
remote sensing  

Communication

A Machine Learning Method for Predicting Vegetation Indices
in China

Xiangqian Li 1,2,3,†, Wenping Yuan 1,2,3,† and Wenjie Dong 1,2,3,*

����������
�������

Citation: Li, X.; Yuan, W.; Dong, W.

A Machine Learning Method for

Predicting Vegetation Indices in

China. Remote Sens. 2021, 13, 1147.

https://doi.org/10.3390/rs13061147

Academic Editor: Lefei Zhang

Received: 11 February 2021

Accepted: 15 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China;
lixq75@mail2.sysu.edu.cn (X.L.); yuanwp3@mail.sysu.edu.cn (W.Y.)

2 Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
3 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
* Correspondence: dongwj3@mail.sysu.edu.cn
† These authors contributed equally to this study.

Abstract: To forecast the terrestrial carbon cycle and monitor food security, vegetation growth must be
accurately predicted; however, current process-based ecosystem and crop-growth models are limited
in their effectiveness. This study developed a machine learning model using the extreme gradient
boosting method to predict vegetation growth throughout the growing season in China from 2001 to
2018. The model used satellite-derived vegetation data for the first month of each growing season,
CO2 concentration, and several meteorological factors as data sources for the explanatory variables.
Results showed that the model could reproduce the spatiotemporal distribution of vegetation growth
as represented by the satellite-derived normalized difference vegetation index (NDVI). The predictive
error for the growing season NDVI was less than 5% for more than 98% of vegetated areas in China;
the model represented seasonal variations in NDVI well. The coefficient of determination (R2)
between the monthly observed and predicted NDVI was 0.83, and more than 69% of vegetated areas
had an R2 > 0.8. The effectiveness of the model was examined for a severe drought year (2009), and
results showed that the model could reproduce the spatiotemporal distribution of NDVI even under
extreme conditions. This model provides an alternative method for predicting vegetation growth
and has great potential for monitoring vegetation dynamics and crop growth.

Keywords: vegetation growth; forecasting; XGBoost; growing season; crop yield; food security

1. Introduction

Terrestrial vegetation growth plays an important role in regulating the global carbon
cycle and atmospheric CO2 concentrations [1], mitigating climate change [2], and main-
taining ecosystem structure and function [3,4]. For example, a recent study revealed that
seasonal changes in terrestrial vegetation growth drive the seasonality of atmospheric CO2
concentration [5]. However, rising temperatures and increased drought have impacted
terrestrial vegetation, resulting in global stagnation of vegetation growth [6–8]. Therefore,
reliable, objective, and timely information regarding vegetation growth is vital [9].

Predicting vegetation growth remains challenging [10]. While process-based ecosys-
tem models play an important role in predicting vegetation growth [4], multiple ecosystem
processes impact vegetation growth, and the current process-based models fail to accurately
reproduce these critical ecosystem processes [11,12]. An accurate simulation of vegeta-
tion growth requires a more realistic representation of multiple processes, such as plant
photosynthesis, respiration, and carbon allocation. However, the current process-based
models fail to accurately reproduce these critical ecosystem processes. For example, a re-
cent data comparison study found that process-based models did not capture the allocation
of photosynthate to wood and leaves [11], leading to large uncertainties in simulated vege-
tation growth. Furthermore, a comparison of multiple models showed that process-based
ecosystem models poorly represent vegetation growth [13].

Remote Sens. 2021, 13, 1147. https://doi.org/10.3390/rs13061147 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13061147
https://doi.org/10.3390/rs13061147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061147
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061147?type=check_update&version=1


Remote Sens. 2021, 13, 1147 2 of 11

Machine learning methods, which are independent of ecosystem process mechanisms,
are an alternative means of predicting ecosystem structure and function [12,14,15]. Several
approaches, including artificial neural networks, regression trees, support vector regression,
and random forest, have been widely employed to predict vegetation growth [15]. Machine
learning methods are independent of the relationships between response variables and
predictive variables, especially when compared to traditional empirical models, such as
linear regression, which require a Gaussian distribution for the input variables.

In this study, we develop and evaluate a machine learning model to simulate vegeta-
tion growth in China. There are diverse ecosystem types and climate zones in China, which
provide a good chance to examine the applicability of the proposed model for reproducing
vegetation growth. The primary objectives of this paper are as follows: (1) develop a
machine learning model to simulate vegetation growth, represented by a satellite-based
vegetation index, for all the vegetated regions of China; (2) evaluate the performance of the
model with respect to reproducing the spatiotemporal distribution of vegetation growth;
and (3) investigate the environmental factors influencing vegetation growth for various
vegetation types in China.

