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Abstract: Urban areas represent the primary source region of greenhouse gas emissions. Mapping
urban areas is essential for understanding land cover change, carbon cycles, and climate change
(urban areas also refer to impervious surfaces, i.e., artificial cover and structures). Remote sensing has
greatly advanced urban areas mapping over the last several decades. At present, we have entered the
era of big data. Long time series of satellite data such as Landsat and high-performance computing
platforms such as Google Earth Engine (GEE) offer new opportunities to map urban areas. The
objective of this research was to determine how annual time series images from Landsat 8 Operational
Land Imager (OLI) can effectively be composed to map urban areas in three cities in China in support
of GEE. Three reducer functions, ee.Reducer.min(), ee.Reducer.median(), and ee.Reducer.max()
provided by GEE, were selected to construct four schemes to synthesize the annual intensive time
series Landsat 8 OLI data for three cities in China. Then, urban areas were mapped based on the
random forest algorithm and the accuracy was evaluated in detail. The results show that (1) the
quality of annual composite images was improved significantly, particularly in reducing the impact
of cloud and cloud shadows, and (2) the annual composite images obtained by the combination of
multiple reducer functions had better performance than that obtained by a single reducer function.
Further, the overall accuracy of urban areas mapping with the combination of multiple reducer
functions exceeded 90% in all three cities in China. In summary, a suitable combination of reducer
functions for synthesizing annual time series images can enhance data quality and ensure differences
between characteristics and higher precision for urban areas mapping.

Keywords: Landsat 8; Google Earth Engine; time series images; urban areas mapping; random forest

1. Introduction

Urban areas are the key variables and hot spots that drive environmental changes [1,2].
However, access to resources and knowledge in multiple cities remains a significant chal-
lenge for social governance [3,4]. Mapping urban areas based on remote sensing data
is important for understanding urbanization and its impacts on the environment. It can
provide basic scientific decision-making data for the construction and management of
future cities for sustainable development.

In the past decades, many urban areas mapping studies have been performed based
on remote sensing technology [5–8]. For instance, based on the random forest algorithm,
Zhu et al. used Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Synthetic Aperture
Radar (SAR) data to perform urban areas mapping [9]. Schneider et al. used Moderate-
Resolution Imaging Spectroradiometer (MODIS) 500 m data to map global urban areas [10].
However, cities and their surroundings environments are composed of heterogeneous
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materials, leading to confusion between urban areas and other objects (e.g., cropland or
bare land), and urban areas mapping based on single-temporal observations is susceptible
to satellite data quality (e.g., stripes, clouds, and cloud shadows). Hence, accurately
extracting urban areas is a challenge [11].

The open access provision of Landsat and other data provides a wealth of data for
urban areas mapping. Image compositing is a tool to reduce data volume [12]. Composite
intensive time-series Landsat satellite observations can remarkably relieve the impact of
bare lands and croplands on urban areas mapping [13]. Based on annual multitemporal
Landsat data, Li et al. [14] provided an approach incorporating normalized difference
vegetation index (NDVI) time series to extract urban areas in Beijing. Compared with
previous methods using only single temporary data, Li et al.’s method relieved the con-
fusion between urban areas and other classes and had better performance in urban areas
mapping. However, in their method, 123 images needed to be downloaded, and it was
time-consuming to preprocess and classify all the images scene by scene locally.

Fortunately, high-performance planetary-scale platforms such as Google Earth Engine
(GEE) provide great potential for solving the above mentioned problems regarding urban
areas mapping [15]. GEE is a product of the development of big data and cloud comput-
ing technology [16,17]. It has been used in various environmental studies, including but
not limited to crop mapping, burned area mapping, and impervious surface area extrac-
tion [18–21]. In addition, Lu et al. proposed a new theory for the management and analysis
of high-dimensional data. It is an array-based modeling theory, which uses multidimen-
sional arrays to analyze geoscientific data [22]. A number of functions in GEE are designed
for analyzing multidimensional geoscientific data in remote sensing. The image composites
are simplified but made powerful by GEE. There are numerous annual synthesis methods.
Currently, there are few relevant studies evaluating the performance between different
composite methods. The aim of our research was to evaluate the performance of different
composite methods for urban areas mapping.

