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Abstract: Detection of small moving objects is an important research area with applications including
monitoring of flying insects, studying their foraging behavior, using insect pollinators to monitor
flowering and pollination of crops, surveillance of honeybee colonies, and tracking movement of
honeybees. However, due to the lack of distinctive shape and textural details on small objects, direct
application of modern object detection methods based on convolutional neural networks (CNNs)
shows considerably lower performance. In this paper we propose a method for the detection of small
moving objects in videos recorded using unmanned aerial vehicles equipped with standard video
cameras. The main steps of the proposed method are video stabilization, background estimation and
subtraction, frame segmentation using a CNN, and thresholding the segmented frame. However,
for training a CNN it is required that a large labeled dataset is available. Manual labelling of small
moving objects in videos is very difficult and time consuming, and such labeled datasets do not
exist at the moment. To circumvent this problem, we propose training a CNN using synthetic videos
generated by adding small blob-like objects to video sequences with real-world backgrounds. The
experimental results on detection of flying honeybees show that by using a combination of classical
computer vision techniques and CNNs, as well as synthetic training sets, the proposed approach
overcomes the problems associated with direct application of CNNs to the given problem and
achieves an average F1-score of 0.86 in tests on real-world videos.

Keywords: small object detection; training on synthetic videos; convolutional neural networks;
UAVs; honeybees detection

1. Introduction

Convolutional neural networks (CNNs) have improved state of the art results on tasks
of object detection in images and videos [1,2]. However, the majority of these algorithms are
oriented towards detection of objects that are large compared to the size of a frame and have
distinctive visual features that can be used for learning discriminative object representations.
However, when target objects are small, e.g., less than 10 × 10 pixels, the obtained results
are considerably worse [3]. The main reason for this discrepancy is the lack of distinctive
shape and texture on small objects. It precludes learning useful representations of small
objects resulting in worse detection performance. Furthermore, general purpose object
detectors are trained to predict bounding boxes of objects in image or video, while for small
objects only the object coordinates, (x, y), are required in most applications.
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Small object detection is an important task with applications that include: surveil-
lance of insects or small animals, detection of small and/or distant objects in search and
track systems, sense and avoid functionality in unmanned aerial vehicles (UAVs), traffic
monitoring, and detection of dangerous or unusual behavior in overhead imagery and
videos etc. In this paper we propose a method for the detection of small moving objects
in videos recorded using UAVs and demonstrate its effectiveness for flying honeybee
detection. Possible applications of the proposed method include monitoring of flying
insects, studying their foraging behavior, using insect pollinators to monitor flowering
and pollination of crops, surveillance of honeybee colonies, and tracking the movement
of honeybees for various applications, such as humanitarian demining. [4,5]. While in
this paper we primarily present experiments with honeybees, the proposed method is
applicable to other types of flying insects and small blob-like moving objects in general.

There are a number of challenges associated with building an effective system for
detection of small moving objects. For example, in the case of honeybees, a detection method
must be non-invasive, meaning that it must not interfere with honeybees flying during
recording. Therefore, UAVs must be flown at higher altitudes. As a result, honeybees in
recorded video sequences will be very small, with a blob-like shape, and without a readily
noticeable texture, as shown in Figure 1a. In addition, the appearance of flying honeybees
may change during the sequence due to flapping of wings, shadows, camera gain variations
etc. Furthermore, honeybees are fast targets and individual honeybees may appear in only
one or two consecutive frames. Finally, backgrounds in video sequences recorded from UAVs
in natural conditions usually contain grass or other vegetation moving due to wind or air flow
produced by an UAV. Consequently, the foreground/background contrast ratio in frames
will be low and there will be motion that does not originate from flying honeybees. As a
result, it is hard, even for human observers, to spot honeybees in recorded videos, and almost
impossible in still images. However, as can be seen by comparing Figure 1a,b, it is possible
to notice the change of appearance at a particular location due to honeybee motion. Similar
problems could be identified in other applications involving detection of small moving objects.
Based on this, we decided to work with videos and detection of small moving objects based
on a fusion of information about their appearance and motion.

(a) (b)

Figure 1. (a) A part of a frame with a honeybee present captured from a height of 10 m using a 50 mm lens equivalent in 35 mm
system, where size of a pixel is roughly 2 × 2 mm. Honeybee location is marked with an arrow in the enlarged portion of the
frame. To make the honeybee visible in the original frame we scaled it with a factor of 2, so the size of a pixel is 4 × 4 mm.
The enlarged portion of the frame is additionally scaled with a factor of 4. (b) Same part of the frame as in (a) but without a
honeybee present. The previous location of the honeybee is marked with an arrow in the enlarged portion of the frame.
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Although many algorithms for moving object detection exist [6], due to the presence of
motion in the background, their direct application is limited and results in a large number
of false positive detections. To filter out these false positive detections, we propose using a
CNN trained on groups of consecutive frames, which learns a representation of appearance
and motion of small objects and outputs confidence maps of presence of moving objects in
the middle frame for each group of frames given as an input to it.

Since it is difficult for human observers to detect small moving objects in recorded
videos, manual labelling of a large number of videos, necessary to train a detector based on
a CNN, is a difficult and error-prone task. Because of that, there are no available training
datasets that can be used for this purpose. To solve this problem, we generated a synthetic
training dataset, with video sequences containing real-world backgrounds and artificially
generated small moving objects.

