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Abstract: Hyperspectral imaging (HSI) has been widely investigated within the context of com-
putational imaging due to the high dimensional challenges for direct imaging. However, existing
computational HSI approaches are mostly designed for the visible to near-infrared waveband,
whereas less attention has been paid to the mid-infrared spectral range. In this paper, we report
a novel mid-infrared compressive HSI system to extend the application domain of mid-infrared
digital micromirror device (MIR-DMD). In our system, a modified MIR-DMD is combined with
an off-the-shelf infrared spectroradiometer to capture the spatial modulated and compressed mea-
surements at different spectral channels. Following this, a dual-stage image reconstruction method
is developed to recover infrared hyperspectral images from these measurements. In addition, a
measurement without any coding is used as the side information to aid the reconstruction to enhance
the reconstruction quality of the infrared hyperspectral images. A proof-of-concept setup is built to
capture the mid-infrared hyperspectral data of 64 pixels × 48 pixels × 100 spectral channels ranging
from 3 to 5 µm, with the acquisition time within one minute. To the best of our knowledge, this is
the first mid-infrared compressive hyperspectral imaging approach that could offer a less expensive
alternative to conventional mid-infrared hyperspectral imaging systems.

Keywords: hyperspectral imaging; mid-infrared; compressed measurement; image reconstruction;
side information

1. Introduction

In recent years, infrared hyperspectral imaging have been widely used in remote sens-
ing [1–3], planetary exploration [4,5] and industrial emissions monitoring [6,7], which is at-
tributed to the advantage that infrared hyperspectral imaging can obtain three-dimensional
(3D) data cube of the object, namely the 2D spatial dimension (x, y) and the spectral di-
mension λ. Due to the different absorption and reflection/emission spectra of different
substances, the characteristic spectra of different substances are different. Thus, infrared
hyperspectral imaging can identify and distinguish the substance with high confidence.
Existing hyperspectral imaging systems mostly use dispersive elements (e.g., prisms or
diffraction gratings) [8], filters [9,10] or the Fourier transform infrared spectroscopy tech-
nique [11,12] to decompose lights into various wavelengths followed by an infrared focal
plane array (IRFPA) to record them separately. Despite different principles and setups
are used for the above mentioned hyperspectral imaging methods, one common idea is
that photons are detected separately either in the spatial or spectral domain using a costly
IRFPA. Therefore, in most imaging systems, the trade-off among cost, spatial resolution
and spectral resolution is challenging. Furthermore, some systems require to capture the
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entire hyperspectral data cube of the target, making it difficult for systems to store and
transmit the data.

Nevertheless, “compressive sensing" (CS) makes it possible to break the trade-off
between the spatial-spectral resolution and cost. CS can be effectively used to reconstruct
complete target information by sampling only a small amount of data from the target,
which is far less than the data required by Nyquist sampling [13]. In 2008, an imaging
technology based on CS, single-pixel imaging (SPI), was proposed [14]. The SPI uses a
spatial light modulator (SLM) and a single-pixel detector to multiplex the two-dimensional
(2D) information of the target and capture the compressed measurement, respectively. Then
reconstruction algorithms are employed to retrieve the 2D information of the target, i.e.,
recovering the 2D image.

Inspired by this, the SPI framework was extended to 3D (x, y, λ) hyperspectral imaging.
In [15], a single-pixel hyperspectral imager (SPHI) was developed based on the Hadamard
Transform. The proposed SPHI worked in the pushbroom mode and employed both spatial
and spectral encoding to acquire the hyperspectral data cube over a visible spectral range of
450–750 nm. A digital micromirror device (DMD) was used for slow spatial encoding and
a resonant scanning mirror in combination with a fixed Hadamard mask was used for fast
spectral encoding. Based on a similar SPHI, a new CS algorithm, which can discriminate
plant species from the rest of a scene and identify biologically contrasted areas within a leaf,
was developed in [16]. In [17], the authors designed a near-infrared hyperspectral single-
pixel imager for chemical characterization within the broad spectral range of 1.5–2.2 µm, in
which they used a Fabry-Pérot tunable filter spectrometer and a DMD to achieve the high
spectral and spatial resolution of hyperspectral imaging, respectively. All the single-pixel
hyperspectral imaging systems described above were achieved by modulating intensity of
the imaging target. Here, the “intensity” usually contains the reflected or radiant intensity.
In particular, these SPHI approaches only have been executed from the visible up to the
short-infrared spectral range, approximately 2.2 µm [18–22], by modulating the reflected
intensity of the imaging object. Applying this technology to thermal target imaging remains
a significant challenge in terms of, e.g., modulating the radiant intensity of the target in the
mid-infrared (MIR) spectral range. To the best of our knowledge, there is no existing work
on MIR hyperspectral imaging based on the compressive imaging approach.

