour preservation ability.

The isolated target is employed to evaluate the contour preservation ability. The CFCs
of the results processed by different methods are shown in Table 2. It can be seen that TSVD,
RL, IAA and sparse methods have poor performance in contour preservation. Contrarily,
the TV and GSFTV methods can greatly preserve the contour information of the targets.
As for the GSFTV and TV methods, we can see that their CFCs are the same. Therefore,
the proposed GSFTV method has no performance loss compared with the traditional
TV method.
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Figure 6. Definition of contour fidelity coefficient (CFC).

Table 2. CFCs of simulation results.

Methods TSVD IAA Sparse TV GSFTV

ζ 50.68% 26.84% 55.16% 96.44% 96.44%

In addition, we calculate the error between the processed results of TV and GSFTV to
measure the error caused by the approximation. The error is defined as

χ = ‖ûGSFTV − ûTV‖2
2 (33)

where χ is the error between the results of GSFTV and TV methods, ûGSFTV and ûTV are the
estimation of GSFTV and TV methods, respectively. We calculate that for this simulation,
χ ≈ 0.0064. It can be seen that the error between the processed results of GSFTV and TV
is very small and negligible, which proves that the approximation used in this paper will
hardly cause performance degradation.

5.2. Real Data Verification

After simulation, two group of real data are processed to further verify the perfor-
mance of the proposed GSFTV method.

5.2.1. Real Data 1

A airborne real data (We named it real data 1 for convenience) is processed to further
demonstrate the performance of contour preservation in practice. The parameters of the
experiment is shown in Table 3.

Table 3. System parameters of the real data.

Parameters Values

Beamwidth 2.2◦

Pulse width 32 µs
Scanning region 4◦∼28◦

Speed of airborne platform 150 m/s

The experiment was carried out in a bay with an obvious island. The real beam
echo received by the radar is shown in Figure 7a, in which the island is marked with a
red rectangle box. It can be seen that the resolution of the real beam echo is very low,
the contours of island and land are blurred, and the noise level is high.

The processed results of different methods are illustrated in Figure 7b–f. Figure 7c,d
show that TSVD, IAA and sparse methods can improve the resolution and suppress the
noise partly, but the performance of contour preservation is very poor. It is obvious that the
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edges of land and island are rather blurred in the results of these methods. By contraries,
the TV and GSFTV methods achieve high resolution improvement. As shown in Figure 7e,f,
the contours of land and island are more clear than that of Figure 7b–d.
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Figure 7. Real data 1 results. (a) Real-beam echo, (b) TSVD, (c) IAA, (d) Sparse, (e) TV, (f) GSFTV.

To quantitatively evaluate the results of different methods, we introduce image en-
tropy to quantitatively evaluate the quality of the results processed by different methods.
According to the principle of minimum entropy, the smaller the image entropy means
the clearer the image [26]. The image entropies of above processed results are shown
in Table 4. It can be seen that the entropies of the results of TV and GSFTV are smaller
than that of TSVD, IAA and sparse methods. This also proves that the results of TV and
GSFTV methods are clearer than those of other methods. More importantly, compared with
Figure 7e,f, it can be found that the proposed GSFTV method has almost no performance
loss compared with the traditional TV method.

Table 4. Entropies of real data 1.

Methods Real-Beam Imaging TSVD IAA Sparse TV GSFTV

Entropies 5.67 5.46 4.69 4.28 3.78 3.82
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Besides, as with simulation, the error between the results of GSFTV and TV methods
is χ ≈ 0.0815. It can be seen that the error caused by the approximation in this paper is
very small and can be ignored.

5.2.2. Real Data 2

Another airborne data (We named it real data 2 for convenience) was processed to
further verify the performance of the proposed GSFTV method. The target area of this
experiment includes land and gully. The main parameters are consistent with Table 3,
the difference is that the scanning range is 20◦∼27◦.

The processed results are shown in Figure 8, where Figure 8a is the real-beam echo
with low SNR, from which we can hardly see the shape of the target. Figure 8b–f are the
processed results of different methods. It can be seen that TSVD, IAA and sparse methods
can improve the resolution to a certain extent, but the improvement of resolution is limited,
and the contor of land is blurred, as Figure 8b–d shows. Figure 8e,f illustrate that TV
and GSFTV have superior super-resolution performance, and the contour of the land is
clearly visible.

The entropy of above results are shown in Table 5. From the table, we can get the same
conclusion as Table 4.

Table 5. Entropies of real data 2.

Methods Real-Beam Imaging TSVD IAA Sparse TV GSFTV

Entropies 6.13 4.42 3.56 4.28 3.17 3.25

Similarly, we calculate the error between the results of TV and GSFTV methods as
χ ≈ 0.092, indicating that the error caused by the approximation can be ignored.
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Figure 8. Cont.
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Figure 8. Real data 2 results. (a) Real-beam echo, (b) TSVD, (c) IAA, (d) Sparse, (e) TV, (f) GSFTV.

5.3. Hardware Testing

Section 4.4 has demonstrated the very low computational complexity of the proposed
GSFTV method in theory. In practice, the computing time is also limited by hardware
conditions. So in this subsection, a hardware platform based on FPGA is built to verify the
high computational efficiency of the proposed GSFTV method in practice.

