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Abstract: In this paper, we build on past efforts with regard to the implementation of an efficient
feature tracking algorithm for the mass processing of satellite images. This generic open-source
feature tracking routine can be applied to any type of imagery to measure sub-pixel displacements
between images. The routine consists of a feature tracking module (autoRIFT) that enhances com-
putational efficiency and a geocoding module (Geogrid) that mitigates problems found in existing
geocoding algorithms. When applied to satellite imagery, autoRIFT can run on a grid in the native
image coordinates (such as radar or map) and, when used in conjunction with the Geogrid module,
on a user-defined grid in geographic Cartesian coordinates such as Universal Transverse Mercator
or Polar Stereographic. To validate the efficiency and accuracy of this approach, we demonstrate
its use for tracking ice motion by using ESA’s Sentinel-1A/B radar data (seven pairs) and NASA’s
Landsat-8 optical data (seven pairs) collected over Greenland’s Jakobshavn Isbræ glacier in 2017.
Feature-tracked velocity errors are characterized over stable surfaces, where the best Sentinel-1A/B
pair with a 6 day separation has errors in X/Y of 12 m/year or 39 m/year, compared to 22 m/year
or 31 m/year for Landsat-8 with a 16-day separation. Different error sources for radar and optical
image pairs are investigated, where the seasonal variation and the error dependence on the temporal
baseline are analyzed. Estimated velocities were compared with reference velocities derived from
DLR’s TanDEM-X SAR/InSAR data over the fast-moving glacier outlet, where Sentinel-1 results
agree within 4% compared to 3–7% for Landsat-8. A comprehensive apples-to-apples comparison
is made with regard to runtime and accuracy between multiple implementations of the proposed
routine and the widely-used “dense ampcor” program from NASA/JPL’s ISCE software. autoRIFT
is shown to provide two orders of magnitude of runtime improvement with a 20% improvement
in accuracy.

Keywords: feature tracking; optical; radar; satellite imagery; surface displacement; glacier velocity;
earthquake displacement; landslide; remote sensing; ice displacement

1. Introduction

Knowledge of glacier and ice sheet displacement is important to refine our knowledge
of glacier mechanics and responses to environmental forcing. Among various methods,
spaceborne radar and optical imagery have been widely used to determine ice displacement
at high spatial and temporal resolution with large-scale spatial coverage [1,2]. Over
fast-moving ice surfaces, displacement is typically measured using feature (or speckle)
tracking between a pair of images [3–11]. For radar imagery, Synthetic Aperture Radar
Interferometry (InSAR) techniques can also be used to determine the line-of-sight surface
displacement between a pair of images [12–20]. Results from both approaches can be
combined to provide an optimal estimate of ice motion [21–24].

Studies have investigated the results obtained using various feature tracking programs,
as well as results obtained using InSAR techniques [25]. One of the most widely used
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feature tracking algorithms is the amplitude cross-correlator (“ampcor") developed by
NASA/JPL. ampcor is an open-source software that has been integrated to NASA/JPL’s
open-source InSAR processing software, such as ROI_PAC [26] and the InSAR Scientific
Computing Environment (ISCE) [27], which were further used to develop various feature
tracking software found in the literature [25,28–33].

This paper focuses on the efficient implementation of the feature tracking method and
presents a generic open-source feature tracking routine (Available at: https://github.com/
leiyangleon/autoRIFT (accessed on 10 January 2021)). We note here that the motivation
of this work is not to improve the accuracy of the feature tracking method or to improve
on current normalized cross-correlation algorithms; instead, our motivation is to build
on past efforts with the implementation of an efficient feature tracking algorithm for the
mass processing of satellite images. As described in Section 2, the routine consists of two
modules: (1) the feature tracking module, autoRIFT, which was first presented in [34] to
improve computational efficiency, is summarized here with several refinements; and (2) a
geocoding module, Geogrid, is introduced so that autoRIFT is able to run on any geographic
Cartesian coordinate grid without causing problems such as a loss of information and/or
image distortion as found in existing geocoding algorithms. In Section 3, to validate the
efficiency and accuracy of this routine, we demonstrate its use by utilizing ESA’s Sentinel-
1A/B radar data and NASA’s Landsat-8 optical data for tracking ice motion and examine
the performance (runtime and accuracy) of the proposed routine by benchmark against
the state-of-the-art ampcor program. This paper concludes with Section 4 and Section 5,
which provide further discussions and conclusions regarding the design and techniques
employed by the feature tracking routine. Auxiliary derivations for the geocoding module
can be found in Appendices A and B.

2. Methodology
2.1. autoRIFT: The Feature Tracking Module

The feature tracking algorithm called autoRIFT (autonomous Repeat Image Feature
Tracking) was first presented in [34] to improve the computational efficiency of the feature
tracking of repeat images. This algorithm finds the displacement between two images with
a nested grid design, sparse/dense combinative searching strategy and disparity filtering
technique, which are summarized below with several refinements.

From the two images, the source (also called the reference) and template (also called
the chip) image patches are extracted over a sampling grid and matched by identifying the
peak normalized cross-correlation (NCC) value. autoRIFT employs iteratively progressive
chip sizes, as illustrated in Figure 1a. When a particular chip size fails to estimate the
displacements, the signal to noise ratio can be increased by enlarging the size of the search
chip. In all cases, the minimum successful chip size is selected, ensuring the maximum
effective resolution of the displacement output. For the chip size to progress iteratively, a
nested grid design (as illustrated in Figure 1b) is developed where the original (highest
resolution) chip size can be iteratively enlarged by a factor of two. Pixel displacements
estimated with a larger chip size are performed on a coarser grid that is resampled and
posted on the grid of the finest chip size.

During the execution of each unique chip size, a sparse search is first performed
with an integer pixel accuracy at a downsampled grid. This is done to exclude areas of
“low-coherence” or a low signal to noise ratio, where the pixel displacement tracking is
unreliable. Following the sparse search, a dense search is sequentially performed with
sub-pixel accuracy and is guided by the results of the sparse search. Finding the sub-pixel
displacement involves oversampling the NCC correlation surface to identify a refined
location for the peak correlation. Most oversampling approaches are prone to pixel-locking,
which can bias the sub-pixel displacement estimate [35]. autoRIFT estimates sub-pixel
displacement using a fast Gaussian pyramid upsampling algorithm that is robust to sub-
pixel locking, where an adjustable oversampling ratio of 64 is used by default to resolve to
a precision of 1/64 pixel.

https://github.com/leiyangleon/autoRIFT
https://github.com/leiyangleon/autoRIFT
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Figure 1. (a) Template matching using normalized cross-correlation, and (b,c) the nested grid design in autonomous Repeat Image
Feature Tracking (autoRIFT), where (b) shows the image grid and (c) shows the geographic grid. In (b,c), original chips are shown as
black, dotted rectangles with the center grid point as a black dot, and chips enlarged by a factor of two (that iteratively progresses) are
shown as red, dashed rectangles with the center grid point as a red dot.