We use synthetic video sequences to train a CNN model and perform a series of exper-
iments with both synthetic and real-world video sequences. The goal of the experiments
with synthetic sequences is to investigate the impact of the parameters used for generation
of training data, as well as other design choices on performance of the detector. Most
notably, we vary the contrast ratio between artificial objects and background to find the
optimal contrast ratio in the training data that will give good results on a range of contrast
ratio values in the test sequences. At the task of detection of flying honeybees in real-world
videos our CNN-based method, trained on synthetic videos, achieves the average F1-score
of 0.86. To the best of our knowledge, this is the first method to use synthetic data for
training a small moving object detector and also the first method for detection of small
moving objects applied to the detection of flying honeybees in videos recorded using UAVs.

The main contributions of this paper are: (1) An approach that effectively uses both
appearance and motion information to detect small moving objects in videos captured
using UAVs. (2) Usage of synthetic data for training a CNN-based detector. (3) Evaluation
of the impact of the parameters used for generating synthetic training videos, as well as
other design choices on performance of the detector. (4) Investigation whether the detector
performance on synthetic data can be used as a proxy for performance on real-world
video sequences.

This paper is organized in the following way. In Section 2 we review the related work.
Section 3 contains descriptions of the datasets used for training and testing the approach.
In Section 4, a detailed description of the method for detection of small moving objects is
presented. The experimental results are presented in Section 5. In Section 6 we discuss the
obtained experimental results. Finally, Section 7 concludes the paper. The data used in this
study is publicly available at https://doi.org/10.5281/zenodo.4400650. The code used for
the experiments is publicly available at https://github.com/vladan-stojnic/Detection-of-
Small-Flying-Objects-in-UAV-Videos.

2. Related Work

In general purpose object detection, in the past years the state of the art results have
been obtained using approaches based on CNNs. The most well known approaches include
region proposal based R-CNN [2,7–9] and YOLO [1,10–12] families of models. However,
these object detection methods are oriented towards larger objects and learn models based
on their shape and appearance, which are not noticeable in small objects. A modification of
region proposal based CNN for small object detection is presented in [13] but it does not
use motion information.

In detection of objects in videos, motion is an important cue that can be used for
discriminating objects from the background. Moving objects detection, also known as
foreground detection or background subtraction is a classical computer vision task with
a rich history. For comprehensive reviews of the methods, interested readers are refered
to [6,14], and [15]. In addition, in [16] background subtraction in various real-world
applications is reviewed. Special attention is devoted to applications in intelligent visual
observation of animals and insects, most notably honeybee surveillance.

https://doi.org/10.5281/zenodo.4400650
https://github.com/vladan-stojnic/Detection-of-Small-Flying-Objects-in-UAV-Videos
https://github.com/vladan-stojnic/Detection-of-Small-Flying-Objects-in-UAV-Videos


Remote Sens. 2021, 13, 653 4 of 19

Taking into account the absence of distinguishing visual features in very small objects,
in [3] both appearance and motion information are used to improve state of the art in object
detection in wide area motion imagery. Similarly, in [17] a deep learning based approach
for joint detection and tracking of small flying objects is proposed. These methods also
use CNNs for detection, making them similar to our approach. However, for training
they use manually labeled real-world video frames, which are not easily obtained in our
case. Noting that visual systems of insects are naturally evolved to perceive small moving
targets, some papers investigate biologically inspired approaches to small moving target
detection in cluttered environments, [18–22].

The problem of detection of small targets is very important in infrared search and
track systems. Consequently, there is a considerable body of work dealing with detection
of small targets in infrared videos, such as [23–28]. Unfortunately, comparison of these
algorithms is difficult because, due to security restrictions, there are no publicly available
datasets of infrared videos featuring small targets.

In the past years, monitoring honeybees at the hive entrance [29–36], as well as in a
hive [37,38], has received considerable attention. Although closely related to the given
problem, these approaches are not applicable in our case, because honeybees in the videos
captured at hive entrance or inside a hive are larger and have noticeable color, texture,
and shape features.

Generally, the literature on detection of flying honeybees is rather scarce, but some
experiments, which are usually goal-oriented and where honeybees are used as detectors
of some property, could be found. Honeybees have a very developed olfactory system and
are able to recognize and detect scents from a large distance. With their ability of spatial
orientation, using the Sun as a light source, honeybees proved to be very good detectors
for sources of scents of interest. Because of that, researchers in [39–41] used detection
of flying honeybees in the context of locating land mines, by performing detection of
their movement on recordings obtained using a LiDAR. Application of short-time Fourier
transform to pixel intensities in high-frame rate video for honeybee activity sensing is
proposed in [42]. The main drawback of these methods is their reliance on special imaging
techniques, namely LiDAR and high frame rate video. In contrast, the method proposed in
this paper is based on videos captured using imaging in the visible part of the spectrum
and common frame rates.

A system for detection and tracking of individual animals in videos recorded without
using special imaging techniques, named idtracker.ai, is presented in [43]. However, it
uses CNNs trained on videos captured in laboratory conditions, with uniform background
and good contrast between targets and background, which is not the case in our usage
scenario. Visual tracking of individual small animals in natural environments using a freely
moving camera is presented in [44]. More similar to our work, the approach for honeybee
tracking proposed in [45] uses RGB videos recorded using a fixed-position camera in less
controlled conditions, with tree foliage in the background. For moving object detection,
frame differencing and background modelling using a recursively updated model are
used. However, only qualitative experimental results are presented. As already mentioned,
traditional moving object detection methods, such as frame differencing and background
subtraction, result in many false positive detections which need to be filtered out, so an
important part of our work is devoted to solving this problem.