2. Materials and Methods
2.1. Methodology

This study employed the extreme gradient boosting (XGBoost) machine learning
method to predict vegetation growth as indicated by the satellite-derived normalized
difference vegetation index (NDVI). XGBoost is an optimized, distributed gradient boosting
algorithm designed to be highly efficient, flexible, and portable [16]. XGBoost introduces
a regularized item for controlling model complexity into a loss function and uses a two-
dimensional Taylor formula to explain the modified loss function. This overcomes the
shortcomings of overfitting in the traditional gradient boosting model, enhancing both
precision and generalization, which has often been used to investigate the structure and
function of terrestrial ecosystems in China, especially in the study of vegetation mapping
and biomass estimation [17,18].

This study used the satellite-based vegetation index, i.e., NDVI, to indicate vegetation
growth; the same index has been widely used in previous studies [8,19]. A predictive NDVI
model using the XGBoost method was developed using six explanatory environmental
variables: mean air temperature, precipitation, vapor pressure deficit, wind speed, solar
radiation, and atmospheric CO2 concentration. Considering the lagged effects of environ-
mental variables on vegetation growth, we used variables from both the predicted and
previous months. In terms of precipitation, accumulated precipitation for the previous
two and three months and the current month was used. Because the vegetation growth
of a given month is heavily dependent on the growth state of the previous month, the
NDVI of the previous month was also included as an explanatory variable. Therefore,
15 explanatory variables were available to predict the NDVI in a given month. At each
pixel, we used the combinatorial method to produce the optimal combination of the 15 vari-
ables. Combinations of 2 to 15 variables were examined, for a total of 32,756 outcomes.
To select the best outcome, we evaluated the performance of each model based on the
root-mean-square error (RMSE).

The leave-one-out cross-validation method was used to examine machine learning
model performance. Monthly NDVI and environmental variables from 2001 to 2018 were
used for model training and testing. In each step, the satellite-based NDVI of a given year
was used as the validation set, and data from the remaining years were used as the training
set. Based on the training set, models were built using all potential combinations of 2 to
15 variables and the performance of the models was evaluated using the validation data.
After repeating this process for each year, all years were then selected as the validation
data set. We compared the simulation errors derived from all 32,756 models through the
dependent validations of the 18 years of data and selected the model with the minimum
RMSE as the prediction model for a given pixel. It should be noted that we only used the
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satellite-derived NDVI as a model input in the first month of the growing season, and the
predicted NDVI was used to drive the model for the remainder of the growing season.

2.2. Remote Sensing Data

We used NDVI data derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Vegetation Indices (VI) product (MOD13A3) to represent vegetation growth.
The MOD13A3 product provides NDVI data from 2001 to 2018 at a spatial resolution
of 1 × 1 km. This dataset was generated from the MODIS VI 16-day composite product
(MOD13A2) using a time-weighted averaging method and has been corrected to minimize
the noise from atmospheric effects, such as cloud shadows and aerosols. The MOD13A3
data are provided monthly and have been widely used to monitor vegetation conditions
at regional and global scales. Additionally, to explore the key climate-driven factors
influencing vegetation growth, pixels were further grouped into seven vegetation types,
including evergreen needle-leaf trees (ENT), evergreen broadleaf trees (EBT), deciduous
needle-leaf trees (DNT), deciduous broadleaf trees (DBT), shrubland, and grassland, based
on the Plant Functional Types classification map obtained from MODIS Land Cover Type
Product (MCD12Q1) (Figure 1b). Notably, the pixels with an annual mean NDVI over
18 years lower than 0.1 were excluded from this analysis to minimize the impact of bare
soils and sparse vegetation pixels [20,21]. The above data can be freely downloaded from
the National Aeronautics and Space Administration website (https://ladsweb.modaps.
eosdis.nasa.gov/ accessed on 5 February 2021).
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Figure 1. The spatial distribution of vegetation growing season duration (a) and the corresponding vegetation distribution
(b) in China. The colors in (a) show the duration of the growing season in months, and the colors in (b) show the vegetation
types based on the Plant Functional Types classification, including evergreen needle-leaf trees (ENT), evergreen broadleaf
trees (EBT), deciduous needle-leaf trees (DNT), deciduous broadleaf trees (DBT), shrubland, and grassland. The pixels with
an annual mean normalized difference vegetation index (NDVI) over 18 years lower than 0.1 are in black.