autoRIFT uses the Normalized Displacement Coherence (NDC) filter [34] to identify
and remove low-coherence displacement results based on displacement disparity thresh-
olds that are scaled to the local search distance. In other words, displacement results are
masked out if their local median absolute deviation (MAD) is beyond the normalized
displacement disparity threshold. Scaling the threshold to the local search distance has the
benefit of normalizing changes in the magnitude of the noise that scale with changes in the
search distance.

autoRIFT also allows users to specify the search center (center of the reference), search
distance (size of the reference), the downstream search displacement (center displacement
of the chip with respect to the reference) and iteratively progressive chip sizes (with
minimum and maximum specified, iteratively progressing by a factor of two), as well as
the number of disparity filter parameters that are beneficial for the efficient use of autoRIFT.
In particular, the downstream search displacement, search distance, minimum chip size
and maximum chip size can be spatially varied to accommodate regions with differing
mean velocities and variability. For example, 1) using the initial estimate of downstream
search displacement remarkably reduces the search distance over fast-moving targets, and
2) a small search distance with large chip size (coarse resolution) is well suited for resolving
low-gradient, slow-moving surfaces, while a large search distance with a small chip size
(high resolution) is required to resolve fast-moving targets with steep spatial gradients.

These model features result in the maximum extraction of inter-image displacements
with improved accuracy. They also provide greatly reduced computational overhead,
allowing for the mass autonomous processing of large image archives without manual
tuning of search parameters.

Several refinement techniques have been incorporated recently. The oversampling
ratio for the sub-pixel program can also be adaptively selected as a function of the chip
size. For example, for very slow motion, a large chip size can be used to increase the signal
to noise ratio of the NCC, justifying the use of a higher precision sub-pixel displacement
estimator that can be obtained using a larger oversample ratio (e.g., 128). Multiple image
pre-filtering options are also provided, allowing for the feature tracking of texture and
long-wavelength features (e.g., useful when topographic shading is a desired feature), as
well as the feature tracking with only texture (e.g., high-pass filtering, which minimizes
the correlation to topographic shading but is prone to temporal decorrelation). Other pre-
processing options include converting the amplitude images to different data types (e.g.,
an 8-bit unsigned integer or 32-bit single precision float). In particular, the combination
of high-pass filtering and conversion to an 8-bit unsigned integer further improves the
computational efficiency without compromising accuracy. The core processing in autoRIFT



Remote Sens. 2021, 13, 749 4 of 20

(i.e., NCC and image pre-processing) calls OpenCV’s Python and C++ functions and has
been parallelized with the capability of multithreading for further efficiency.

2.2. Geogrid: The Geocoding Module

When applying feature tracking to remote sensing imagery, it is always desired for
the computed displacements to be geocoded from the image coordinates to geographic
coordinates. Typically, there are two ways to geocode feature tracking outputs: the first
one geocodes the repeat images first and directly runs feature tracking in the geographic
coordinates, while the second one runs feature tracking on an image coordinate grid, which
is then geocoded to geographic coordinates. However, in both ways, either a repeat image
or displacement field is interpolated/resampled from image coordinates to geographic
coordinates. Such transformations are costly and result in a loss of information and/or
image distortion, e.g., over the shear margin of glacier outlets.

To overcome these limitations, we develop a new geocoding algorithm for feature
tracking outputs, which runs feature tracking in the native image coordinates but directly
over a geographic coordinate grid (not interpolated/resampled from an image coordinate
grid, as performed by the second method above).

In particular, a geocoding module, Geogrid, has been developed for one-to-one map-
ping (via two look-up tables) between pixel index and displacement in the image coor-
dinates (i, j) and geolocation and velocity in the geographic coordinates (X, Y), with X
and Y being easting and northing, respectively. Here, velocity represents the displacement
(in the unit of meter) divided by the time separation of the image pair. Therefore, the
feature tracking is performed in the native image coordinates, then mapped to geographic
coordinates, both of which are done directly over a geographic coordinate grid.

To utilize the Geogrid module, users first need to define a grid in geographic Cartesian
coordinates; e.g., Universal Transverse Mercator or Polar Stereographic. Then, the image
coordinate information needs to be known; e.g., radar orbit information for radar imagery
and map projection information for Cartesian-coordinate imagery. By using the image
coordinate information, along with the Digital Elevation Model (DEM) for the projection of
radar data, a look-up table between the pixel index in image coordinates and the geolocation
in the geographic coordinates can be obtained for each point on the geographic grid.

As illustrated in Figure 2, suppose a small increment is given to each dimension of
the image coordinates, ∆i (or ∆j); this in turn results in a small displacement in geographic
coordinates through coordinate transformation. Here, we denote the resulting unit vector
of displacement in geographic coordinates as û∆i (or û∆j). By using the unit vectors, û∆i

and û∆j, any map velocity vector (denoted as ~v = vXX̂ + vYŶ + vZẐ) can be related to
pixel displacement di and dj as below:

(~v · û∆j)∆t/∆j = dj (1)

(~v · û∆i)∆t/∆i = di, (2)

where ∆t is the time separation of the image pair. Note that “~ ” is a vector notation and
“ ˆ ” denotes a unit vector. Further, when local surface slopes (sX and sY) are also provided,

the unit vector of the surface normal can be expressed as n̂ = −sX X̂−sYŶ+Ẑ√
s2

X+s2
Y+1

[36]. By using

the slope parallel assumption, where surface displacement is assumed to be parallel to the
local surface; i.e.,

~v · n̂ = 0, (3)

the Z-direction (vertical) velocity can be expressed as a function of the X and Y-direction
displacement velocities. After rearranging the terms, (1)-(3) can be concisely written as(

vX
vY

)
= M

(
di
dj

)
(4)
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where the conversion matrix M is derived in Appendix A.

Figure 2. Look-up tables in Geogrid for one-to-one mapping between image coordinates (i, j) and
geographic coordinates (X, Y). Given a small increment ∆i in the i-direction (or ∆j in j-direction)
and through coordinate transformation, the unit vector of the induced displacement in (X, Y) is û∆i

(or û∆j).

As illustrated in Figure 2, this provides a translation (another look-up table) between
pixel displacement (di and dj) in image coordinates and velocity (vX and vY) in geographic
coordinates. By inverting (4), this module can also be used to estimate the downstream
search displacement (di0 and dj0) in image coordinates given an expected (reference) veloc-
ity (vX0 and vY0) in geographic coordinates.

A DEM is required in the above mapping between radar viewing geometry and the
geographic coordinate system, but results are relatively insensitive to DEM errors (a DEM
change or error of a few tens of meters results in pixel mis-registration on the order of 0.001
pixels). Therefore, error resulting from the elevation change between image acquisitions
or the DEM itself do not have a large impact on the co-registration (thus, the estimated
displacements) of the radar images. In contrast, an orbit precision of centimeter accuracy is
required to ensure good co-registration. Note that a DEM is not required for the application
of Geogrid to optical imagery.