3. Materials
3.1. Training Data

To circumvent the lack of labeled data suitable for training the detector, we generate
synthetic training data with backgrounds from real-world videos captured using UAV-
mounted camera to which we add artificially generated blob-like objects. For the purpose
of the experiments in this paper, the movement of the artificially generated objects was
derived, under the supervision of an expert, from manually selected and traced honeybees
in UAV videos, with small random variations. The resulting objects, named “artificial
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honeybees” were created in a way to mimic the appearance and flight patterns of honeybees
in search for food near the known location of food sources. It should be noted that the
described method for generating synthetic training data can be easily adapted to different
type of target objects and different real-world backgrounds.

To make the method invariant to background appearance, we captured 3 videos at
locations in Croatia. For capturing the videos used as backgrounds, as well as for testing
the proposed method, we flew UAVs at altitudes between 7 and 15 meters. We used
two very different UAVs, one quadcopter, DJI Inspire 1, and one large, proprietary-built,
hexacopter equipped with high-accuracy positioning system: Real-Time Kinematic (RTK)
GPS. RTK system, Figure 2, allows a very precise hovering and provides a better output
after automatic video-stabilization process. A limitation of this system is its requirement
for a base station in the relative vicinity of the rover station, in our case UAV, but for
covering a small area this limitation did not cause us problems. DJI Inspire 1 was equipped
with Zenmuse 5R digital camera, allowing recording of 4K uncompressed videos with the
possibility of using interchangeable lenses. For this purpose we used a 25 mm (equivalent
to 50 mm in 35 mm systems) lens. The hexacopter was equipped with a modified GoPro
Hero 6 camera with a 47 mm equivalent lens. These two setups provide similar recording
performance with the usage of different aerial vehicles to eliminate any equipment-bias
and provide different conditions for reproducibility of the experiment. Different lighting
conditions were eliminated using automatic camera settings and did not impose problems
in automatic processing of the recorded videos. Because of the nature of experiments, we
needed to have rather good atmospheric conditions with dry weather and almost no wind,
because honeybees avoid foraging in unfavorable weather conditions. All recorded videos
have 4K resolution with frame rate of 25 fps.

Rover station (UAV)

RTK Base station

Figure 2. GPS system with RTK consisted of Base and Rover station for enhanced positioning accu-
racy.

The choice of the parameters for recording real-world videos, were chosen in such a
way as to strike a balance between the ability of human observers to detect flying objects in
the recorded sequences and not interfering with flying honeybees. Since honeybees are
small targets, it is desirable to fly at lower altitudes to obtain as much information about
their appearance as possible. However, flying at low altitudes results in a considerable
amount of wind produced by the rotors of UAVs, which could interfere with flying hon-
eybees, as well as create moving artifacts from, for example, grass or other vegetation.



Remote Sens. 2021, 13, 653 6 of 19

Furthermore, flying at low altitudes results in covering only a small part of the surface area
in a frame, thereby reducing the ability of both human observers and the system to detect a
flying honeybee at several locations in the frame and use its motion as a cue for detection.

From the available recordings we selected only parts without visible honeybees or
other insects in order to obtain representative examples of backgrounds. However, since it
is very hard to detect small flying objects in videos, it is possible that some residual flying
insects exist in several frames of the selected videos. Nevertheless, we do not expect that a
small number of residual insects will negatively impact the performance of the detector,
since CNNs can tolerate a certain amount of labeling noise [46].

In order to remove global camera motion, i.e., to stabilize the video sequence, we fit
the affine transform between each frame in the sequence and the first frame, and then warp
all frames into a common reference frame. For estimation of the affine transform between
two frames, we first detect keypoints in both frames and compute their descriptors using
ORB detector and descriptor [47]. Then, we find matching pairs of keypoints by comparing
the descriptors using Hamming distance. Finally, the matches are used for robust transform
estimation using RANSAC algorithm.

We crop the frames of the stabilized videos into blocks of 1024 × 1024 pixels with
200 pixels overlap between successive blocks, and we skip 200 pixels from each side to
eliminate border effects caused by stabilization. After this procedure we are left with 96
background video sequences with frames of 1024 × 1024 pixels in size. Each background
sequence is 3 s long. Some examples of frames from the background sequences are shown
in Figure 3.

(a) (b) (c)

Figure 3. (a–c) Examples of frames from the used background sequences.

In the next step we add artificial honeybees to the obtained background sequences.
Examining the appearance and behavior of real-world honeybees in videos captured using
the same setup as described for the background sequences, we decided to represent artificial
honeybees as elliptical blobs modelled using 2D Gaussian kernels with standard deviations
randomly chosen from the intervals [2, 4.5] and [1, 3.5] for x and y axes, respectively.
The number, sizes, initial locations, initial flight directions, and initial velocities of the
artificial honeybees are also chosen randomly by sampling from uniform distributions with
minimum and maximum values given in Table 1. The texture of artificial honeybees is
modelled using Gaussian noise. We create several datasets with varying means of Gaussian
noise (texture means) to assess the impact of this hyperparameter on overall detection
accuracy. Specific values are given in Section 5 and discussed in the context of the obtained
detection results. We use the same value of 0.07 for standard deviation of Gaussian noise
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in all datasets. In each frame new velocity vt and flight direction θt of each honeybee from
the previous frame are calculated as

vt = vt−1 + ∆v,

θt = θt−1 + ∆θ ,
(1)

where ∆v and ∆θ are sampled from normal distributions with zero mean and standard
deviations 2 and 30, respectively, and vt−1 and θt−1 are honeybee velocity and direction
in the previous frame. New positions of honeybees are then calculated using projections
of their velocities onto x and y axes. If the new position of a honeybee is outside of the
visible part of the scene we do not add it to the frame. To simulate honeybees flying out
of and returning to the visible part of the scene we keep track of the positions of those
honeybees but do not add them to the frame. When adding artificial honeybees to a frame
we use their pixel values as alpha channel for blending between the background and
black pixels. Therefore, artificial honeybees with lower values of the texture mean will
appear lighter, i.e., will have low contrast ratio compared to the background, while artificial
honeybees with higher values of texture mean will have high contrast ratio compared to
the background.