To extend the application domain of MIR-DMD, in this study, we devise a MIR
compressive hyperspectral imaging (MIR-CHI) system with a modified MIR-DMD, which
can modulate the intensity of radiation of the imaging object in the MIR spectral range,
i.e., 3–5 µm. Specifically, we leverage a fully integrated infrared spectroradiometer in
combination with a modified MIR-DMD to capture the spatial modulated and compressed
measurements at different spectral channels. Compared to traditional imaging systems
using a costly IRFPA, the MIR-DMD offers significantly larger pixel numbers and superior
modulation rate (above 20 kHz), and the compressive sensing scheme provides a less
expensive alternative. However, the commercially available DMD cannot be used directly
in our imaging approach, because the optical window of the DMD cannot transmit the
infrared radiation. To address this key bottleneck, we modify DMD by replacing the optical
window with an infrared material window, which ensures that the infrared radiation
emitted by targets is modulated favourably by the DMD. In this manner, the proposed
imaging approach can achieve infrared hyperspectral imaging without scanning by making
full use of the advantages of the modified MIR-DMD and the infrared spectroradiometer.
We summarize the main contributions of this paper as follows:

• A mid-infrared compressive hyperspectral imaging system is built, in which a modi-
fied MIR-DMD is employed to implement coded modulation.

• A sensing model based on randomly coded measurement and the other without
any coding (side information), along with a dual-stage reconstruction algorithm are
proposed to recover high quality MIR hyperspectral images.

• Encouraging results are obtained using CS image reconstruction on the measurements
captured by our MIR-CHI system. The results demonstrate that the proposed MIR-
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CHI system is a feasible method, which presents a less expensive alternative to
conventional MIR hyperspectral imaging systems.

2. Principle and Design
2.1. Concept and System Design

The framework of the proposed MIR-CHI system is illustrated in Figure 1. It primarily
consists of two subsystems, i.e., a spatial modulation subsystem and a spectral dispersion
subsystem. The former consists of an objective lens, a reflecting mirror, and a spatial light
modulator implemented by a modified MIR-DMD, which is used to encode the infrared
radiation of the target. The latter is composed of a condenser lens and an off-the-shelf
infrared spectroradiometer. This radiometer is used to acquire the compressive spectral
information by dispersing coded information of the target; it mainly comprises a circular
variable filter (CVF), condenser lens A and B, and a linear detector array.

The underlying principle of the proposed MIR-CHI system is described as follows.
Firstly, the infrared radiation of the target is focused onto the MIR-DMD by the objective
lens followed with a reflecting mirror. Subsequently, the MIR-DMD of predefined coding
patterns is used to randomly reflect the infrared radiation of the target to obtain the random
combination information of it. Thereafter, the reflected infrared radiation of the target
modulated by the MIR-DMD passes the condenser lens A, CVF, and condenser lens B
in sequence to converge the infrared radiation into the detector. The detector captures
the spectral intensity of the modulated radiation corresponding to the sequential coding
patterns. Finally, we use this spectral information along with the knowledge of the known
forward model specified by the coding patterns to solve the desired MIR hyperspectral
images.

Figure 1. Framework of proposed MIR-CHI system.