In this research, we attempted to determine how annual time series images from Land-
sat 8 Operational Land Imager (OLI) can effectively be composed to map urban areas. Three
cities in China were selected as the study areas: Beijing, Xi’an, and Xiamen. The three study
areas cover different noises (including bare land, clouds, and cropland). First, for each city,
all the available data of Landsat 8 OLI images in 2017 were used for mapping urban areas,
and three reducer functions, ee.Reducer.median(), ee.Reducer.max(), and ee.Reducer.min(),
provided by GEE, were selected to construct four schemes to compose images. Among
them, the first three schemes only used a single reducer method, and the last scheme used
a combination of multiple reducer methods. Second, the random forest (RF) algorithm was
chosen for supervised classification at the pixel level and feature importance evaluation
due to its robust performance and accurate classification accuracy [23,24]. Finally, through
a comprehensive comparison and analysis based on validation points, the performances of
annual composite images of the four schemes obtained by GEE for urban areas mapping
were evaluated.

2. Dataset and Study Area

China has seen rapid urbanization and the largest human migration in history [25],
particularly in the early 21st century. Three cities in China were selected as the study
area, namely Beijing, Xi’an, and Xiamen (Figure 1). Beijing is the capital of China and
the central city in North China, with a typical warm temperate semihumid continental
monsoon climate [26]. It is hot and rainy in summer and cold and dry in winter. It is one
of the ancient capitals of China with a history of more than 3000 years. Xi’an is a central
city in northwestern China, with a warm and semihumid continental monsoon climate.
Its history is very long, and it is also a “World Historic City” determined by the United
Nations Educational, Scientific and Cultural Organization (UNESCO) in 1981. Xiamen is
a central city in East China, with a subtropical maritime monsoon climate. It is a coastal
city that has been rapidly developing in recent decades. For each city, a track number
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(path/row) was selected as the mapping area based on Landsat World Reference System II
(WRS II) frames. The Landsat 8 OLI surface reflectance images corresponding to the three
study areas were collected by GEE, and detailed statistics of these images are indicated in
Table 1. The selected dataset is LC08/C01/T1_SR, which is the atmospherically corrected
surface reflectance from the Landsat 8 OLI sensor. The images we used contained 5 visible
and near-infrared bands (Coastal, Blue, Green, Red, and NIR) and 2 short-wave infrared
bands (SWIR1 and SWIR2) processed to orthorectified surface reflectance.

Figure 1. The locations of the three cities in China; a, b, and c represent Beijing, Xi’an, and Xiamen,
respectively.

Table 1. Information of the collected Landsat 8 OLI data.

Study Area Path/Row Data Acquisition No. of ImAges City Major Noise Source

a 123/32 All available Landsat 8 data in 2017 22 Beijing Croplands
b 127/36 All available Landsat 8 data in 2017 23 Xi’an Bare lands, Croplands
c 119/43 All available Landsat 8 data in 2017 23 Xiamen Clouds, Cloud shadows

3. Methods

The flowchart of this research is shown in Figure 2, which includes three steps. In
the first step, the Quality Assessment (QA) band of the LC08/C01/T1_SR dataset, which
was generated by the CFMask algorithm [27], was used for masking clouds and cloud
shadows. Three indices, including the normalized difference water index (NDWI) [28],
normalized difference vegetation index (NDVI) [29], and normalized difference built-up
index (NDBI) [30], were calculated from the annual time series Landsat images after cloud
masking. Then, in the second step, an annual composite image was obtained by the
multidimensional arrays [22] for analyzing geoscience data using GEE. Three reducer
functions, ee.Reducer.min(), ee.Reducer.median(), and ee.Reducer.max() provided by GEE,
were selected to construct four schemes to synthesize the annual intensive time series
Landsat data for each study area. Each study area can get four annual composite images.
Finally, the random forest algorithm was employed as a supervised classification and
feature importance evaluation method for the four annual composite images in each study
area. The performances of different annual composite images in mapping urban areas were
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comprehensively compared and analyzed for each study area. The 68 images required for
the research did not need to be downloaded locally.
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Figure 2. Overall flowchart adopted in this study.