Table 1. Parameters used for generation of artificial honeybees.

Parameter Min. Value Max. Value

Number of honeybees 5 15
Initial location (x, y) (4, 4) (1020, 1020)
Initial flight direction

(degrees) 0 360

Initial velocity (pix/frame) −28 28

Simultaneously, with generating frames for the training sequence, we generate the
ground truth frames that will be used as training targets. Ground truth frames are grayscale
frames with black background and artificial honeybees added in the same locations as in
the training frames. In this case, we add artificial honeybees by setting the pixel values
of the ground truth frame in the neighborhood of the honeybee location to the pixel
values of an artificial honeybee. In total, 1000 sequences with frames of 1024 × 1024 pixels
containing artificial honeybees are created using the described procedure. Of those, we
use 500 sequences for training, 250 sequences for validation, and we retain 250 sequences
for testing.

We train the network by feeding it with sequences consisting of 5 consecutive frames of
256 × 256 pixels in size cropped randomly from the synthetic training sequences. For each
of these sequences the network is trained to predict the ground truth frame corresponding
to the middle frame of the sequence. Since the number of honeybees in a single sequence is
relatively small, a majority of cropped frames will contain a small number of honeybees
or no honeybees at all. Therefore, including the cropped sequences into the training set
with uniform probability would result in pronouncedly imbalanced numbers of honeybees
present in each sequence. Bearing in mind difficulties of training the network with an
imbalanced training set, we decided to include the cropped sequences into the training set
with probabilities proportional to the number of honeybees present in the cropped part of
the frame. In this way, sequences with a large number of honeybees, although sampled less
frequently, will be more often included into the training set. In contrast, more frequently
sampled sequences with little or no honeybees will be less frequently included into the
training set. By sampling from the cropped sequences in this fashion, we obtain a training
set with 53,760, a validation set with 12,800, and a test set with 12,800 samples.
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3.2. Test Data

Besides testing on synthetic videos, we also evaluated the proposed method on real-
world videos captured using the same setup as described previously for capturing the
background sequences. We placed six hives near the examined area so the expected number
of honeybees was significantly larger than the number of other flying insects of similar
dimensions, the grass was cut and there were no flowers attractive to other pollinators.
In addition, during the recording we monitored the area and did not notice significant
presence of other flying insects and, in the labeling phase, we used knowledge about
honeybee flying patterns. Therefore, we can assume that the flying objects in the test
sequences are honeybees.

To quantitatively assess the performance of the proposed method on real-world videos,
we developed a tool for manual labeling of small moving objects in video sequences.
The developed tool enables users to move forward and backward through the video frame
by frame, and mark locations of target objects in each frame. Since objects of interest are
very small in comparison to the frame size, and it is of interest only to detect whether
an object is present at a particular location, its spatial extent is disregarded. Therefore,
bounding boxes or outlines of target objects are not recorded and only their locations in
each frame are saved and used as ground truth in performance assessment.

For testing, we extracted three sequences with durations of around 3 seconds from
the available recordings, performed their stabilization, and cropped a part of the frame of
512 × 512 pixels. The cropped regions were selected on basis of honeybee appearances,
i.e., we cropped those regions where it was possible for human observers to spot honeybees.
More specifically, during manual labeling of honeybees in these sequences, we noted that
it is hard for human observers to equally focus on all parts of a large frame, especially
with small target objects. This led us to choose the size of the cropped region in such a
way as to strike a balance between the desire to use as large region as possible in order
to obtain more information about the behavior of honeybees, and the human ability to
analyze large frames. We manually labeled all honeybees in these sequences and used the
obtained annotations to evaluate the performance of the trained detectors. To conclude,
the labeled test sequences contain frames with one to 4 honeybees, as well as frames
without honeybees.

4. Method for Detection of Small Moving Objects

The main steps of the proposed method are shown in Figure 4 and include video
stabilization, background estimation and subtraction, frame segmentation using the CNN,
and thresholding the output of the CNN. As we already discussed video stabilization in
Section 3, here we present the subsequent processing steps.

Background
estimation &
subtraction

Video
stabilization Thresholding

Frame
segmentation

CNN

Figure 4. Block diagram of the proposed method for detection of flying honeybees.

4.1. Background Estimation and Subtraction

In order to emphasize moving objects in each frame, we first estimate means and
standard deviations of the pixel values in a temporal window of previous frames. The pixel-
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wise mean of the frames in a temporal window can be regarded as background estimation,
since small moving objects are filtered out by time averaging the frames in the window.
In this step, we essentially fit a Gaussian probability distribution function, characterized
by its mean and standard deviation, to the values of each pixel in a window of previous
frames. Let I(x, y, t) be the frame at time instant t and N the number of frames in the
temporal window. We obtain the pixel-wise mean, i.e., background estimation, as

µ(x, y, t) =
1
N

N

∑
k=1

I(x, y, t − k), (2)

and standard deviation as

σ(x, y, t) =

√√√√ 1
N

N

∑
k=1

[I(x, y, t − k)− µ(x, y, t)]2. (3)

We subtract the estimated pixel-wise mean from each frame and divide the result with
the estimated pixel-wise standard deviation

Ibgsub(x, y, t) =
I(x, y, t)− µ(x, y, t)