2.3. Meteorological Data

Meteorological data for model training and testing were from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) version 5 reanalysis (ERA5) dataset
(https://cds.climate.copernicus.eu/ accessed on 5 February 2021). As the latest genera-
tion ECWMF reanalysis data, ERA5 has an improved spatiotemporal resolution, radiative
transfer model, and assimilation method compared to the previous ERA-Interim reanalysis
product. These data are available from 1979 to the present with a horizontal resolution of
0.1 × 0.1◦. Here, we used ERA5 data from 2001 to 2018, which was resampled to a 1 × 1 km
spatial resolution to match the MOD13A3 NDVI data. The ERA5 meteorological variables

https://ladsweb.modaps.eosdis.nasa.gov/
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used in this study include 2-m temperature (TA), total precipitation (PRCP), surface net
radiation (SR), 10-m wind speed (WS), and vapor pressure deficit (VPD). Notably, the
VPD was calculated on the basis of relative humidity and temperature [22]. Monthly
observations of atmospheric carbon dioxide (CO2) were from the National Oceanic and
Atmospheric Administration (NOAA). A monthly mean temperature above 0 ◦C was used
as the criterion for the start of the growing season (Figure 1a).

The standardized precipitation evapotranspiration index (SPEI) [23] was used to
identify drought years in China to examine the predictive performance of the model
during extreme drought conditions. The SPEI is based on the principle of water balance,
considering both precipitation and potential evapotranspiration, and has been widely used
in detecting drought variations during the past several decades [24–26]. Annual SPEI
data from the SPEI Global Drought Monitor website (https://spei.csic.es/ accessed on
5 February 2021) were used in this study.

2.4. Statistical Analysis

Model performance was evaluated by using the coefficient of determination (R2) to
determine how much variation in the observations was explained by the model. Further-
more, RMSE was used to indicate the standard deviation of the residuals (prediction error)
as follows:

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (1)

where Oi and Pi indicate NDVI observations and predictions, respectively.
The relative predictive error (Bias) was used to quantify the difference between simu-

lated and observed values as follows:

Bias = ∑n
i=1(Oi − Pi)

∑n
i=1 Oi

× 100% (2)

The increment of mean square error (%IncMSE), reflecting the importance of the machine
learning model variables for predicting the NDVI, was determined as follows [27,28]:

%IncMSE =

(
MSEpermuted − MSEactual

)
MSEactual

× 100% (3)

MSE =
1
n

n

∑
i=1

(Oi − Pi)
2 (4)

For a given explanatory variable, the MSEpermuted refers to the averaged mean square
error (MSE) when the given variable is permutated randomly 20 times, and the MSEactual
refers to the model MSE without variable permutation.

3. Results
3.1. Model Evaluation

Results show that our model can predict the NDVI during the growing season using
satellite-based NDVI observations for the first month of the growing season in conjunction
with the meteorology dataset. Firstly, we examined the ability of the model to reproduce the
spatiotemporal distribution of the NDVI in China. Figure 2 shows that the machine learning
model can reproduce the spatial distribution of the satellite-based NDVI throughout China.
The spatial distribution of simulated mean annual growing-season NDVI varied markedly,
gradually increasing from the northwest to the southeast (Figure 2a), consistent with the
observed pattern. The bias between the observed and predicted annual average NDVI is
less than 5% for almost all pixels and displays a normal distribution with a mean of −0.49%
and a standard deviation of 1.12% (Figure 2b). The model mean RMSE was 0.05, and RMSE

https://spei.csic.es/
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was less than 0.1 over the majority (98.4%) of the study area (Figure 2c), indicating strong
model performance.
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Second, we examined the ability of the model to reproduce the temporal variations
of the NDVI from 2001 to 2018. Figure 3a,c shows that the model represents temporal
variations in the annual mean NDVI very well. Both the simulated and observed NDVI
showed a similar increasing tendency over the study period (Figure 3a). The accuracy of
monthly simulated NDVI simulations throughout the growing season was assessed by
calculating the R2 between the observed and simulated monthly NDVI from 2001 to 2018.
The mean value of R2 was 0.83, indicating that the model can explain 83% of the seasonal
variation in the NDVI (Figure 3b). Furthermore, nearly 70% of vegetated areas in China
had an R2 > 0.8. Comparatively low R2 values were concentrated in the grassland regions
of North China and the Qinghai–Tibet Plateau (Figure 3b).
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Most areas of China, except the Qinghai–Tibet Plateau and Northeast China, suffered
severe drought stress in 2009, and over 11% of the nation’s vegetated areas experienced
extreme drought, with an SPEI < −2.0 (Figure 4b). Figure 4c–e shows that the model could
predict the seasonal and spatial variations in the NDVI during the serious drought year of
2009. Bias followed a normal distribution, with a mean value of −0.49% and a standard
deviation of 1.12%, and over 69% of the investigated region had an absolute bias <5%
(Figure 4d). The mean RMSE in 2009 was 0.04 (Figure 4e). Despite the extreme conditions
of 2009, our model was able to reproduce the seasonal variations in the NDVI very well,
with a mean R2 of 0.89 (Figure 4c).
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Figure 4. Model performance during the drought year 2009 showing (a) the temporal evolution of drought in China from
1980 to 2018 based on the standardized precipitation evapotranspiration index (SPEI; negative values indicate drought
conditions) and the spatial distribution of (b) SPEI, (c) R2, (d) bias, and (e) RMSE between the predicted and satellite-derived
monthly NDVI in 2009.
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3.2. Importance of the Explanatory Variables