The chip is 8−core TMS320c6678 produced by Texas Instruments Company. The main
frequency is 1 GHz and the memory is 4 G. For above real data, the dimensions of the data
are 191× 953 and 701× 278, respectively, where M× N denotes M range samples and N
azimuth samples. The computing times of different methods are shown in Table 6. It shows
that the computing time of the proposed GSFTV method is much less than that of other
methods. It can be seen that for the above two groups of measured data, the computational
efficiency of the proposed GSFTV is about 244 times and 189 times of that of TV method
respectively, which indicates that the computational advantage of the proposed GSFTV
mainly depends on the number of azimuth samples. The more the number of azimuth
samples, the greater the computational advantage of the proposed GSFTV.

Table 6. Computing time of different methods.

Methods TSVD IAA Sparse TV GSFTV

Computing times of real data 1(s) 35.78 56.25 96.17 112.32 0.46
Computing times of real data 2(s) 16.22 31.52 46.88 58.69 0.31

6. Conclusions

In this paper, a GSFTV method was proposed to solve the problem of low azimuth
resolution in airborne radar imaging. The proposed GSFTV method can efficiently im-
prove the azimuth resolution and break the Rayleigh limit. In this process, the contour
information of target is preserved. So its processed result is more clear than other tradi-
tional methods. Besides, utilizing the GS representation, the computational complexity of
each iteration is decreased from O(N3) to O(N2), which greatly increases the computing
efficiency in practice. Although we make some approximations in order to realize the
acceleration, we also proved that these approximations can be ignored.
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Through simulation and real data processing, we demonstrated that the proposed
GSFTV method almost no performance degradation compared with traditional TV method.
Hardware test results show that the efficiency of the proposed GSFTV is much higher than
that of the traditional TV method, and the more the number of azimuth points, the greater
the computing advantage of the proposed GSFTV method.

Author Contributions: Conceptualization, Q.Z.; methodology, Q.Z., Y.Z. (Yin Zhang), Y.Z. (Yongchao
Zhang); software, Q.Z.; validation, Q.Z. and Y.Z. (Yin Zhang); formal analysis, Q.Z.; investigation,
Q.Z.; resources, Q.Z., Y.Z. (Yongchao Zhang), Y.H. and J.Y.; data curation, Q.Z.; writing—original
draft preparation, Q.Z.; writing—review and editing, Q.Z.; visualization, Q.Z.; supervision, Y.Z.
(Yin Zhang); project administration, Y.Z. (Yin Zhang); funding acquisition, Y.Z. (Yin Zhang), Y.Z.
(Yongchao Zhang), Y.H. and J.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61671117, 61901090 and 61901092.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: I exclude this statement because the study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Esposito, C.; Berardino, P.; Natale, A.; Perna, S. On the Frequency Sweep Rate Estimation in Airborne FMCW SAR Systems. Remote

Sens. 2020, 12, 3448. [CrossRef]
2. Reigber, A.; Scheiber, R.; Jager, M.; Prats-Iraola, P.; Hajnsek, I.; Jagdhuber, T.; Papathanassiou, K.P.; Nannini, M.; Aguilera, E.;

Baumgartner, S.; et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications. Proc.
IEEE 2012, 101, 759–783. [CrossRef]

3. Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Pei, J.; Yi, Q.; Li, W.; Yang, J. TV-Sparse Super-Resolution Method for Radar Forward-
Looking Imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6534–6549. [CrossRef]

4. Biondi, F. Recovery of partially corrupted SAR images by super-resolution based on spectrum extrapolation. IEEE Geosci. Remote
Sens. Lett. 2016, 14, 139–143. [CrossRef]

5. Li, L.; Li, F. Beating the Rayleigh limit: Orbital-angular-momentum-based super-resolution diffraction tomography. Phys. Rev. E
2013, 88, 033205. [CrossRef]

6. Donoho, D.L. Superresolution via sparsity constraints. SIAM J. Math. Anal. 1992, 23, 1309–1331. [CrossRef]
7. Kang, M.S.; Kim, K.T. Compressive sensing based SAR imaging and autofocus using improved Tikhonov regularization. IEEE

Sensors J. 2019, 19, 5529–5540. [CrossRef]
8. Gennarelli, G.; Soldovieri, F. A linear inverse scattering algorithm for radar imaging in multipath environments. IEEE Geosci.