3.1. Indices for Urban Areas Mapping

NDWI, NDVI, and NDBI were employed in this study. Calculations of these indices
are as follows:

NDWI = (Green − NIR)/(Green + NIR) (1)

NDVI = (NIR − Red)/(NIR + Red) (2)

NDBI = (SWIR − NIR)/(SWIR + NIR) (3)

where Green, Red, NIR, and SWIR represent land surface reflectance in green, red, near-
infrared, and short-wave infrared bands, respectively.

3.2. Annual Composite Image

Time series data in remote sensing have columns and rows, establishing arrays of two
or more dimensions. The size and variety of Earth observation data continue to increase,
which requires big data management tools and analysis methods. High-dimensional data
usually contain duplicate information, which is mixed with signals and is burdensome for
calculation and data storage. In order to stimulate analytics of Earth observation datasets
in the big data era (e.g., time series images of Landsat 8 OLI), Lu at al. [22] put forward an
array-based modeling theory, namely, multidimensional arrays, which is used to analyze
geoscientific data. The emphasis in this study was the reducer operation. The reducer
operations yield a meaningful array for high-dimensional data by particular aggregation
functions, for example, simple statistics such as calculating the median of the data. The
reducer operation plays an important role in dimension reduction and makes the data
comprehensible and presentable [15]. It also benefits in terms of decreasing the required
computation time and computational resources. Application of reducer operating by GEE
yielded annual composite images from time series images of Landsat 8 OLI in this study.

Devised for multidimensional data, the ee.Reducer function in GEE is an often-used
class that uses multidimensional arrays to combine time series data. Figure 3 explains the
function of ee.Reducer, and Table 2 presents some ee.Reducer functions provided by GEE.
The three reducer functions provided by GEE were selected to construct four schemes (see
Table 3) to compose the annual intensive time series Landsat 8 OLI data for the three cities.
In Table 3, schemes of (1)–(3) only used one reducer function to composite the spectral
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bands (SWIR1, SWIR2, Coastal, Blue, Green, Red, and NIR) of annual time series data to
obtain an image with seven bands; however, schemes of (4) used the combination of three
reducer functions to compose the NDVI, NDWI, and NDBI of time series data to obtain
an image with nine bands for each study area. For example, for NDVI, a combination of
reducer functions was used to extract the maximum, minimum, and median values of
NDVI annual time series data.
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Table 2. Some functions of reducer operation provided by GEE [17].

Reducers Examples Mode of Operation

Simple Count, distinct, first, etc.

Context-dependent

Mathematical Min, max, sum, product, etc.
Logical Logical, etc.

Statistical Mode, percentile, mean, median, etc.
Correlation Kendall, Spearman, etc.
Regression Linear regression, etc.

Table 3. The four schemes for image compositing of annual time series data at each study area

Scheme Reducer Use Band Use No. of
Bands of Composite Images

(1) ee.Reducer.min() SWIR1, SWIR2, Coastal, Blue, Green, Red, NIR 7
(2) ee.Reducer.median() SWIR1, SWIR2, Coastal, Blue, Green, Red, NIR 7
(3) ee.Reducer.max() SWIR1, SWIR2, Coastal, Blue, Green, Red, NIR 7

(4)
ee.Reducer.min(),

ee.Reducer.median(),
ee.Reducer.max()

NDVI, NDBI, NDWI 9

SWIR = Short-Wave Infrared Band, NIR = Near-Infrared Band, NDWI = Normalized Difference Water Index, NDVI = Normalized Difference
Vegetation Index, NDBI = Normalized Difference Built-up Index.