σ(x, y, t)
. (4)

After this step, moving objects in the resulting frames will have larger pixel values than the
background, as shown in Figure 4. By subtracting the mean and dividing with standard
deviation we obtain a measure of dissimilarity of the current pixel value from the mean of
the Gaussian normalized by its width, i.e., standard deviation. It is expected that the values
of stationary background pixels will be closer to the mean compared to the values of pixels
belonging to moving objects so the differences between moving objects and background
estimation will be large. This procedure is usually referred to as background subtraction.
Thresholding the obtained differences was previously proposed for foreground detection in
video [48]. However, as discussed before, frames can contain moving artifacts, such as grass
moving due to wind. An example of the result of background subtraction from a frame is
shown in Figure 5a. We can see that a simple thresholding of this frame would result in too
many false positive detections, which is the reason why we feed the preprocessed frames
into a CNN and train it to segment moving objects. As it can be seen in Figure 5b our CNN
segmentation model is able to detect a small moving object and remove the unwanted
noise, such as grass moving due to wind.

4.2. CNN Topology

The frame segmentation CNN performs segmentation of the middle frame of a se-
quence of 5 consecutive frames into moving objects and background. The CNN topology
used in this paper is given in Figure 6, and the hyperparameters of layers are given in
Table 2. Inspired by the U-Net CNN topology with skip connections, proposed for medical
image segmentation in [49], we chose fully convolutional CNN, which made possible using
input images of different sizes. The used CNN model can be divided into two parts: the
encoder responsible for learning a representation of input data, and the decoder used for
obtaining the output segmentation map of the desired size based on the representation
learned by the encoder. The encoder consists of 3 blocks of convolutional layers with 3 × 3
kernels, batch normalization layers, and ReLU activations. Each block is followed by a
max-pooling layer. The last layer of the encoder is a 1 × 1 convolution layer, also followed
by batch normalization layer and ReLU activation. The output of the encoder is used
as input of the decoder. In the decoder the obtained feature maps are upsampled using
nearest neighbor interpolation and then fed to the convolutional layer with 3 × 3 kernel,
batch normalization layer and ReLU activation. Identical blocks with convolutional layer,
batch normalization layer and ReLU activation are repeated two more times. Given that
the target objects are small, it is important to make sure that fine details, present in input
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frames, are used in segmentation. To achieve this, we use symmetric skip connections
between outputs of convolutional layers in the encoder and the decoder with feature maps
of the same size, as shown in Figure 6. The final layer of the decoder is a convolutional
layer with only one 1 × 1 kernel and sigmoid activation. The obtained segmentation map
is two times smaller than the original frame. However, we decided not to add another
block with upsampling and convolutional layer, because that would increase the number
of trainable parameters and computational complexity. Instead, we just upsample the
obtained segmentation map using bilinear interpolation. The experimental results show
that this simplification does not negatively impact the results. Finally, to obtain an object
detection map, we threshold output of the CNN.

(a) (b)

Figure 5. (a) Result of background subtraction from a frame with grass moving due to wind. Location of a small moving
object is marked with an arrow. (b) Same part of the frame as in (a) but after processing with our CNN segmentation model.
Location of a small moving object is marked with an arrow.

Conv BatchNorm + ReLU MaxPool

UpSampling Sigmoid

Skip connections

Figure 6. CNN topology used for detection of honeybees.



Remote Sens. 2021, 13, 653 11 of 19

Table 2. Hyperparameters of CNN layers.

Layer Name Number of Filters Kernel Size Stride Padding

conv1 64 (3, 3) (1, 1) same
pool1 - (2, 2) (2, 2) valid
conv2 128 (3, 3) (1, 1) same
pool2 - (2, 2) (2, 2) valid
conv3 256 (3, 3) (1, 1) same
pool3 - (2, 2) (2, 2) valid
conv4 512 (1, 1) (1, 1) same
conv5 256 (3, 3) (1, 1) same
conv6 128 (3, 3) (1, 1) same
detect 1 (1, 1) (1, 1) same

4.3. CNN Training

During the training we optimize L2 loss between the model outputs and training
targets. Training targets are grayscale frames with synthetic honeybees at same locations
as in the training frames but with uniform black background. The CNN is fed with 5
consecutive frames and trained to segment the honeybees in the middle frame.

For optimization we use Adam [50] with hyperparameters given in Table 3 and
learning rate reduction with a factor of 5 after each 20 epochs. The training is terminated if
validation loss has not improved for 10 consecutive epochs.

Table 3. Optimizer hyperparameters.

Hyperparameter Value

learning rate 10−3

β1 0.9
β2 0.999
ε 10−7

weight decay 0.0
batch size 64

5. Experimental Results

In order to evaluate the proposed method on the task of detection of flying honeybees,
we perform two experiments. In the first experiment, we evaluate our trained model on
synthetic videos with honeybees whose texture is modelled using Gaussian noise with
different means, as described in Section 3. For the second experiment, we used real-world
sequences with manually labeled locations of honeybees.

In both experiments we trained one CNN for each dataset with a specific honeybee
mean texture value. We used mean texture values from the set {0.25, 0.5, 0.75, 1.0}, as well
as combined mean texture values of 0.25 and 0.5, and randomly chosen mean texture
values from the interval [0.25, 0.5]. In this way we obtained 6 different frame segmentation
CNN models.