2.2. MIR-DMD

The DMD is a key component required to ensure that the proposed MIR-CHI system
works properly in the MIR spectral range from 3 to 5 µm. However, commercially available
DMDs have efficiency in the spectral range from about 0.35 to 2.5 µm because the native
encapsulation for the optical window of a DMD is the corning 7056 glass. Thus, it has
been widely used only in the visible to short-wave infrared spectral imaging so far. This,
unfortunately, makes the existing DMD incapable of being directly used in our imaging
system. To address this challenge, we propose to employ the infrared material ZnSe to
re-design the optical window of the DMD being used, named MIR-DMD, and it has a
superior efficiency in the spectral range from 1 to 14 µm. In this study, we assemble the
MIR-DMD based on a 0.7 XGA DMD produced by Texas Instrument with a standard glass
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window and aluminum coated micromirrors. The diffraction efficiency was measured
for testing and evaluation of hyperspectral imaging sensors in [23], where they drew a
conclusion that the DMD diffraction, while it must be taken into account, was not a major
problem.

The DMD is a high precision device that its micromirrors are easy to damage, and
improper encapsulation can cause the hinge of the micromirrors to fail. Therefore, it
requires a strict environment to modify a MIR-DMD. The steps of MIR-DMD manufacture
are described as follows: First, we cut the native optical window of original DMD in
dry and dust-free environment. Second, the infrared optical window will be obtained by
welding the infrared material ZnSe to the surface of the original metal protective cover,
which requires melting the ZnSe material. Moreover, to improve the infrared radiation
transmittance of the designed infrared optical window, anti-reflecting (AR) coating of the
3 to 12 µm is plated. Subsequently, we install the infrared window to the DMD under a
vacuum condition of 150 ◦C and fulling of N2. The modified MIR-DMD will be assembled
into our imaging system, the window transmission of which is depicted in Figure 2.

Figure 2. Modified MIR-DMD and transmission through its window.

2.3. Simulation Using ZEMAX

Based on the preceding discussion, we now evaluate the optical system of our proposed
MIR-CHI. It is designed by ZEMAX using the ray-tracing method and modulation transfer
function (MTF) of three different wavelengths, as depicted in Figures 3–6. We can clearly
see that the MTFs approach the diffraction limit, which indicates accurate measurements
can be obtained by the designed MIR-CHI system.

We present the design specifications of our system in Table 1. It has a working F-
number of 2, cross-track FOV of 6.3◦ × 4.7◦, and a spectral range of 3–5 µm. The spectral
resolution and number of channels are 0.02 µm and 100, respectively. The spatial resolu-
tion is tunable based on the principle of SPI [24]. Furthermore, the spectroradiometer’s
recording and the modulation of the MIR-DMD are precisely synchronized. It is worth
mentioning that, in our system, the highest frame rate of the MIR-CHI is determined by
the frame rate of the spectroradiometer being used.
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Figure 3. The layout of the complete optical system.

Figure 4. The diffraction MTF of optical system for 3 µm.
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Figure 5. The diffraction MTF of optical system for 4 µm.

Figure 6. The diffraction MTF of optical system for 5 µm.
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Table 1. MIR-CHI system design specifications and performance

Parameter Value

Scan type gaze
Spectral range (µm) 3–5
Spectral sampling (µm) 0.02
Channels 100
Working F-number 2
Cross-track-FOV (◦) 6.3× 4.7
Instantaneous FOV (mrad) 0.107
DMD array size (length×width) 1024× 768
DMD pixel size (µm) 13.68× 13.68
Detector array type InSb

2.4. Optical Sensing Model of the Proposed Architecture

In this section, we describe the mathematical model of the proposed MIR-CHI system,
illustrated in Figure 1. First, the infrared radiation of the target f0(x, y, λ) is focused on the
coded aperture T(x, y) using an objective lens, where (x, y) denotes the spatial coordinate
and λ is the wavelength. MIR-DMD is used as the coded aperture to modulate the infrared
radiation. Here, the coded aperture is a binary pattern that each element being equal to 0
(blocking the radiation) or 1 (passing the radiation). This modulation can be represented by

f1(x, y, λ) = f0(x, y, λ)T(x, y). (1)