It should be noted that when the slope parallel assumption fails, there is an error
propagation from the vertical velocity to the converted horizontal velocities; i.e.,(

εvX

εvY

)
=

[
P
Q

]
εvZ , (5)

where εvZ is the vertical velocity error by using slope parallel assumption, εvX and εvY

are the propagated error of horizontal velocities in X and Y directions and P and Q are
the propagation coefficients as derived in Appendix B. From (5) and Appendix B, it is
shown that the error propagation is linear and the linear coefficients P and Q relate to the
projection of the cross product of the two unit vectors, (û∆j × û∆i), onto X and Y directions.

2.3. Combinative use of autoRIFT and Geogrid

When run in conjunction with Geogrid, autoRIFT can operate on the original image
coordinates and output results directly to a user-defined grid in a geographic Cartesian co-
ordinate system. By using the first look-up table from Geogrid, we can map the geolocation
of each grid point (geographic coordinates) to its image pixel index (image coordinates).
Thus, autoRIFT can easily run over the geographic grid (as well as the image grid) by
looping over each grid point and tracing its pixel index in image coordinates, where the
core NCC is performed. The nested grid design for this geographic grid is demonstrated
in Figure 1c. All of the resulting pixel displacements along with other autoRIFT outputs
are directly established on the geographic grid. By using the second look-up table from
Geogrid, the autoRIFT-estimated pixel displacements (di and dj; image coordinates) are
transformed to the displacement velocities (vX and vY; geographic coordinates). As a
reverse operation, if reference displacement velocities (vX0 and vY0) are already known on
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a geographic grid, a priori displacement estimates can be obtained (di0 and dj0, which are
input variables of autoRIFT) through the use of the second look-up table from Geogrid
(e.g., inverting (4)).

3. Results
3.1. Study Site and Dataset

We validate the feature tracking routine over the fast flowing Jakobshavn Isbræ glacier
(N 69◦, W 50◦; Figure 3), located in south-west Greenland, using both Sentinel-1A/B radar
and Landsat-8 optical image pairs acquired in 2017 (Table 1).

Figure 3. Study area at the Jakobshavn Isbræ glacier, where the “red” rectangle marks the Sentinel-
1 data coverage, the “green” rectangle marks the Landsat-8 coverage, the shaded “purple” area
represents the stable surfaces used for comparison against the reference velocity map for error
characterization and the “red” star marks the location over the fast-moving glacier outlet for the
validation of the velocity estimates against high-resolution TanDEM-X data.

To validate the accuracy of the velocity estimates, we performed two separate tests:

(1) Stable surfaces (stationary or slow-flowing ice surface < 15 m/year, shown as the
shaded “purple” area in Figure 3): We first extracted the reference velocity over
stable surfaces and used the median absolute deviation (MAD) of the residual
to characterize the displacement accuracy. Since the surface velocities for areas
of “stable” flow experience negligible temporal variability, we used the 20-year
ice-sheet-wide velocity mosaic [37,38] derived from the synthesis of SAR/InSAR
data and Landsat-8 optical imagery as the reference velocity map. Stable surfaces
were identified as those areas with a velocity less than 15 m/year, which primarily
consisted of rocks in our study area, as shown in Figure 3 as most ice in this area
flows at a rate greater than 15 m/year.

(2) To characterize errors for the fast-flowing glacier outlet (N 69◦8′15′′, W 49◦33′17′′;
marked as the “red” star in Figure 3), we used dense time series of SAR/InSAR-
derived velocity estimates [38,39] from TanDEM-X mission as the truth dataset and
calculated the difference (relative percentage) relative to estimates generated using
autoRIFT.

Due to the large interannual and seasonal velocity variation of the Jakobshavn Isbræ
glacier [40], we relied on the accuracy metrics derived from the analysis over stable surface
to characterize displacement errors.

As tabulated in Table 1, 11 Sentinel-1A/B images and 10 Landsat-8 images, all acquired
in 2017 over the Jakobshavn Isbræ glacier, were selected to validate our feature tracking
routine. These data were selected to provide one image pair in each quarter throughout
the year of 2017, as well as one image pair for each temporal baseline (time separation
of the two images). Feature tracking results were generated for the seven Sentinel-1 and



Remote Sens. 2021, 13, 749 7 of 20

seven Landsat-8 image pairs listed in Table 2. To map radar viewing geometry, we used the
GIMP DEM [41,42] for the Greenland Ice Sheet. Both the DEM and the reference velocity
map were further resampled to a grid with 240 m spacing and a spatial reference system of
EPSG code 3413 (WGS 84 / NSIDC Sea Ice Polar Stereographic North).

Table 1. Sentinel-1 and Landsat-8 scenes utilized in this work.

Spaceborne Sensor Acquisition Date Path/Frame (Path/Row) Slant-range/Azimuth (X/Y)
Pixel Spacing (m)

Sentinel-1A 20170104 90/222, 90/227 3.67/15.59
Sentinel-1B 20170110 90/222, 90/227 3.67/15.59
Sentinel-1B 20170404 90/222, 90/227 3.67/15.59
Sentinel-1A 20170410 90/222, 90/227 3.67/15.59
Sentinel-1B 20170416 90/222, 90/227 3.67/15.59
Sentinel-1A 20170422 90/222, 90/227 3.67/15.59
Sentinel-1B 20170428 90/222, 90/227 3.67/15.59
Sentinel-1A 20170703 90/222, 90/227 3.67/15.59
Sentinel-1B 20170709 90/222, 90/227 3.67/15.59
Sentinel-1B 20171001 90/222, 90/227 3.67/15.59
Sentinel-1A 20171007 90/222, 90/227 3.67/15.59
Sentinel-1A 20170221 90/222 3.67/15.59
Sentinel-1B 20170227 90/222 3.67/15.59

Landsat-8 20170208 9/11 15.0/15.0
Landsat-8 20170224 9/11 15.0/15.0
Landsat-8 20170413 9/11 15.0/15.0
Landsat-8 20170429 9/11 15.0/15.0
Landsat-8 20170718 9/11 15.0/15.0
Landsat-8 20170803 9/11 15.0/15.0
Landsat-8 20170819 9/11 15.0/15.0
Landsat-8 20170920 9/11 15.0/15.0
Landsat-8 20171022 9/11 15.0/15.0
Landsat-8 20180721 9/11 15.0/15.0

Table 2. Pairs of Sentinel-1 and Landsat-8 scenes in Table 1 for the validation of the velocity estimates with error metrics. ROI: region
of interest.