Since we are interested only in detections of honeybees, we threshold the CNN output
and compute the centroids of the resulting connected components. These centroids are
considered as locations of detected honeybees. To evaluate the performance of the detector,
we compare these detections with ground truth honeybee positions. If the distance between
the detection and labeled position is less than 10 pixels, it is considered that the honeybee
is correctly detected. We chose 10 pixels based on the average size of a honeybee and to
introduce a degree of tolerance to imprecise human annotations. The performance of the
detector is expressed in terms of recall

R =
TP

TP + FN
, (5)
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and precision

P =
TP

TP + FP
, (6)

where TP is the number of true positive detections, FN is the number of false negative
detections, and FP is the number of false positive detections, aggregated from all frames in
a sequence. We also compute the F1-score as

F1 =
2RP

R + P
. (7)

5.1. Testing on Synthetic Videos

In the first experiment, we test the trained CNNs on synthetic test videos with varying
mean values of honeybee texture. By varying the texture mean in the test set, we vary
the contrast ratio between the moving objects and background thus making the detection
easier or harder. The goal was to create a controlled environment which would enable
us to examine the influence of the artificial honeybee model in training data to detection
accuracy when different honeybee models are used for testing, find the best honeybee
model for generating training data, and find the test honeybee model which can serve as a
good proxy for tests with real-world honeybee videos. To find out whether the proposed
detection algorithm benefits from background subtraction, we train and test CNNs, both
without and with this step, and compare the obtained results.

In order to find the best value of detection threshold applied to the output of the
frame segmentation CNN, we evaluate the performance of the detector on synthetic video
sequences for different values of the threshold. The training and testing sequences both
contain artificial honeybees generated with texture mean of 0.25. By varying the threshold
value, the values of recall and precision vary, resulting in the Precision-Recall curve given
in Figure 7. For threshold values above 0.6, no honeybees are detected so recall is zero and
precision is not defined. Based on this curve, for subsequent experiments we select the
threshold value of 0.1.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0.001

0.005
0.01

0.1
0.20.30.40.50.6

Figure 7. P-R diagram for tests on synthetic honeybees with background subtraction and varying
thresholds. The shown annotations are threshold values. For threshold values above 0.60 no
honeybees are detected.

The obtained experimental results, when synthetic bees are used for both training and
testing, are shown in Tables 4 and 5, for the cases without and with background subtraction,
respectively. We can see that, for detectors trained on synthetic videos with a single texture
mean, overall F1-scores are higher when background subtraction is used, irrespective of
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the texture mean used for testing. Moreover, when background subtraction is not used,
the detector performance deteriorates in cases when texture means of the training and
test honeybees differ significantly. This deterioration is somewhat less pronounced when
background subtraction is used. Overall, when a single texture mean value is used for
creating training sequences, the best results are obtained when it is set to the smallest value
of 0.25. In these sequences the contrast ratio between the moving objects and background
is low, which enables the frame segmentation CNN to successfully segment out both low
and high contrast moving objects. When the contrast ratio between the moving objects
and background in the training sequences is high, the frame segmentation CNN cannot
segment low contrast objects, resulting in lower detection rates.

Table 4. Detection results (recall/precision/F1-score) on synthetic honeybees without background subtraction for various combinations
of training and test mean texture values. 0.25 & 0.50 denotes using mean texture values of 0.25 and 0.50. [0.25, 0.50] denotes using
mean texture values randomly chosen from that interval. The average results with best F1 scores are marked in bold.

Mean Texture Value
of Test Honeybees

Mean Texture Value of Training Honeybees

0.25 0.50 0.75 1.00 0.25 & 0.50 [0.25, 0.50]

0.25 0.96/0.98/0.97 0.55/0.99/0.70 0.02/0.97/0.04 0.00/0.83/0.00 0.94/0.98/0.96 0.93/0.99/0.96

0.30 0.98/0.98/0.98 0.83/0.99/0.90 0.07/0.99/0.13 0.00/0.98/0.01 0.97/0.98/0.98 0.97/0.98/0.97

0.50 0.99/0.98/0.98 0.99/0.99/0.99 0.90/0.99/0.94 0.40/0.99/0.57 0.99/0.98/0.99 0.99/0.98/0.99

0.75 0.96/0.98/0.97 1.00/0.99/0.99 1.00/0.99/0.99 0.99/0.99/0.99 1.00/0.98/0.99 1.00/0.98/0.99

1.00 0.74/0.98/0.84 0.99/0.98/0.99 1.00/0.99/0.99 1.00/0.99/0.99 0.98/0.98/0.98 0.98/0.98/0.98

Average 0.93/0.08/0.95 0.87/0.99/0.91 0.60/0.99/0.62 0.48/0.96/0.51 0.98/0.98/0.98 0.97/0.98/0.98

Table 5. Detection results (recall/precision/F1-score) on synthetic honeybees with background subtraction for various combinations of
training and test mean texture values. 0.25 & 0.50 denotes using mean texture values of 0.25 and 0.50. [0.25, 0.50] denotes using mean
texture values randomly chosen from that interval. The average results with best F1 scores are marked in bold.