The spatially modulated scene f1(x, y, λ) is then concentrated in a single point by a con-
denser lens, where it is captured by a MIR sensor. Specifically, an infrared spectroradimeter
is used as the sensor such that all the incoming modulated spectral source is captured in a
single measurement as function of λ

g(λ) =
∫∫

f1(x, y, λ) dx dy. (2)

The acquired spectrum is discretized by the spectroradimeter according to the pixel pitch
of the detector. For the l-th spectral band, this process can be mathematically expressed as

gl =
∫

g(λ)rect
(

λ

∆d
− l
)

dλ, (3)

where ∆d is the pixel size of the detector and rect(·) is rectangular sampling function.
Since the DMD is programmed to pixelized patterns, hereby we use the discrete matrix

T0 ∈ RM×N×K to denote the K different patterns with spatial size of M× N, meaning M
rows and N columns. Correspondingly, we assume that the infrared hyperspectral image
is F0 ∈ RM×N×L, where M and N are the spatial dimensions (same as the mask pattern)
and L is the number of spectral channels. Please note that for each measurement, i.e., the
sensor capturing once, we impose one pattern T(k) ∈ RM×N on the scene across all the
spectral channels (for every channel, the patterns are the same) and for l-th channel, the
captured value is

g(k)l =
M

∑
i=1

N

∑
j=1

f 0
i,j,lT

0
i,j,k, ∀l = 1, . . . , L; ∀k = 1, . . . , K, (4)

where f 0
i,j,l is the (i, j, l)-th element in F0 and T0

i,j,k is the (i, j, k)-th element in T0. This is the
conventional single-pixel imaging model but rather than capturing only a single measure-
ment one time, hereby our sensor captures L measurements and each one corresponding to
one spectral channel.
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Let Φk ∈ R1×MN and fl ∈ RMN

Φk = [T1,1, T2,1, . . . , TM,N ], (5)

fl =
[

f 0
1,1,l , f 0

2,1,l , . . . , f 0
M,N,l

]T
. (6)

We thus can re-write the formulation of Equation (4) as

g(k)l = Φk fl . (7)

Considering all the K measurements corresponding to K patterns

gl = Φ fl (8)

where

gl =
[

g(1)l , g(2)l , . . . , g(K)l

]T
∈ RK, (9)

Φ =

 Φ1
...

ΦK

 ∈ RK×MN . (10)

This can be further denoted as

g = Φ f + v, (11)

by considering all the L channels, where

g = [g1, . . . , gL] ∈ RK×L, (12)

f = [ f1, . . . , fL] ∈ RMN×L, (13)

and v denotes the measurement noise. The compression ratio in our model can be repre-
sented by η = K

MN for η ∈ [0, 1]. Following this, each spectral channel of the signal can be
reconstructed based independently on Equation (8) or jointly on Equation (11).

However, the reconstruction of MIR hyperspectral images is challenging at a low
compression ratio, inspired by the findings in [25–27], better reconstruction quality or faster
convergence can be achieved with an additional measurement as the side information at
the same compression ratio. Thus, we here consider using the measurement without any
coding as side information to aid the reconstruction. In our system, the side information of
the same scene can be obtained easily by imposing the all “1" pattern on the MIR-DMD.
This is

ḡ = [1, . . . , 1] f , (14)

where ḡ is the intensity of the side information. The side information model is now

g = Φ f + v, (15)

but now Φ ∈ R(K+1)×NM with the last row being all 1, and g ∈ R(K+1) with the last
measurement being ḡ in Equation (14).

Reconstruction from compressive measurements can be obtained by solving
Equation (15). Since the proposed model observes the side information of the same scene
as the hyperspectral images, this side information will facilitate the algorithm to improve
the reconstruction quality.
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3. Proposed Reconstruction Algorithm

Apparently, Equation (15) is an ill-posed problem and several CS algorithms have
been developed to solve it by employing different prior information such as sparsity, total
variation and low-rank [28–34] (We do notice that deep learning methods have recently
been used in CS of spectral images [35,36]. However, this is out of the scope of this paper.
The main contribution of this paper is the MIR-CHI design). To improve the sparsity of
signal to obtain better results, we hereby propose a dual-stage reconstruction algorithm
involving nuclear norm minimization. The former stage aims to promote the sparsity of
the signal in the learned dictionary using the K-singular value decomposition (KSVD) [37]
and the latter stage optimizes the results obtained in the first stage.