Spaceborne Sensor Acquisition Date Temporal
Baseline (days)

Valid ROI
Coverage

(percentage)

Velocity Error in
Geographic X/Y

(m/year)

Velocity Error
in Slant-

Range/Azimuth
(m/year)

Difference
(Relative Percentage) of
Jakobshavn Velocity in

Geographic X/Y
(m/year)

Sentinel-1A/B 20170104–20170110 6 87% 27/78 21/88 −228(−4%)/−325(−5%)
Sentinel-1A/B 20170404–20170410 6 100% 12/39 8/44 253(4%)/−447(−8%)

Sentinel-1B 20170404–20170416 12 94% 12/35 8/41 N/A
Sentinel-1A/B 20170404–20170422 18 84% 14/36 10/40 N/A

Sentinel-1B 20170404–20170428 24 60% 15/34 10/38 N/A
Sentinel-1A/B 20170703–20170709 6 43% 15/44 10/44 163(2%)/−32(−1%)
Sentinel-1A/B 20171001–20171007 6 88% 30/87 21/94 432(5%)/−218(−3%)

Landsat-8 20170208–20170224 16 52% 91/160 N/A N/A
Landsat-8 20170413–20170429 16 74% 74/75 N/A −136(−2%)/−341(−6%)
Landsat-8 20170718–20170803 16 84% 22/31 N/A 346(4%)/−506(−6%)
Landsat-8 20170718–20170819 32 11% 23/27 N/A N/A
Landsat-8 20170718–20170920 64 31% 24/35 N/A N/A
Landsat-8 20170718–20180721 368 48% 2/2 N/A N/A
Landsat-8 20170920–20171022 32 30% 61/82 N/A −119(−2%)/−671(−9%)

3.2. Data Processing

Both autoRIFT and Geogrid have been integrated into the InSAR Scientific Computing
Environment (ISCE (https://github.com/isce-framework/isce2) (accessed on 10 January
2021)) to support both Cartesian and radar coordinates and can also be used as a stan-
dalone Python module (https://github.com/conda-forge/autorift-feedstock (accessed on
10 January 2021)) that only supports Cartesian coordinates.

Before performing feature tracking, the two images for each pair in Table 2 needed to
be co-registered. The Sentinel-1 Level 1.1 Interferometric Wide (IW) swath mode Single
Look Complex (SLC) radar images were pre-processed using the ISCE software. The
Geogrid module was then run for each image pair to determine the mapping between
image coordinates and geographic coordinates, where the geographic coordinates were

https://github.com/isce-framework/isce2
https://github.com/conda-forge/autorift-feedstock
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defined by an input grid. The input grid can be a real DEM when using radar coordinates
(as required for mapping of radar viewing geometry) or a “blank" DEM (all zero values) for
Cartesian coordinates. There were also a few other optional inputs; e.g., local surface slopes
by taking the gradients of DEM, a reference velocity for downstream search, reference
velocity-based search distance (in m/year) and minimum and maximum bounds of window
size (in m), all of which could be spatially varying for both X-/Y-direction components
and shared the same geographic grid (with a 240 m grid spacing and the projection of Polar
Stereographic North in this work).

Two outputs of Geogrid are shown in Figure 4. The radar range-direction downstream
search pixel displacement is shown in Figure 4a, which was calculated from the optional
input of the downstream search reference velocity. Further, the range-direction search
distance (in pixels) is shown in Figure 4b, which was calculated from the optional input
of the reference velocity-based search distance (in m/year). Note that the second look-
up table in Section 2.2 was used for generating both outputs in image coordinates (i.e.,
range/azimuth pixel displacement) from the optional inputs in geographic coordinates
(i.e., X-/Y-direction reference velocity). The first look-up table between range/azimuth
pixel index and geolocation is illustrated by the two “red" arrows in Figure 4.

Figure 4. Output of Geogrid module for Sentinel-1 data on a reference geographic grid (NSIDC North Polar Stereographic):
(a) range pixel displacement for downstream search, (b) range search distance. Both outputs were calculated using the 2nd
look-up table above. The colorbar unit shows the pixels in both of the subfigures. Note that the 1st look-up table between
pixel index and geolocation is not displayed but shown by the two “red" arrows.

Using the Geogrid module outputs as inputs to the autoRIFT module, we obtained the
final feature tracking outputs illustrated in Figure 5 for the Sentinel-1 and Landsat-8 image
pairs with the highest ROI coverage in Table 2. Given the grid spacing of 240 m in the
geographic grid and the pixel size for each type of sensor (4 m/15 m in range/azimuth for
Sentinel-1 and 15 m in both dimensions for Landsat-8), to maintain template independence,
we used progressive chip sizes from 32 to 64 for Sentinel-1 image pairs and from 16 to 32
for Landsat-8 image pairs. An NCC correlation surface oversampling ratio of 64 was used
for all of the image pairs so that the sub-pixel program could be solved to the precision of
1/64 pixel. All of the variables are output on the same geographic grid as the input DEM
to Geogrid.
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Figure 5. Velocity output of the autoRIFT module for the Sentinel-1 pair and the Landsat-8 pair with the best coverage
in this work: (a) Sentinel-1 velocity in X direction, (b) Landsat-8 velocity in X direction, (c) Sentinel-1 velocity in Y
direction, (d) Landsat-8 velocity in Y direction. The colorbar unit is in m/year in all of the subfigures. The Sentinel-1 pair is
20170404–20170410, and the Landsat-8 pair is 20170718–20170803, as identified in Table 2 with the highest ROI coverage.

From Figure 5, the radar and optical results can be seen to compare well with one
another, except for the streak artifacts in radar azimuth direction which are noticeable in
the geographic Y direction (Figure 5c). Note that the Sentinel-1 dataset was acquired in
ascending orbits with the azimuth component predominantly affecting the geographic
Y direction. The streak artifacts in Figure 5c are random and due to the ionosphere
effects [4,19,21,23,24,43] in the radar azimuth direction that can be minimized by stack-
ing/averaging multiple observations.

3.3. Error Characterization

As outlined in Section 3.1, the velocity errors over the stable surfaces (stationary—e.g.,
rock—or slow-flowing ice surfaces with a reference velocity <15 m/year, as illustrated in
Figure 3) were calculated for each image pair and are tabulated in Table 2. The error metrics
are provided in geographic X/Y directions, and in range/azimuth for radar imagery.
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Before calculating the error metric (MAD), the reference velocity needed to be sub-
tracted over stable surfaces and the residual velocity median bias needed to be taken out.
Satellite optical imagery can suffer from large (5 to 30 m) mean geolocation errors that
manifest as large shifts in displacement [34]. These can be easily corrected for by applying
median bias adjustments as determined through a comparison with stable surfaces. The
correction for the median displacement error was also performed for the radar results
(Table 2), although this error is usually negligible for radar imagery.