3.3. Classification and Accuracy Assessment

Supervised classification methods [31] can evidently enhance the efficiency of urban
areas mapping. Based on the evaluation of the stability performance and feature impor-
tance, the RF algorithm [32] was chosen for supervised classification at the pixel level in this
research. The RF method includes a large number of parameters. The number of variables
to be selected for the best split when growing the trees (Mtry) and the number of decision
trees to be generated (Ntree) are two important parameters to produce the forest trees [23].
More details regarding the parameters and properties of the default values can be found in
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Tyralis et al.’s work [33]. In this research, an open-source platform named scikit-learn [34]
was employed to implement the RF with Python. The Ntree parameter was assigned to
500, and Mtry was assigned to the square root of the number of input variables, as is usual.
Other parameters were assigned to default values. Variable importance estimation is also
one of the important advantages of random forest algorithms and is widely used in feature
selection. After classification, we conducted a variable importance estimation.

Accuracy assessment based on the error matrix is the most typically used method [35].
Statistically robust and transparent approaches play an important role in ensuring the
reliability of accuracy assessment [36]. One hundred random verification points were
generated for each type using stratified random sampling, and the total validation points
for urban and nonurban areas were 300 for each study area. Then, these points were
verified based on annual time series Landsat 8 data and high-resolution Google Earth
images for each classification result. Derived from the error matrices, the four typically
used accuracy measure indices [36,37] are overall accuracy (OA), commission error ratio
(CE), omission error ratio (OE), and kappa coefficients (K).

4. Results and Discussion

The performance results of the annual composites from GEE for each study area were
firstly assessed through visual comparisons. Subsequently, detailed comparisons of the
statistical characteristics of the samples from different composite results were performed to
characterize the features of urban areas and other objects. Finally, the performance of the
urban areas extraction for each study area was verified through visual comparisons and
four accuracy measures from error matrices.

4.1. Annual Composite Result

The annual composite images of the three study areas are displayed in Figure 4.
It can be clearly seen that most of the composite images have mitigated data quality
influencing factors, such as residual clouds and cloud shadows. Thus, the performance
of urban mapping may be improved, especially in cloudy areas. Meanwhile, the three
composite images calculated by selected reducer functions, namely ee.Reducer.min(),
ee.Reducer.median(), and ee.Reducer.max(), can reflect the phenological effect at each study
area; however, this cannot be achieved by the single-temporal image. More specifically, the
three composite images of Beijing and Xi’an exhibit more differences than Xiamen due to
their greater climatic and vegetation variations in different seasons.

NDVI is an important vegetation index, reflecting plant growth and other infor-
mation [38]. The NDVI images in the three study areas using the three reducers (e.g.,
ee.Reducer.min(), ee.Reducer.median(), and ee.Reducer.max(), respectively) are displayed
in Figure 5. Based on visual inspection, the NDVI images changed obviously in Beijing
and Xi’an in 2017 due to their typical warm temperate semihumid continental monsoon
climate. However, NDVI images in Xiamen exhibited much fewer differences because
Xiamen belongs to the subtropical marine monsoon climate, and vegetation is evergreen in
different seasons.

4.2. Sample Analysis

In the three study areas, the major land cover types include farmland, grassland, forest,
water, bare land, and urban areas. Specifically, we referred to the definition of urban from
Schneider [39]: a place dominated by the built environment, containing artificial cover
and structures, such as roads and buildings. “Dominated” means that the coverage of the
built environment in each pixel exceeds 50%. Combining the performance of the classifier
with the time series spectral characteristics of the features, the ground objects were divided
into three types: water, urban, and other (forest, grassland, farmland, etc.). Based on the
above knowledge, sample points for training were selected. Through visual interpretation
of annual time series Landsat 8 data and high-resolution satellite images in Google Earth,
stable training samples were collected. “Stable” indicates that the type of the sampling



Remote Sens. 2021, 13, 748 7 of 19

point did not change in 2017. For each type, 500 training sample points were selected
manually in each study area. The spatial distribution of these points is relatively uniform.