A flowchart representing the proposed algorithm for MIR-CHI reconstruction is de-
picted in Figure 7. After the side information and compressive coded measurements are
captured by the MIR-CHI system (left part in Figure 7), the dual-stage reconstruction
algorithm (middle part in Figure 7) proceeds the initial reconstruction by basis pursuit
(BP) [30], where the over-completed dictionary as sparse matrix is learned by KSVD on
the external infrared dataset. It is followed by extended multi-channel weighted nuclear
norm minimization (MC-WNNM) optimizing for the initial reconstruction images to obtain
clearer hyperspectral images (right part in Figure 7).

Figure 7. Flowchart of the algorithm for hyperspectral image reconstruction. Left: Input of coding patterns and correspond-
ing spectral measurements, and learned dictionary. Middle: First stage of reconstruction based on BP, following by the
second stage of optimizing using MC-WNNM. Right: Output of the reconstructed hyperspectral images.

Reconstruction Implementation

To boost the correctness of solution of f from its compressive measurements, CS theory
demands the use of sparsity promoting prior. Then its sparse representation can be denoted
by

f ≈ Ψθ, (16)

where Ψ is the dictionary (sparse representation basis) and θ denotes the sparse coefficients
of the signal under the basis. Under this transformation, the reconstruction problem can be
written as

θ̂ = arg min
θ
‖g −ΦΨθ‖2

2 + τ‖θ‖1, (17)

where τ is a regularization parameter, and ‖·‖1 represents the `1-norm used to impose the
sparsity.

As mentioned before, the dictionary Ψ is learned by KSVD. In particular, each image
patch can be represented as a sparse linear combination of a small number of atoms which
are selected from an appropriately over-complete dictionary Ψ ∈ RU×V with V atoms
(U � V). Each image patch is represented as a column vector x ∈ RU , where U is the
number of pixels within the patch. Then, this sparse representation process seeks the most
informative representation of the patch that minimizes the reconstruction error, i.e.,
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min
α∈RV

‖α‖0 ‖x−Ψα‖2
2 6 ε, (18)

where α = [α1, α2, · · · , αV ]
T denotes the sparse coefficients vetor. The `2-norm is the

objective function used to reduce the representation error. The `0-norm counts the nonzero
entries of a vector.

As our desired HSI is of the spatial size 64× 48 pixels, we train the dictionary by
treating the entire image at each channel as one patch. Specifically, a 3072× 6144 dictionary
is learned using the KSVD method on the training images from the infrared dataset [38].
The choice 6144 come from the requirement that the number of columns in the dictionary
is much larger than the number of rows in the dictionary. 12000 patches of size 64× 48
from the training images randomly selected are used as the training set. The orthogonal
matching pursuit (OMP) [30] algorithm is used for the atoms selection in the dictionary
learning step because of its simplicity and fast execution.

Then the sparse coding of θ̂ in Equtaion (17) is conducted by BP. After the estimation,
the reconstruction can be obtained by

f̂ = Ψθ̂. (19)

The recovery performance of such a convex optimization will degrade in the presence
of noise, and the solution can seriously deviate from the original solution of the inverse
problem. Inspired by the work in [39], which has been successfully used in visible image
denoising, we build a spatial-spectral model by extending the weighted matrix from
the RGB channels to the spectral channels. Since the matrix formed by nonlocal similar
patches in hyperspectral images is of low rank, low rank matrix approximation can be
used to recover the potential low rank structure of a matrix from its degraded observation.
Therefore, we propose a dual-stage reconstruction model to boost the reconstruction
quality via exploiting the high-dimensional structure of the desired signal. Specifically, by
integrating the compressive sampling model in first stage with the extended multi-channel
weighted nuclear norm minimization in the second stage for hyperspectral image patch
groups, a joint model for hyperspectral images reconstruction is constructed.