For the four radar image pairs with a temporal baseline of 6 days (one pair in each
quarter), the velocity errors, as well as the region of interest (ROI) coverage, exhibited
noticeable seasonal effects. The errors in January and October were almost twice as large as
those in April and July, which implies that the accuracy of winter acquisitions can be worse,
with a loss of correlation likely due to changes in surface properties; e.g., heavy snowfall
and/or change in water content. The ROI coverage in July (43%) was lower compared to
other times of year (>85%), which can be explained by the strong temporal decorrelation
due to surface melting. Among all Sentinel-1 pairs, the April pair had the best spatial
coverage (an ROI coverage of 100%) and accuracy (with errors of 12 m/year in X and
39 m/year in Y). The corresponding errors in radar coordinates were 8 m/year in range
and 44 m/year in azimuth. Errors in the azimuth direction were much larger than in the
range direction because of increased sensitivity to ionospheric delays and four times coarser
spatial resolution (see Table 1). The velocity magnitude error for this 6 day Sentinel-1A/B
pair was 22 m/year, which was within the range of the reported values (17–25 m/year)
from 12 day Sentinel-1A pairs over the slow-moving areas in Greenland [44].

We next examined the temporal baseline dependence of the radar-measured error
metrics. Four temporal baselines (6, 12, 18 and 24 days) were selected as in Table 2 with
reference to the best pair in April. The ROI coverage dropped slowly from 100% to 60%, and
the errors did not change remarkably, with some being slightly better than the 6 day pair.
Note that this result itself (with only one sample for each temporal baseline) was not suffi-
cient to conclude that the velocity errors did not drop as the temporal baseline increased;
rather, it may imply that the decrease rate of velocity error was not very large. Larger
temporal baselines (e.g., greater than 36 days) usually cause severe temporal decorrelation
(thus, small ROI coverage) in Sentinel-1 image pairs.

For the four optical image pairs at the temporal baseline of 16 days (one pair in each
quarter, and the October pair was only available with 32 days), both the velocity errors
and the ROI coverage exhibited strong seasonal effects. The pair with the largest velocity
errors was in January (91 m/year in X and 160 m/year in Y) due to low illumination
and poor surface contrast during the polar night. The pair with the lowest errors was in
July (22 m/year in X and 31 m/year in Y) when ROI coverage peaked at 84%. This July
coverage maxima was opposite to the July coverage minima for the radar results, implying
that both the optical and radar satellite imagery complement each other when mapping
polar ice sheet motion. It should be noted that the presence of cloud greatly affects the ROI
coverage when using optical imagery.

An analysis of temporal baseline dependence was performed for the optical error
metrics. Four temporal baselines (16, 32, 64 and 368 days) were selected as shown in
Table 2. The ROI coverage became very low at 32 day and 64 day temporal baselines due
to the presence of a large amount of cloud cover, while the accuracy was not substantially
impacted. However, with a 368 day temporal baseline, the errors dropped by a factor of
10–15 while the ROI coverage was 10% better than the 64 day case. This is a big advantage
of using optical satellite imagery with long temporal baselines (of a few months to a year)
as radar imagery decorrelates at such long temporal baselines (i.e., a year).

All of the error metrics reported in this work are specific to the used Sentinel-1A/B
and Landsat-8 image pairs over the Jakobshavn Isbræ test site with the current processing
setup (a progressive chip size with minimum/maximum of 32/64 for radar and 16/32
for optical processing, as well as a sub-pixel oversampling ratio of 64). Besides seasonal
variation and time separation dependence, errors and ROI coverage are expected to change
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greatly between image pairs depending on environmental factors such as local surface
conditions, illumination, cloud cover, ionosphere disturbance, feature persistence and
surface deformation.

3.4. Validation with TanDEM-X Time Series

As outlined in Section 3.1, the velocity estimates over fast-flowing ice surfaces (Jakob-
shavn Isbræ glacier outlet, marked as the “red” star in Figure 3) were compared with dense
time series of SAR/InSAR-derived velocity estimates [38,39] from TanDEM-X data (ground
truth). We calculated the difference (relative percentage) between the ground truth and the
estimates (also tabulated in Table 2).

Although the ground truth data are generally derived using the combined method of
feature tracking (over fast-moving ice) as well as SAR interferometry (over slow-flowing
ice) [38], in our test site, they were primarily derived from TerraSAR-X data using the
feature tracking method and were only available for the area covering the terminus of
the Jakobshavn Isbræ glacier near the “red" star in Figure 3. The time-series results are
illustrated in Figure 6, where the TanDEM-X results were available for almost every 5 days
during the majority of the year. There was a remarkable seasonal variability in velocity at
this fast-flowing glacier outlet, where the X and Y-direction velocities were anticorrelated.

Figure 6. Comparison of the velocity time-series estimates of the Sentinel-1 and Landsat-8 data in
this work against the ground-truth data (TanDEM-X) over the fast-moving glacier outlet as marked
in Figure 3: (a) velocity in X direction, (b) velocity in Y direction.

To compare with the ground truth, we selected one image pair in each quarter from
both Sentinel-1 and Landsat-8 datasets. The pixel value of the Landsat pair in January
was not available for this location due to the polar darkness. As tabulated in Table 2, the
difference for Sentinel-1 data was roughly 250 m/year with a relative percentage of 4%
for both X and Y-directions and did not show a noticeable seasonal variation. Note the
velocity fluctuation in the ground truth time series that is prominent between June and
September was likely an artifact of changing the TanDEM-X acquisition geometry.

From Table 2, the X and Y-direction velocity estimates from Landsat-8 data can be
observed to be slightly different compared to the ground truth: 200 m/year with a relative
percentage of 3% for X-direction and 500 m/year with a relative percentage of 7% for the
Y-direction, where the velocity difference does not show a noticeable seasonal variation.
The large difference in X and Y-direction velocity errors could be due to the orientation
of linear crevasse features, a strong velocity gradient, differing sensor viewing geometry
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or errors in the DEM used in either the TanDEM-X or Landsat processing. The current
study site at the terminus of the Jakobshavn Isbræ glacier serves as the worst-case example
(maximum errors expected) as it is the fastest glacier in the world (rapid decorrelation), is
experiencing extreme rates of thinning (up to 50 m/year) and has strong spatial gradients
and large inter-annual variability.

As shown in Table 2, the difference between our estimates from Sentinel-1 A/B or
Landsat-8 and the ground truth TanDEM-X data could be much larger than the error
metrics reported in Section 3.3, with large spatial and temporal variability at fast-moving
glacier outlets. This has been confirmed with other studies [44,45] that showed that velocity
estimates derived from Sentinel-1 and TanDEM-X have a good agreement over most
parts of Greenland; however, the difference can be as large as 4–8% in areas with strong
spatial gradients in surface velocity (e.g., our study site in this section). Therefore, the
velocity difference at the fast-moving glacier outlet does not characterize the overall error
in the velocity retrieval well; rather, the reported disagreement represents a combination
of differing sensor resolution, temporal variability in surface flow, error in TanDEM-X
velocities and errors in autoRIFT-derived velocities.