Remote Sens. Lett. 2013, 10, 1085–1089. [CrossRef]
9. Raju, C.; Reddy, T.S. MST radar signal processing using iterative adaptive approach. Geosci. Lett. 2018, 5, 1–10. [CrossRef]
10. Zhang, Y.; Zhang, Q.; Zhang, Y.; Pei, J.; Huang, Y.; Yang, J. Fast Split Bregman Based Deconvolution Algorithm for Airborne Radar

Imaging. Remote Sens. 2020, 12, 1747. [CrossRef]
11. Mallat, S.; Yu, G. Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 2010, 19, 2889–2900. [CrossRef]
12. Tang, V.H.; Bouzerdoum, A.; Phung, S.L. Compressive Radar Imaging of Stationary Indoor Targets with Low-Rank Plus Jointly

Sparse and Total Variation Regularizations. IEEE Trans. Image Process. 2020, 29, 4598–4613. [CrossRef]
13. Vishnevskiy, V.; Gass, T.; Szekely, G.; Tanner, C.; Goksel, O. Isotropic total variation regularization of displacements in parametric

image registration. IEEE Trans. Med Imaging 2016, 36, 385–395. [CrossRef]
14. Zhang, Y.; Tuo, X.; Huang, Y.; Yang, J. A tv forward-looking super-resolution imaging method based on tsvd strategy for scanning

radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4517–4528. [CrossRef]
15. Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Li, W.; Yang, J. Total variation superresolution method for radar forward-looking

imaging. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 26–29 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

16. Freund, R.W.; Zha, H. A look-ahead algorithm for the solution of general Hankel systems. Numer. Math. 1993, 64, 295–321.
[CrossRef]

17. Zhang, Y.; Zhang, Y.; Li, W.; Huang, Y.; Yang, J. Super-resolution surface mapping for scanning radar: Inverse filtering based on the
fast iterative adaptive approach. IEEE Trans. Geosci. Remote Sens. 2017, 56, 127–144. [CrossRef]

18. Glentis, G.O.; Jakobsson, A. Time-recursive IAA spectral estimation. IEEE Signal Process. Lett. 2010, 18, 111–114. [CrossRef]

http://doi.org/10.3390/rs12203448
http://dx.doi.org/10.1109/JPROC.2012.2220511
http://dx.doi.org/10.1109/TGRS.2020.2977719
http://dx.doi.org/10.1109/LGRS.2016.2615564
http://dx.doi.org/10.1103/PhysRevE.88.033205
http://dx.doi.org/10.1137/0523074
http://dx.doi.org/10.1109/JSEN.2019.2904611
http://dx.doi.org/10.1109/LGRS.2012.2230314
http://dx.doi.org/10.1186/s40562-018-0120-0
http://dx.doi.org/10.3390/rs12111747
http://dx.doi.org/10.1109/TIP.2010.2049927
http://dx.doi.org/10.1109/TIP.2020.2973819
http://dx.doi.org/10.1109/TMI.2016.2610583
http://dx.doi.org/10.1109/TGRS.2019.2958085
http://dx.doi.org/10.1007/BF01388691
http://dx.doi.org/10.1109/TGRS.2017.2743263
http://dx.doi.org/10.1109/LSP.2010.2099113


Remote Sens. 2021, 13, 549 16 of 16

19. Kailath, T. Some new algorithms for recursive estimation in constant linear systems. IEEE Trans. Inf. Theory 1973, 19, 750–760.
[CrossRef]

20. Bitmead, R.R.; Anderson, B.D.O. Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebra Its
Appl. 1980, 34, 103–116. [CrossRef]

21. Glentis, G.O.; Jakobsson, A. Efficient implementation of iterative adaptive approach spectral estimation techniques. IEEE Trans.
Signal Process. 2011, 59, 4154–4167. [CrossRef]

22. Karlsson, J.; Rowe, W.; Xu, L.; Glentis, G.O.; Li, J. Fast missing-data IAA with application to notched spectrum SAR. IEEE Trans.
Aerosp. Electron. Syst. 2014, 50, 959–971. [CrossRef]

23. Zhang, Y.; Mao, D.; Zhang, Q.; Zhang, Y.; Huang, Y.; Yang, J. Airborne forward-looking radar super-resolution imaging using
iterative adaptive approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2044–2054. [CrossRef]

24. Chen, G.; Zhu, F.; Ann, Heng, P. An efficient statistical method for image noise level estimation. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE: NW Washington, DC, USA, 2015;
pp. 477–485.

25. Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Li, W.; Yang, J. Sparse with fast MM superresolution algorithm for radar forward-looking
imaging. IEEE Access 2019, 7, 105247–105257. [CrossRef]

26. Majid, S.; Mohammad, J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in
developing laminar forced convection of water-Al2O3 nanofluid flow. J. Cent. South Univ. 2017, 24,1850–1865. [CrossRef]

http://dx.doi.org/10.1109/TIT.1973.1055104
http://dx.doi.org/10.1016/0024-3795(80)90161-5
http://dx.doi.org/10.1109/TSP.2011.2145376
http://dx.doi.org/10.1109/TAES.2014.120529
http://dx.doi.org/10.1109/JSTARS.2019.2920859
http://dx.doi.org/10.1109/ACCESS.2019.2932612
http://dx.doi.org/10.1007/s11771-017-3593-7

	Introduction
	Signal Model of Airborne Radar Imaging 
	One-Dimensional TV Method 
	Deduction of the Method
	Analysis of Computational Complexity

	Proposed GSFTV Method 
	GSFTV Method
	Analysis of Computational Complexity
	Selection of Parameters
	Evaluation of Computational Efficiency
	Evaluation of Approximated Error

	Performance Verification 
	Simulation
	Real Data Verification
	Real Data 1
	Real Data 2

	Hardware Testing

	Conclusions 
	References