In this model, the hyperspectral images are initially reconstructed in the first stage.
Then for each reference patch, the patches in local neighbourhood with size T × T are
searched and most similar patches to it by the Euclidean distance are grouped into a
patch-group. Note that this patch grouping is conducted across L spectral channels. As
all the patches in the matrix (with each patch being a column) have similar structures,
the constructed data matrix should be a low-rank matrix. Based on this assumption, the
redundant information and noise can be effectively removed from the reconstructed data
using low-rank minimization as a constraint. Let F̂ ∈ RpL×Np being the patch group for a
reference patch with spatial-size

√
p×√p for L spectral channels and Np similar patches

are being collected. We formulate the MC-WNNM denoising as follows:

X̂ = argmin
X

∥∥W
(

F̂ − X
)∥∥2

F + ‖X‖w,∗, (20)

where X̂ denotes the denoised hyperspectral images, X denotes patch groups of the
desired hyperspectral images, ‖·‖F denotes the Frobenius norm, ‖X‖w,∗ = ∑i wiσi(X) is

the weighted nuclear norm of matrix X, w = [w1, · · · , wn]
T(wi > 0) is the weight vector,

and σi(X) is the i-th singular value of X. The weighting matrix W ∈ RpL×pL is introduced
to balance the noise in the spectral channels.
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W =


σ−1

1 I 0 · · · 0
0 σ−1

2 I · · · 0
...

...
. . .

...
0 0 · · · σ−1

l I

, ∀l = 1, . . . , L, (21)

where σl denote the standard deviation of the noise in the l-th spectral channel and I is
an identity matrix. Equation (20) can be solved using the alternating direction method of
multipliers (ADMM) [40] framework.

Specifically, we set the patch size as 6× 6, the number of spectral channels across the
patch and non-local similar patches as L = 30, Np = 70, respectively, the window size for
searching similar patches as 10× 10. The number of iterations in solving Equation (20) via
ADMM is set to 10. After we solved Equation (20), the patch groups X̂ are aggregated to
form the denoised hyperspectral images.

4. Simulation Results and Analysis

In this section, we conduct simulation to verify the hardware principle and the pro-
posed reconstruction algorithm. Infrared spectral images were obtained using scanning
spectral imaging system with a spectroradiometer (MR170). We randomly generate the
binary mask with equal probability of zeros and ones. The sensing process is simulated
to generate the measurements g. With these measurements as input, we perform the
reconstruction algorithms to get the reconstructed hyperspectral images. The peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) are employed as metrics to evaluate
the quality of reconstructed images. In all the simulations, the regularization parameters
are adjusted to provide the optimal results.

We test the proposed MIR-CHI system and reconstruction algorithms with the captured
infrared spectral images with ground truth, as shown in Figure 8. Three classical recon-
struction algorithms, OMP [30] using fixed sparse basis DCT, total variation (TVAL3) [31]
and one-stage without denoising process (BP using learned dictionary) are chosen as com-
parison methods. The compression ratio is fixed at the same value as η = 30%. It can be seen
that Figure 8a is an RGB scene with building, and Figure 8b is the coded scene. The spectral
images is of spatial size 70× 60 as shown in Figure 8c. Reconstructed spectral images using
different algorithms with and without side information (SI) are shown in Figure 8d, and
the PSNR and SSIM are summarized in Figure 9. In addition, for all four algorithms, the
reconstructed spectral images with SI have higher PSNRs and SSIMs than the reconstructed
spectral images without SI, which is in agreement with our analysis. Furthermore, we
notice that the dual-stage reconstruction algorithm with SI always performs best in terms
of PSNR and SSIM.