The scatter plots of the training sample points are the most simple and straightfor-
ward charts for assessing the separability and correlation of various training samples [40].
Figure 6 shows the training sample points of urban land along with two other types of
nonurban sample points collected from images of Beijng, Xi’an, and Xiamen. It is evident
that the urban samples group has unique characteristics with relatively larger NDBI val-
ues, negative NDWI values, and NDVI values close to 0. Furthermore, nonurban sample
points, especially for the other type (containing farmland, forests, grasslands, etc.), change
obviously in terms of NDVI, NDWI, and NDBI values by Analysis of Variance (ANOVA),
which is quite different from the urban samples (see Figure 6). This is because the other
types (containing farmland, forests, grasslands, etc.) change dynamically with the seasons,
but urban areas have no seasonal effects.
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4.3. Classification Results and Accuracy Verification

Before detailed verification is undertaken, a basic visual inspection should be con-
ducted to identify obvious errors in the classification results [41]. The classifications of
the urban areas using the four schemes in the three study areas are displayed in Figure 7.
Based on visual inspection, the performances in study areas a and b using the four schemes
were different but did not have a significant error. The performance in study area c using
the second and third schemes was unsatisfactory, with obvious errors (large urban areas on
the sea) (see Figure 7(c2),(c3)).

The error matrix for the urban classification for each scene was constructed with the
validation points and classification results. The assessment results are shown in Table 4.
When comparing the OA, CE, OE, and K of the four schemes in the three research areas,
the accuracy of the fourth scheme was better than the other schemes. Thus, the fourth
scheme (the combination of multiple reducer functions) is more appropriate for urban
areas extraction due to its consideration of phenological characteristics.
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Table 4. Accuracy evaluation of the four schemes in the three study areas ((a), (b), and (c) represent
Beijing, Xi’an, and Xiamen, respectively; 1, 2, 3, and 4 represent the schemes in Table 3).

Study Area Scheme OA (%) CE (%) OE (%) K

a

(1) 83.33 29.20 17.53 0.635
(2) 84.00 25.89 18.63 0.652
(3) 88.33 21.30 12.37 0.741
(4) 94.33 8.18 7.34 0.878

b

(1) 92.33 26.32 16.00 0.739
(2) 93.67 17.24 15.79 0.796
(3) 91.00 29.31 19.61 0.698
(4) 96.00 11.86 8.77 0.872

c

(1) 96.33 18.18 7.69 0.846
(2) 91.00 35.19 18.60 0.669
(3) 81.00 53.16 28.85 0.450
(4) 97.33 13.95 5.13 0.887

4.4. Performance Comparison when Suppressing Noise

Bare lands and croplands are the main sources of noise [42] in urban areas mapping
from remote sensing images due to their similarities with urban areas in the spectrum.
To examine the reliability of the four schemes in urban areas extraction, two major noisy
images, including bare lands and croplands, were derived from the study datasets. Per-
formance comparisons of the results of the four schemes are shown in Figure 8. For bare
lands, the results in Figure 8(a3),(a4) demonstrate that bare lands can be removed using the
third and fourth schemes, and the fourth scheme had the best performance. For croplands,
the results in Figure 8(b1),(b2) show that croplands cannot be removed using the first and
second schemes; however, the fourth scheme achieved a satisfactory result. In short, the
fourth scheme performed generally well in suppressing noises.