Mean Texture Value
of Test Honeybees

Mean Texture Value of Training Honeybees

0.25 0.50 0.75 1.00 0.25 & 0.50 [0.25, 0.50]

0.25 0.94/0.97/0.95 0.83/0.98/0.90 0.70/0.99/0.82 0.54/0.99/0.70 0.91/0.98/0.94 0.89/0.98/0.93

0.30 0.96/0.97/0.97 0.89/0.98/0.94 0.80/0.99/0.89 0.68/0.99/0.80 0.95/0.97/0.96 0.93/0.98/0.96

0.50 0.99/0.97/0.98 0.99/0.98/0.98 0.97/0.98/0.98 0.95/0.98/0.97 0.99/0.97/0.98 0.99/0.98/0.98

0.75 1.00/0.97/0.98 1.00/0.98/0.99 1.00/0.99/0.99 0.99/0.99/0.99 1.00/0.97/0.99 1.00/0.98/0.99

1.00 1.00/0.97/0.98 1.00/0.98/0.99 1.00/0.99/0.99 1.00/0.99/0.99 1.00/0.97/0.99 1.00/0.98/0.99

Average 0.98/0.97/0.97 0.94/0.98/0.96 0.89/0.99/0.93 0.83/0.99/0.89 0.97/0.98/0.97 0.96/0.98/0.97

When combinations of texture means are used for training, the obtained results
improve when no background subtraction is applied but are mostly unchanged in the other
case. Furthermore, compared to the case without background subtraction, we can see that
the performances are similar or even slightly better when background subtraction is not
used. However, the resulting difference in performance is very small and may very well be
a consequence of stochasticity in training the CNN. We may conclude that, when testing
on synthetic videos, both background subtraction and combinations of texture means are
effective in reducing the dependence of the detector performance on honeybee texture
mean value used in training sequences.
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5.2. Testing on Real-World Videos

In the second experiment we tested all the trained models using real-world videos
with manually annotated flying honeybees. The obtained results are given in Table 6,
for the case without background subtraction, and in Table 7, when background subtraction
was used. Similarly to the tests with synthetic video sequences, we can see that, when a
single value of texture mean is used for modelling honeybees in the training sequences,
the overall results are better when background subtraction is used. Furthermore, we can
see that, again, the best results are obtained when the texture mean of 0.25 is used for
training. Increasing the texture mean results in decreasing recall and increasing precision
of the detector. A possible explanation is that the network trained on high contrast artificial
honeybees is not able to detect low contrast honeybees, resulting in more false negative and
less false positive detections, i.e., higher precision and lower recall. However, training the
frame segmentation CNN using low contrast synthetic honeybees results in higher recall,
indicating that more honeybees are detected, without a significant decrease of precision.
We conclude that, by using the frame segmentation CNN, we succeeded in reducing the
number of false positive detections, which is one of the main drawbacks of the classical
moving object detection methods based on background subtraction.

Table 6. Detection results (recall/precision/F1-score) on real-world honeybees without background subtraction for various
training mean texture values. 0.25 & 0.50 denotes using mean texture values of 0.25 and 0.50. [0.25, 0.50] denotes using
mean texture values randomly chosen from that interval. In cases marked with X no honeybees were detected. The average
results with best F1 scores are marked in bold.

Test Sequence
Mean Texture Value of Training Honeybees

0.25 0.50 0.75 1.00 0.25 & 0.50 [0.25, 0.50]

test_seq1 0.61/0.97/0.75 0.19/1.00/0.33 0.01/1.00/0.02 X 0.56/0.97/0.71 0.51/0.98/0.67

test_seq2 0.41/0.95/0.57 0.11/0.96/0.20 0.00/1.00/0.01 X 0.38/0.96/0.55 0.34/0.97/0.51

test_seq3 0.82/0.78/0.80 0.34/0.82/0.48 0.07/1.00/0.13 0.04/1.00/0.08 0.71/0.86/0.78 0.76/0.89/0.82

Average 0.61/0.91/0.71 0.21/0.93/0.34 0.03/1.00/0.05 0.04/1.00/0.08 0.55/0.93/0.68 0.54/0.95/0.67

Table 7. Detection results (recall/precision/F1-score) on real-world honeybees with background subtraction for various
training mean texture values. 0.25 & 0.50 denotes using mean texture values of 0.25 and 0.50. [0.25, 0.50] denotes using
mean texture values randomly chosen from that interval. The average results with best F1 scores are marked in bold.

Test Sequence
Mean Texture Value of Training Honeybees

0.25 0.50 0.75 1.00 0.25 & 0.50 [0.25, 0.50]

test_seq1 0.89/0.95/0.92 0.78/0.96/0.86 0.76/0.98/0.86 0.58/0.99/0.73 0.82/0.95/0.88 0.81/0.97/0.88

test_seq2 0.85/0.83/0.84 0.78/0.92/0.84 0.71/0.95/0.81 0.55/0.97/0.70 0.81/0.88/0.84 0.76/0.89/0.82

test_seq3 0.77/0.90/0.83 0.54/0.95/0.68 0.45/0.90/0.60 0.34/0.92/0.50 0.60/0.94/0.73 0.56/0.95/0.70

Average 0.84/0.89/0.86 0.70/0.94/0.79 0.64/0.94/0.76 0.49/0.96/0.64 0.74/0.92/0.82 0.71/0.94/0.80

6. Discussion

The results on real-world sequences, shown in Tables 6 and 7, indicate that it is al-
ways beneficial to use background subtraction as a preprocessing step. From the results
in Tables 4 and 5, we can see that the tests on synthetic sequences benefit from back-
ground subtraction only in cases when a single contrast value is used in training sequences.
Nevertheless, given that the differences in performances on synthetic test sequences are
small, and probably caused by the stochasticity of training a CNN, we may conclude that
background subtraction is a useful preprocessing step resulting in improved detection per-
formance.
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The results on both synthetic and real-world sequences show that, with background
subtraction, the best results are obtained when low-contrast artificial honeybees with mean
texture value of 0.25 are used. Therefore, we may conclude that low-contrast artificial
honeybees better model the appearance of real-world honeybees than those with higher
contrast values and are, thus, better suited for training the frame segmentation CNN. This
conclusion is supported by visual inspection of the enlarged portion of the frame containing
a real-world honeybee, shown in the top row of Figure 8a. We can see that the contrast
ratio between the real-world honeybee and background is very low. Although honeybees
have vivid colors in UAV videos they appear featureless and with low contrast because of
the large distance from the camera compared to the size of a honeybee and motion blur
originating from their quick movements.