To evaluate the impact of the compression ratio on the quality of reconstruction, we
perform a set of reconstructed results at different compression ratios such as η = 0.5,
η = 0.3, and η = 0.2 for the selected spectral channel at 4–5 µm, depicted in Figure 10. We
again use PSNR and SSIM to evaluate the reconstructed results presented in Table 2 and
Table 3. Through increasing the measurement number, it provides more information about
the target and therefore would perform higher quality of reconstruction. Furthermore, in
contrast, the proposed dual-stage reconstruction algorithm can produce clearer imaging
results at every compression ratio.
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Figure 8. Coded and reconstructed spectral images with different algorithms compared with ground truth. (a) Original
scene; (b) Coded scene; (c) Original spectral images in the spectral range of 2–3 µm, 3–4 µm, 4–5 µm, and 5–6 µm;
(d) Reconstructed spectral images with different algorithms.

Figure 9. PSNR and SSIM of reconstructed spectral images with different algorithms.

Figure 10. Reconstructed spectral images with different algorithms for different compression ratios.
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Table 2. PSNR of reconstructed spectral images with different algorithms for different compression
ratios (CR).

CR TVAL3 OMP-DCT One-Stage Dual-Stage

W/SI W/O SI W/SI W/O SI W/SI W/O SI W/SI W/O SI

50% 26.3892 25.9950 24.8401 22.7719 25.1046 24.2007 27.7788 26.5584
30% 25.5676 24.9654 23.4370 22.7518 23.2535 21.2978 26.3541 25.1254
20% 20.5205 20.2104 21.6010 21.1771 21.3790 19.3972 23.4204 23.3864

Table 3. SSIM of reconstructed spectral images with different algorithms for different compression
ratios (CR).

CR TVAL3 OMP-DCT One-Stage Dual-Stage

W/SI W/O SI W/SI W/O SI W/SI W/O SI W/SI W/O SI

50% 0.9599 0.9472 0.9533 0.9470 0.9578 0.9516 0.9623 0.9536
30% 0.9103 0.9025 0.9269 0.9188 0.9248 0.9194 0.9363 0.9265
20% 0.8698 0.8259 0.8404 0.8163 0.8462 0.8114 0.8930 0.8785

5. Experiment Results and Analysis

To experimentally verify the effectiveness of the proposed imaging architecture and
the dual-stage reconstruction algorithm, we build a proof-of-concept MIR-CHI system, as
depicted in Figure 11. The basic components as follows: the objective lens is made of ZnSe
with a focal length of 127 mm. The modified MIR-DMD with numbers of 1024 × 768 pixels
is commanded by 16 × 16 “super pixels" to create random masks of 64 × 48 spatial
resolution. Thus, all the results of our experiment are of 64 × 48 pixels. The condenser
lens is made of ZnSe with a focal length of 190 mm, and the infrared spectroradiometer is
SR-5000N with 50 spectra/sec. Therefore, in our experiment, the acquisition time is less
than 1 minute when the compression ratio is fixed as η = 32% (1000 samples). We calibrate
our system using an infrared monochromator (Omni− λ3071i) before it captures data.

Figure 11. The prototype of proposed MIR-CHI system.

Subsequently, we apply the proposed MIR-CHI system prototype to acquire compres-
sive spectral information about blackbody target and validate our reconstruction algorithm.
The target is a carved “X" on a panel (in Figure 12a). The measurement captured by our
MIR-CHI system is shown in Figure 12b. The reconstructed images from the measurements
with and without SI are shown in Figure 12c. Since the ground truth is not available for this
real target, we evaluate it by visual perception and the spectral angular mapper (SAM) [41],
which is used to quantitatively demonstrate the spectral reconstruction effect. The SAM is
defined as follows:
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where 〈·, ·〉 represents the dot product between the reference image and its approximation.
A smaller value of SAM suggests the better reconstruction.

It can be seen from Figure 12c that the acquisition of side information alleviates the
poor performance attained without side information. In addition, it can be observed that
some visual artifacts are still visible in all competing methods. By constrast, our proposed
method significantly removes undesirable artifacts across all the hyperspectral images.

Figure 12. Blackbody target and reconstructed spectral images with different algorithms. (a) Original target; (b) Measure-
ment curve captured by our MIR-CHI system; (c) Reconstructed spectral images with different algorithms.