3.5. Runtime and Accuracy Comparison

In this section, we compare the runtime and accuracy between ampcor and autoRIFT.
As shown in Table 3, the advanced version of ampcor (“dense ampcor"; with a much denser
grid) from the ISCE software (v2.2.0) was used for comparison with multiple modes of
autoRIFT. Since dense ampcor only supports radar images and image grids (not geographic
grids), we first performed an apples-to-apples comparison between dense ampcor and
the standard mode of autoRIFT in the image grid (range/azimuth coordinates) for one
Sentinel-1A/B image pair (20170221–20170227) in Table 1.

Table 3. Runtime and accuracy comparison between the conventional dense ampcor and the proposed autoRIFT algorithms. Scenario
1©: smaller window size, scenario 2©: bigger window size, scenario 3©: progressive window size from 1© to 2©.

Dense Ampcor Standard autoRIFT Standard autoRIFT Intelligent autoRIFT Intelligent autoRIFT

Grid type Image Image Geographic Geographic Geographic

Grid spacing 32 × 32 1© 64 × 64 2© 32 × 32 1© 64 × 64 2© 240 m × 240 m 1© 480
m × 480 m 2©

240 m × 240 m 1© 480
m × 480 m 2©

240 m × 240 m 1© 480
m × 480 m 2©

Window (chip) size 32 × 32 1© 64 × 64 2© 32 × 32 1© 64 × 64 2© 32 × 32 1© 64 × 64 2© 32 × 32 1© 64 × 64 2© 32 × 32 1© 64 × 64 2©

Search distance 62 × 16 62 × 16 62 × 16 25 × 25 Spatially-varying [4, 25]
× 4

Downstream search
displacement 0 × 0 0 × 0 0 × 0 Spatially-varying Spatially-varying

Oversampling ratio 64 64 64 64 64

Multithreading (cores) 8 1 1 1 1

Preprocessing Co-registration
Co-registration,

high-pass filtering,
uint8 conversion

Co-registration,
high-pass filtering,
uint8 conversion

Co-registration,
high-pass filtering,
uint8 conversion

Co-registration,
high-pass filtering,
uint8 conversion

Runtime (min/core) 480.0 1© 368.0 2© 6.4 1© 2.6 2© 8.0 3© 7.6 3© 6.2 3© 5.6 3©

i/j-direction
displacement error

metrics (pixel)

0.039/0.055 1©
0.023/0.039 2©

0.031/0.047 1©
0.016/0.031 2©
0.031/0.047 3©

0.031/0.039 3© 0.031/0.039 3© 0.031/0.039 3©

As shown in the first two columns of Table 3, two different window (chip) sizes were
selected: 32 (defined as Scenario 1©) and 64 (defined as Scenario 2©), where autoRIFT also
ran with a progressive chip size from 32 to 64 (defined as Scenario 3©where results from
both chip sizes were obtained and fused). The spacing of the search grid was correspond-
ingly adjusted from 32 to 64.

Without the help of a downstream search routine, a very large search distance is
required for fast-flowing ice surfaces, especially for the current test site. From recent
studies, the maximum velocity of the Jakobshaven glaciers has been found to be around
15 km/year, with an overall seasonal range of 8 km/year [40]. We therefore used a search
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range of 15 1000·6
365·4 ≈ 62 pixels in range and 15 1000·6

365·15 ≈ 16 pixels in azimuth. An oversampling
ratio of 64 was used for the sub-pixel program.

Dense ampcor requires the two radar images to be pre-processed by ISCE so that
they are co-registered SLC images. Similarly, autoRIFT also assumes the two images
are co-registered and has the option of high-pass filtering with various kernels (e.g., a
normalized/unnormalized Wallis filter) as well as converting to different data types (e.g.,
an 8-bit unsigned integer or 32-bit single-precision float). Dense ampcor (written using
Fortran) uses eight threads, while autoRIFT (written using Python and C++) uses a single
thread despite the fact that it has been parallelized with the capability of multithreading.
Although dense ampcor has the capability of performing complex-valued NCC, it has been
primarily used for offset tracking between the SAR amplitude images.

Using the same search grid, search distance and chip size, autoRIFT’s runtime was
found to be 6.4 min/core compared to ampcor’s 480.0 min/core for Scenario 1© and 2.6
min/core compared to ampcor’s 368.0 min/core (141 times) for Scenario 2©. Under Scenario
3©, autoRIFT’s runtime was slightly smaller than the sum of the above two scenarios. On

average, autoRIFT exhibited two orders of magnitude runtime improvement compared to
dense ampcor. Note that the runtime metrics reported in this work are specific to an OS X
operating system with 2.9GHz Intel Core i7 processor (with eight cores available) and 16
GB RAM.

Range (i) and azimuth (j) displacement errors are also compared in Table 3. For
our test image pair, autoRIFT is shown to provide a ∼20% improvement in accuracy
(MAD: 0.007-0.008 pixel) over dense ampcor. Similar to Section 3.3, these error metrics were
calculated over stable surfaces (the shaded “purple" region in Figure 3). Since dense ampcor
does not employ any filtering to remove bad matches, we calculated the error of dense
ampcor results wherever autoRIFT produced reliable estimates. Our results show that
autoRIFT greatly improves the runtime without sacrificing accuracy. Improvements result
from the implementation of advanced techniques (e.g., a sparse/dense combinative search
strategy as well as Gaussian pyramid upsampling algorithm for the sub-pixel program
and the adaptive NDC filter as detailed in Section 2.1) that are shown to improve both the
computational efficiency and accuracy. The accuracy of autoRIFT for Scenario 3© (with
progressive window size from 32 to 64) is mostly governed by the results with a smaller
window size (i.e., 32 as used in Scenario 1©).

We also show results for autoRIFT’s Scenario 3©which ran with regular-spaced search
centers on a 240 m geographic grid (the 3rd column in Table 3), instead of the regular-
spaced image grids used in the previous example. Runtime and accuracy are comparable
to those of the run with regular-spaced image grid search centers, where the accuracy in
azimuth (j) direction improved slightly (by 0.008 pixel).

autoRIFT can also be run in the intelligent mode (Note in this work, the word “intelli-
gent" does not mean artificial intelligence and/or machine learning types of approaches;
rather, it specifically means the use of various spatially-varying inputs) using various
inputs as described in Section 2.1 and Section 3.2 for further improved computational
efficiency. The first intelligent use (the 4th column in Table 3) was to incorporate a down-
stream search routine, where a spatially varying downstream search pixel displacement is
provided, as illustrated in Figure 4a. The runtime further improved by 1.4 min/core with
an accuracy comparable to the standard mode. The second intelligent use (the 5th column
in Table 3) was to further include a spatially varying search distance in range direction (as
illustrated in Figure 4b) along with the downstream search routine. The runtime further
improved by 0.6 min/core and produced comparable accuracy results.