Our model optimally selected different explanatory variables to predict the NDVI at
each pixel. For 81.6% of pixels, the NDVI of the previous month (NDVI_1) was selected as
one of the explanatory variables. Similarly, the temperature of the previous month (TA_1)
was selected as an explanatory variable for 80.5% of pixels, highlighting the importance
of temperature for predicting NDVI (Figure 5a). The temperature and CO2 concentration
of the current month (TA_0 and CO2_0, respectively), the CO2 concentration of the pre-
vious month (CO2_1), and the accumulated precipitation for the previous three months
(PRCP_Sum03) were also important explanatory variables for predicting NDVI (Figure 5a).
Notably, PRCP_Sum03 was selected as an important explanatory variable in the grass-
land zones by more than 40% of pixels, which was markedly higher than in the other six
vegetation zones (Figure 5g).
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The importance of explanatory variables for predicting the NDVI was further analyzed.
Generally, the NDVI of the previous month (NDVI_1) showed the largest contribution
(approximately 44%) to predicting the NDVI over the entire study area (Figure 6a). The
second-largest contribution was from TA_1 (approximately 31%). Furthermore, the con-
tributions of CO2 (CO2_0 and CO2_1) and rainfall (PRCP_0, PRCP_1, PRCP_Sum02, and
PRCP_Sum03) factors were approximately 3 and 11%, respectively. Notably, temperature
variables (especially TA_1) showed large contributions for predicting the NDVI in forest
zones (Figure 6b–e). In particular, TA_1 demonstrated a larger contribution compared to
NDVI_1 in the ENT, DNT, and DBT zones. Precipitation was important for predicting the
NDVI over arid regions (Figure 6f,g). While CO2_0 and CO2_1 were selected as explanatory
variables for predicting the NDVI, their contributions were quite low, ranging from 0.5% to
2.1% over all vegetation zones (Figure 6c,d).
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4. Discussion

Climate change and extreme weather events have been found to substantially impact
crop yield [5]. Consequently, predicting vegetation growth over the short- and long-term
is an urgent requirement [29]. However, the current ecosystem and crop-growth models
have failed to predict crop growth, limiting our capacity for monitoring crop yield and
evaluating food security [30]. This study evaluated and revealed the strong performance of
a machine learning model with respect to reproducing spatial and seasonal variations in the
satellite-derived NDVI throughout China. In particular, the model can predict vegetation
growth throughout the growing season using satellite-derived NDVI for the first month
only, indicating the excellent capabilities of the machine learning method in predicting
vegetation growth.

Analysis of the explanatory variables contributing to the predictive model at each
pixel further highlights the reliability of the machine learning model for predicting NDVI.
For example, temperature and precipitation were revealed to be important contributors
to the NDVI in forest and grassland zones, respectively (Figure 6), in accordance with
environmental regulators on vegetation growth in the terrestrial ecosystem [3,4]. Generally,
the limiting environmental variable for ecosystems in cold (arid) climate zones is the
temperature (precipitation) [31].

This study used the ERA5 dataset to drive the machine learning model for predicting
vegetation growth. Model validation showed strong performance with respect to repro-
ducing the NDVI throughout the growing season, using a satellite-derived NDVI for the
first month of the growing season in conjunction with meteorological data (Figures 2–4).
However, we note that the machine learning model developed in this study will be more
beneficial for the real-time prediction of vegetation growth if driven by a climate forecast
dataset. There are several global climate forecast datasets currently available which provide
long-range forecasts for multiple land surface climate variables, including temperature,
precipitation, and relative humidity [32]. Future studies will evaluate the performance
of the machine learning model driven by a climate forecast dataset for predicting vegeta-
tion growth.
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5. Conclusions

This study developed a machine learning model using the XGBoost method to predict
monthly NDVI, as an indicator of vegetation growth. Validation showed that the model
could reproduce the spatial and seasonal variations of satellite-derived NDVI over the
entire vegetated region of China. The overall bias between the predicted and observed
annual average NDVI values was less than 5%, and the mean RMSE was 0.05, which was
less than 0.1% for 98.4% of pixels, highlighting the excellent performance of the model. The
machine learning model could explain up to 83% of the corresponding seasonal variation in
the NDVI for all pixels. A contribution analysis of the explanatory variables revealed that
the NDVI and temperature of the previous month were the most important explanatory
variables for predicting the subsequent NDVI.
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