4.5. Feature Importance Evaluation

After training by random forest, the normalized feature importance of each variable
can be outputted; that is, the sum of all feature importance is 1 [24]. The feature importance
can be calculated internally in multiple ways, such as using the mean decrease in the
Gini coefficient [32]. The greater the feature importance, the more important the feature
is, and vice versa. Figure 9 shows the feature importance of the results derived from the
ee.Reducer.min(), ee.Reducer.median(), and ee.Reducer.max() functions for each study
area. It can be seen that although the three study areas are in different places and have
different climatic conditions, they had similar characteristics in feature importance. NDVI
and NDWI were the most important features, followed by Coastal, Blue, NIR, SWIR1, and
SWIR2 bands, and the Green and Red bands exhibited relatively less importance. Figure 10
shows the feature importance with all 30 predictor variables in Beijing. It can also be found
that SWIR1, SWIR2, NDVI, and NDWI were more important features.
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4.6. Performance of Multiple Reducer Functions

Urban areas mapping simply based on a single reducer function contains great un-
certainties because of spectral confusions among different land cover types, and these
limitations may be mitigated by applying multiple reducer functions to synthesize images.
To further examine the performance of the synthetic images based on multiple reducer
functions, the other two synthesis schemes were selected for urban areas mapping in
Beijing (see Table 5). Scheme (5) used images in two different seasons (summer and win-
ter) for urban areas mapping, and scheme (6) selected relatively important features. The
assessment results are also summarized in Table 5. Schemes (4)–(6) employed multiple
reducer functions, but the others employed only one. As can be seen from Tables 4 and 5,
when comparing the OA, K, OE, and CE of the six schemes in Beijing, the accuracy of the
schemes using multiple reducer functions was higher. Performance comparisons of the six
schemes are shown in Figure 11. It can be found that the schemes using multiple reducer
functions had fewer omission situations for urban mapping and better performance in
suppressing cloud and mountain shadows. In short, the schemes using multiple reducer
functions generally performed better in urban areas mapping.
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Table 5. Accuracy evaluation of the other two schemes in Beijing.

Scheme Reducer Use Band Use

No. of
Bands of

Composite
Images

OA (%) CE (%) OE (%) K

(5) ee.Reducer.min(),
ee.Reducer.max()

Coastal, Blue, Green,
Red, NIR, SWIR1,

SWIR2, NDVI, NDWI,
NDBI

20 92.33 10.00 10.81 0.835

(6)
ee.Reducer.min(),

ee.Reducer.median(),
ee.Reducer.max()

SWIR1, SWIR2,
NDVI, NDWI 12 95.00 7.34 6.48 0.892

5. Conclusions

Big data streams in remote sensing are reforming urban areas mapping. In particular,
long-term sequence-based satellite observations provide sufficient data for urban remote
sensing by GEE. This study employed composite images extracted by four schemes to
extract urban areas at GEE. Three study areas in China were selected, and random forest
was applied as a supervised classification at the pixel level to map urban areas. The
performances of urban areas extraction and noise suppression were comprehensively
compared for each study area. In this research, we attempted to determine how effectively
annual time series images from Landsat 8 OLI can be composed for urban areas mapping
in only three cities in China, and the work can be used as a reference for other cities and
even other land cover mapping studies. Some conclusions can be made from this research
as follows:

First, temporal information is crucial for urban areas mapping. Urban areas mapping
simply based on a single reducer function contains great uncertainties because of spec-
tral confusion among different land cover types, and these limitations can be obviously
mitigated by applying a combination of multiple reducer functions to synthesize images.

Second, vegetation and water indices, including NDVI and NDWI, are significant
features to identify urban areas based on the feature importance evaluation of the random
forest (see Figures 9 and 10).

While most urban areas maps are based on daytime optical and thermal sensors such
as Landsat 8 OLI/TIRS, there are other sensors that also supply distinctive observations for
urban areas, including but not limited to nighttime light sensors, LiDAR, and RADAR. GEE
provides high-performance parallel computing capabilities to process annual dense time
series data while storing multiple petabyte (PB)-level datasets including remote sensing
and other data. If combined with multisource remote sensing data and multiple reducer
functions by GEE, the accuracy of urban areas mapping can be further improved.
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