With standard autoRIFT, we observed more than two orders of magnitude runtime
improvement, while the intelligent use of autoRIFT further enhanced the efficiency. This
test case was for a short time-separation image-pair, and further time improvement over
conventional techniques would be achieved as the time-separation between image-pairs
increased; i.e., the expected displacements would increase and therefore the search distance
would need to be increased without the implantation of a downstream search routine.
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4. Discussion

With the nested grid design, sparse/dense combinative search strategy, adaptive sub-
pixel estimation and the disparity filtering technique (the NDC filter), autoRIFT remarkably
improves computational efficiency by estimating the displacements with an iteratively
progressive chip size and by separating signal from noise. This standard use of autoRIFT
has more than two orders of magnitude runtime improvement over a conventional NCC-
based feature tracking routine (dense ampcor). In addition, autoRIFT is able to extract more
information from the image pair and identify signal from noise without compromising the
accuracy of the solution.

Importantly, autoRIFT can also run in the intelligent mode by specifying the down-
stream search displacement, search distance and minimum and maximum progressive
chip size, all of which can vary spatially to accommodate regions with differing flow
characteristics. A zero search distance can be assigned to areas of the image in which
displacement estimates are not needed. The oversampling ratio in a sub-pixel program
can also be adaptively selected as a function of chip size. For example, NCC results with
a low signal to noise ratio (SNR) (e.g., a small chip size, relatively high image noise, low
texture, etc.) will not benefit from higher oversample ratios that can be computationally
costly, i.e., small oversampling ratios (e.g., 16 or 32) are sufficient. NCC results with high
SNR (e.g., large chip size) are more suitable for a high oversample the ratio (e.g., 64 or 128)
that needs to be selected as a tradeoff between precision and efficiency. This intelligent use
of autoRIFT further improves the runtime, especially over areas with fine spatial sampling
and also a large magnitude and variability of velocity.

In combination with Geogrid, autoRIFT can run on any user-defined geographic grid.
NCC is still performed in the native image coordinates (e.g., radar coordinates for radar
image pairs and geographic Cartesian coordinates for optical image pairs), and the displace-
ment results are directly assigned to a geographic grid without interpolation/resampling.
This approach ensures that no information is lost in the resampling of the imagery or
resulting displacement fields.

Two look-up tables are created by the Geogrid module: one for mapping from the pixel
index in the image to the geolocation on the geographic grid and the other for mapping
from pixel displacement in the image to the velocity on the geographic grid. As long as a
geographic grid is provided, the Geogrid module can map between the image coordinates
(pixel index and displacement) and the geographic coordinates (geolocation and velocity).
For example, the second look-up table maps the reference velocity (geographic) to down-
stream search pixel displacement (image) and, inversely, the estimated pixel displacement
(image) to velocity (geographic).

The accuracy of the velocity estimates vary seasonally and depend on a number of
factors such as ionosphere disturbance and temporal decorrelation for radar image pairs
and polar darkness/cloud presence for optical image pairs. The accuracy and ROI coverage
of the displacement results further depend on the quality of the source imagery, search
chip size, surface texture, time separation, sub-pixel oversampling ratio, local surface
conditions, illumination, cloud cover, ionosphere disturbance, feature persistence and
surface deformation. For radar images, azimuth (j-direction) streaks, due to ionosphere
effects, can be minimized by stacking/averaging results from multiple image pairs. The
displacement error in the radar azimuth direction is larger due to the increased sensitivity
to ionospheric delay and larger azimuth pixel resolution for the Sentinel-1 mission and
can be partially mitigated by using search chips with a larger chip height (j-direction) than
chip width (i-direction). For optical images, the displacement errors in both directions are
comparable.

5. Conclusions

This paper describes the design and application of a feature tracking routine that is
comprised of a feature tracking module (autoRIFT; first presented in [34]) and a novel
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geocoding module (Geogrid). The routine supports feature tracking at both image and
geographic grids and supports both radar and optical imagery.

autoRIFT has been validated with seven Sentinel-1A/B radar image pairs and seven
Landsat-8 optical image pairs in 2017 over the Jakobshavn Isbræ glacier. Errors of velocity
estimates are characterized over stable surfaces for the test site. The Sentinel-1A/B image
pair with the highest ROI coverage and lowest error was found to be in April, 2017 with
an error in geographic X/Y directions of 12 m/year or 39 m/year and error in slant-
range/azimuth of 8 m/year or 44 m/year. The Landsat-8 image pair with the highest ROI
coverage and lowest error was in July, 2017 complementing the radar observations with an
error in geographic X/Y directions of 22 m/year or 31 m/year.

An analysis of temporal baseline dependence was also performed. For the Sentinel-1
imagery, we tested temporal baselines of 6, 12, 18 and 24 days; the error metrics did not
change significantly as the temporal baseline increased, but ROI coverage dropped from
100% to 60%. For Landsat-8 image pairs, we tested temporal baselines of 16, 32, 64 and
368 days, where the 32 day and 64 day results were mostly affected by the presence of
cloud cover. Unlike the temporal decorrelation problem dominating radar image pairs, a
temporal baseline of a year (368 days) was found to remarkably improve the accuracy of
results derived from optical imagery (by a factor of 10–15) while maintaining high ROI
coverage (48%).

Velocity estimates were also compared with the reference velocity derived from
TanDEM-X data over the fast-moving glacier outlet, where the ice velocity showed strong
seasonal variability. The results from Sentinel-1 had a relative error of 4% on average for
both X and Y-direction velocity, and those from Landsat-8 had a relative error of 3–7%
(with a slightly larger difference for Y-direction velocity). There was no noticeable seasonal
variation in the disagreement with TanDEM-X derived velocities.

We performed an apples-to-apples comparison of runtime and accuracy between
a conventional open-source NCC-based feature tracking software, dense ampcor, from
NASA/JPL’s ISCE software, and multiple modes of autoRIFT. For each mode of autoRIFT,
more than two orders of magnitude runtime improvement along with a 20% improvement
in accuracy was achieved relative to dense ampcor. Further, the intelligent uses of autoRIFT
by incorporating a spatially-varying downstream search routine and/or search distance
further improved the computational efficiency.

A standalone version of autoRIFT is already being used to generate global land ice
displacement velocities from the full archive of Landsat 4/5/7 and 8 imagery as part of
the NASA MEaSUReS ITS_LIVE initiative (https://its-live.jpl.nasa.gov/ accessed on 10
January 2021). Its integration into the ISCE radar processing software and inclusion of the
new Geogrid module now allow for the global mapping of ice displacement from both
optical and radar imagery using a single algorithm on identical output grids. The orders
of magnitude reduction in computational cost demonstrated with the new algorithms is
particularly relevant for NASA’s upcoming NISAR mission, which will downlink more
data than any prior mission. Future efforts will expand the current capabilities to include
complex-valued NCC (using both amplitude and phase in SAR SLC images).
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Appendix A. Derivation of the Conversion Matrix M

In this appendix, we derive the conversion matrix M in (4) that converts the pixel dis-
placements (di and dj) to the velocity (vX and vY). Note that di and dj are in dimensionless
pixel units.