Furthermore, to verify the spectral fidelity of the proposed system, we compare the
spectral reconstruction results with the reference spectra depicted in Figure 13c,d. In
particular, the spectral signatures of the reference spectra acquired directly with the spec-
troradiometer (SR-5000N) at selected point highlighted in Figure 13a. And the recovered
spectra are extracted from 30 reconstructed hyperspectral images (The 30 wavelengths are
3.002 µm, 3.061 µm, 3.120 µm, 3.180 µm, 3.239 µm, 3.298 µm, 3.357 µm, 3.417 µm, 3.476 µm,
3.535 µm, 3.594 µm, 3.653 µm, 3.713 µm, 3.772 µm, 3.831 µm, 3.890 µm, 3.950 µm, 4.009 µm,
4.068 µm, 4.127 µm, 4.186 µm, 4.246 µm, 4.305 µm, 4.364 µm, 4.423 µm, 4.546 µm, 4.659 µm,
4.771 µm, 4.884 µm, and 4.996 µm.) at the same point. It can be seen that the spectra of all
algorithms with SI have a good match with the ground truth, and the proposed algorithm
gives the best results, which can be further demonstrated by the SAM (in Figure 13b). From
the reconstructed results of the referable blackbody target, we can derive a conclusion that
designed MIR-CHI system with different reconstruction algorithms can obtain accurate
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hyperspectral images and spectral information. Moreover, it can be seen clearly that our
proposed method with side information provides the best reconstructed results with re-
spect to both image clarity and spectral accuracy. Without the use of side information, the
proposed model yields less clear images and reconstructs the spectra poorly. This verified
the benefit of the side information in real data.

Figure 13. Reconstructed spectra with various algorithms compared to reference. (a) Original
target with selected point; (b) The SAM comparison of spectral reconstructed results with different
algorithms; (c) The spectral reconstructed results by different algorithms without SI; (d) The spectral
reconstructed results by different algorithms with SI.

In another experiment, an incandescent located 4m from the MIR-CHI system is used
as the thermal target. The reconstructed spectral images with SI of six selected channels
using different algorithms are shown in Figure 14b. It can be seen clearly that there is still
some artificial noise in the results of OMP-DCT and one-stage methods, while the TVAL3
tends to oversmooth the details of images. However, our proposed method presents the
best reconstructed results that not only preserves fine image details, but also removes the
visual artifacts significantly. Furthermore, we also found that the incandescent filament
cannot be recognized in its broadband MIR image (in Figure 14a), because it is so hot that
it saturates the detector, while in the spectral images the incandescent filament can be
clearly seen in Figure 14b, and its image features is also changed with the spectral channels.
Furthermore, it can also be found that the incandescent filament has stronger spectral
characteristics around 3.653 µm. Similarly, there are different spectral characteristics in
other substances, which would be useful in applications for distinguishing thermal targets.
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Figure 14. Incandescent target and reconstructed spectral images with different algorithms. (a) Original incandescent target;
(b) Reconstructed spectral images with different algorithms with SI.

6. Conclusions

In this study, we reported a MIR-CHI system that addresses the MIR hyperspectral
imaging problem using CS. As a key component, DMD was successfully modified as
MIR-DMD to adapt to infrared radiation modulation, which is implemented through
both randomly coded measurement and the other without any coding. To promote the
quality of reconstruction results, the correlation in hyperspectral images is leveraged to
develop a dual-stage reconstruction algorithm to recover infrared hyperspectral images
from these measurements. The simulation and experiment results demonstrated improved
performance of the reconstructed hyperspectral images with the SI, and the proposed
dual-stage reconstruction presents the best results. These results demonstrate that the
proposed MIR-CHI system is a feasible method, and presents a less expensive alternative
to conventional MIR hyperspectral imaging systems. Our system can be applied to identify
thermal targets with different spectrum characteristic such as recognizing the elements of
flammable material from its corresponding flames and gas elements from its corresponding
plumes. A direction for future work is to extend our hyperspectral imaging framework to
other infrared spectral applications.
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