We expected that using combinations of texture means would act as a form of training
set augmentation and result in better detection performance. Surprisingly, when training
sequences contain honeybees with combinations of texture means, the results on real-world
sequences are worse than when a single texture mean is used, while when synthetic test
sequences are used, the performance of the detector stays unchanged. Since we trained the
segmentation CNN and tuned the hyperparameters of our detector on synthetic sequences,
this gap between the performances on synthetic and real-world test sequences indicates
that the detector has overfit to the training data, resulting in lower real-world detection
performance. A possible explanation is that the used model of a honeybee has shortcomings
and does not capture all variations that can arise in the appearance of real-world honeybees.
We plan to investigate this finding in more detail in future work.

Concerning the question whether tests on synthetic video sequences can be used as a
proxy for performance on real-world sequences, we observed that, when synthetic video
sequences are used for testing, tests on sequences with a single contrast value are not a
good proxy for performance on real-world sequences. However, the average performance
obtained using test sequences with different contrast values are better correlated with
results on real-world video sequences.

In Figure 8, enlarged portions of frames with true positive, false positive, and false
negative detections are shown. To get a better insight into the visual features of these three
outcomes of detection, we show both the raw original frames and the same frames after
background subtraction. It can be seen that it is very hard to detect honeybees in raw
frames but that background subtraction highlights changes in frames in comparison with
the estimated background. These changes are visible as bright spots in the bottom row of
Figure 8. Visual features of the background subtracted frames in Figure 8a (true positive)
and 8b (false positive) correspond well to the elliptical blob honeybee model, used for
artificial honeybees, which explains why they were obtained as positive detections. Based
on this example, we can conclude that modelling honeybee appearance alone is not enough
to achieve high precision and that motion information should be given more significance.
A possible approach to achieve this is to consider a larger temporal context by, for example,
using recurrent neural network for frame segmentation. However, visual features of the
background subtracted frame in Figure 8c do not fit into the elliptical blob model, which
suggests that, for avoiding false negatives, the honeybee appearance model should take
into account changes of honeybee appearance during flight.

Due to the lack of texture, it is difficult for both human observers and the proposed
detector to distinguish honeybees from other flying insects based solely on the information
contained in a video. Nevertheless, we believe that the proposed approach could still be
useful in applications involving honeybees because often we can safely assume that the
number of other flying insects is small enough to not significantly influence the results.
Such a detector can also remove the burden of detection of small flying objects from users,
enabling them to focus on their flight patterns and discriminate between e.g., honeybees
and other flying insects [51].
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(a) (b) (c)

Figure 8. Enlarged portions of example raw frames (top row) and frames after background subtraction (bottom row). (a)
True positive detection. (b) False positive detection. (c) False negative detection.

7. Conclusions

In this paper we presented a CNN-based method for detection of small moving objects
trained on synthetic video sequences with real-world backgrounds and artificially gener-
ated moving targets. The proposed approach uses both the appearance and the motion
information to detect small moving objects. We tested the trained detector on detection of
flying honeybees in both synthetic and real-world video sequences and obtained promising
results. In addition, we examined the influence of the parameters used for generating syn-
thetic training sequences and hyperparameters of the detector on detection performance.

An important feature of our work is that it demonstrates the possibility of training
an efficient small moving object detector using synthetic training video sequences. This
makes usage of CNNs, in applications such as insect video surveillance, in which manually
annotating training data is difficult or expensive, possible. Nevertheless, our experiments
showed that testing on synthetic data can provide some insights, but cannot be completely
relied on to serve as a proxy for the expected effectiveness on real-world data.

Since we train the frame segmentation CNN and tune the hyperparameters of the
detector on synthetic sequences, it is essential that the artificial objects in the training
sequences mimic the appearance of real-world objects as closely as possible. Therefore, we
chose the parameters for generating training data, namely the sizes and other parameters
used for generation of artificial objects based on the analysis of real-world recordings.
Consequently, it could be expected that the changes in the real-world data caused by
different properties of the target objects or different choices of the lenses, flying altitude,
etc. would result in a deterioration of detection performance. Although in this work we
chose the parameters for generating training data based on visual inspection of real-world
sequences, it would be an interesting avenue for future research to explore the possibility
to make the system more robust with respect to these parameters. Nevertheless, it should
be noted that the methodology presented in this paper may be used to generate synthetic
training and test sequences, which can be used to train and validate a small moving object
detector adapted to the requirements of a specific real-world problem.
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The proposed method for detection of small moving objects in videos captured using
UAVs opens up the possibility of its application to various honeybee surveillance tasks
such as pollination monitoring or land mine detection. In the future work we plan to
investigate possibilities of these applications in more detail.
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honeybees in video sequences and HCR-CTRO for managing the project and providing access to the
test minefields where video capturing took place.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
CNN Convolutional Neural Network
GPS Global Positioning System
ReLU Rectified Linear Unit
RTK Real-Time Kinematic

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision And pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

3. LaLonde, R.; Zhang, D.; Shah, M. Clusternet: Detecting small objects in large scenes by exploiting spatio-temporal information.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4003–4012.

4. Bromenshenk, J.; Henderson, C.; Seccomb, R.; Rice, S.; Etter, R.; Bender, S.; Rodacy, P.; Shaw, J.; Seldomridge, N.; Spangler, L.; et al.
Can honey bees assist in area reduction and landmine detection? J. Conv. Weapons Destr. 2003, 7, 5.
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