By substituting

~v = vXX̂ + vYŶ + vZẐ, (A1)

û∆i = u∆i
X X̂ + u∆i

Y Ŷ + u∆i
Z Ẑ, (A2)

û∆j = u∆j
X X̂ + u∆j

Y Ŷ + u∆j
Z Ẑ, (A3)

n̂ = nXX̂ + nYŶ + nZẐ, (A4)

where nX = −sX√
s2

X+s2
Y+1

, nY = −sY√
s2

X+s2
Y+1

, and nZ = 1√
s2

X+s2
Y+1

, we have (1)–(3) rewritten as

vXu∆j
X + vYu∆j

Y + vZu∆j
Z = dj∆j/∆t, (A5)

vXu∆i
X + vYu∆i

Y + vZu∆i
Z = di∆i/∆t, (A6)

vXnX + vYnY + vZnZ = 0. (A7)

By taking (A5) multiplied by nZ minus (A7) multiplied by u∆j
Z , the Z-terms are can-

celled out, which leads to

A · vX + B · vY = E · dj, (A8)

where the coefficients are

A = nZ · u
∆j
X − nX · u

∆j
Z , (A9)

B = nZ · u
∆j
Y − nY · u

∆j
Z , (A10)

E = ∆j nZ/∆t. (A11)

Similarly, by taking (A6) multiplied by nZ minus (A7) multiplied by u∆i
Z , we have

C · vX + D · vY = F · di, (A12)

where the coefficients are

C = nZ · u∆i
X − nX · u∆i

Z , (A13)

D = nZ · u∆i
Y − nY · u∆i

Z , (A14)

F = ∆i nZ/∆t. (A15)

Rearranging (A8) and (A12) gives the explicit form of (4); i.e.,[
A B
C D

](
vX
vY

)
=

(
dj E
di F

)
=

[
0 E
F 0

](
di
dj

)
. (A16)
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By inverting the ABCD matrix of (A16), we have(
vX
vY

)
=

1
AD− BC

[
D −B
−C A

][
0 E
F 0

](
di
dj

)
=

1
AD− BC

[
−BF DE
AF −CE

](
di
dj

)
, (A17)

which concludes the derivation of the conversion matrix as defined in (4); i.e.,

M =
1

AD− BC

[
−BF DE
AF −CE

]
. (A18)

The coefficients in (A18) are defined in (A9)–(A11) and (A13)–(A15), where components of
û∆i and û∆j are derived from the second look-up table in the Geogrid module (Section 2.2),
and components of n̂ are associated with the input surface slopes (derived from DEM) as
mentioned above.

From (A18), it is known that the conversion matrix is undefined when the denominator
(AD − BC) = 0. This could be the case for radar viewing geometry when the surface
normal n̂ and the radar range-direction unit vector û∆i are co-aligned (i.e., by satisfying the
vector relation, n̂× û∆i = 0 or n̂ · (û∆i × û∆j) = 0) for large surface slopes facing toward the
radar over mountainous areas. The coefficients in (A9) and (A10) and (A13) and (A14) can
be rewritten as X or Y-components (with notation |X or |Y) of vector cross products; i.e.,

A = n̂× û∆j|Y, (A19)

B = −n̂× û∆j|X , (A20)

C = n̂× û∆i|Y, (A21)

D = −n̂× û∆i|X . (A22)

Therefore, when n̂ is in line with û∆i, n̂× û∆i = 0, meaning C = D = 0, thus (AD− BC) =
0. Note when this vector relation holds, the pixels must be masked out; otherwise, the
converted displacement results will be unreliable.

Appendix B. Error Propagation due to the Failure of Slope Parallel Assumption

Here, we derive the horizontal velocity error (in both X and Y directions) induced
by the deviation of the vertical velocity component from that estimated using the slope
parallel assumption. In the following derivations, we use the notation without prime for
slope parallel-estimated velocity results (as in Appendix A), and use the prime notation for
the actual velocities.

Let us assume there is some error in the slope parallel-estimated vertical velocity
component vZ. The actual vertical velocity component, v′Z, can thus be rewritten as

v′Z = vZ + εvZ , (A23)

where εvZ is the error due to slope parallel assumption. Thus, we would like to derive the
propagated error of horizontal velocities in X and Y directions, εvX and εvY , by using the
slope parallel assumption; i.e.,

v′X = vX + εvX , (A24)

v′Y = vY + εvY , (A25)

Similar to Appendix A, (A5) and (A6) still hold for the prime notation by replacing the
unprimed notation with the prime notation. However, (A7) needs to be modified as below:

v′XnX + v′YnY + (v′Z − εvZ )nZ = 0. (A26)
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Using (A26) along with the prime version of (A5) and (A6), we can follow exactly the same
procedure in Appendix A to achieve the following results; i.e.,[

A B
C D

](
v′X
v′Y

)
=

(
dj E− εvZ nZu∆j

Z
di F− εvZ nZu∆i

Z

)
. (A27)

By subtracting (A16) from (A27) and utilizing (A24) and (A25), we have[
A B
C D

](
εvX

εvY

)
=

(
−nZu∆j

Z
−nZu∆i

Z

)
εvZ . (A28)

Through inverting the ABCD matrix of (A28), we have(
εvX

εvY

)
=

1
AD− BC

[
D −B
−C A

](
−nZu∆j

Z
−nZu∆i

Z

)
εvZ

=

[
P
Q

]
εvZ , (A29)

where

P =
1

AD− BC
(BnZu∆i

Z − DnZu∆j
Z ), (A30)

Q =
1

AD− BC
(CnZu∆j

Z − AnZu∆i
Z ). (A31)

Therefore, the error propagation is linear. After rearranging terms, (A30) and (A31) can be
further simplified as components of vector cross products; i.e.,

P =
n2

Z
AD− BC

(û∆j × û∆i|X), (A32)

Q =
n2

Z
AD− BC

(û∆j × û∆i|Y). (A33)

From (A32) and (A33), it can be seen that the propagated error in X and Y directions
can differ depending on the projection of the cross-product vector, (û∆j × û∆i), onto each
of the two directions, which further depends on the sensor viewing geometry and/or
terrain elevation.

For radar image pairs, since (û∆j × û∆i) is the cross product of the unit vectors in
the slant-range direction and azimuth direction, the vector cross product lies in the plane
formulated by the radar range and surface normal vectors for a flat terrain. Therefore, the
propagated error in X (or Y) direction is proportional to the projection of the radar range
direction onto the X (or Y) direction. Using the Seninel-1 radar dataset of this work over
the current test site, the radar range direction is closer to the X direction (see Figure 4);
thus, a larger propagated error in X (P = 1.36± 1.17) is expected compared to that in Y
(Q = 0.17± 0.14).

For optical image pairs, the vector cross product (û∆j × û∆i) is simply equal to the
surface normal. Therefore, (û∆j × û∆i|X) = (û∆j × û∆i|Y) = 0, and thus P = Q = 0,
meaning there is no error propagation due to the failure of slope parallel assumption.
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