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Abstract: In this paper, a convolutional neural network-based registration framework is proposed
for remote sensing to improve the registration accuracy between two remote-sensed images acquired
from different times and viewpoints. The proposed framework consists of four stages. In the first
stage, key-points are extracted from two input images—a reference and a sensed image. Then,
a patch is constructed at each key-point. The second stage consists of three processes for patch
matching—candidate patch pair list generation, one-to-one matched label selection, and geometric
distortion compensation. One-to-one matched patch pairs between two images are found, and the
exact matching is found by compensating for geometric distortions in the matched patch pairs. A
global geometric affine parameter set is computed using the random sample consensus algorithm
(RANSAC) algorithm in the third stage. Finally, a registered image is generated after warping
the input sensed image using the affine parameter set. The proposed high-accuracy registration
framework is evaluated using the KOMPSAT-3 dataset by comparing the conventional frameworks
based on machine learning and deep-learning-based frameworks. The proposed framework obtains
the least root mean square error value of 34.922 based on all control points and achieves a 68.4%
increase in the matching accuracy compared with the conventional registration framework.

Keywords: high resolution optical remote sensing imagery; image registration; convolutional neural
network; feature matching

1. Introduction

Image registration is the process of geometric synchronization between a reference
image and a current image from the same area. These images are acquired from different
times and viewpoints by different sensors [1]. Thus, image registration is an essential
preprocess step in many remote sensing applications because the main process, which
includes change detection, image fusion, image mosaic, environment monitoring, and map
updating can be drastically influenced by these differences [1,2]. Many types of image
registration techniques have been developed in the areas of remote sensing over the past
few decades. The registration frameworks can be classified into two categories—area-based
frameworks and feature-based frameworks [1].

We introduce the two conventional image registration frameworks for the two categories—
area-based frameworks and feature-based frameworks. In area-based frameworks, the regis-
tration problem is transformed into an optimization problem, where the similarity between
reference and sensed images is maximized. Conventional area-based registration frameworks
find correspondences at multiple key-points between input and reference images using similar-
ity measures such as mutual information (MI) [3,4] or normalized cross-correlation (NCC) [5].
The detected correspondences are used in the estimation of the global geometric transform.
However, they are sensitive to illumination changes and noise [1]. Liang et al. proposed spatial
and mutual information (SMI) as the similarity metric for searching similar local regions using
ant colony optimization [3]. Patel and Thakar employed mutual information (MI) based on
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maximum likelihood to expedite MI computation [4]. In contrast, feature-based frameworks are
less susceptible to attacks and geometric distortions as they involve the matching of prominent
features, such as points, lines, and regions. Scale invariant feature transform (SIFT) [6], speeded-
up robust features [7], histogram of oriented gradients [8], and maximally stable extremal
regions [9] are some of the widely applied feature detectors in practice. The SIFT-based frame-
work is a well-known geometric transform approach [10]. Other approaches focus on the shape
features or geometric structures. Ye et al. proposed the histogram of oriented phase congruency
as a feature descriptor representing the structural properties of images, and then they used NCC
as a reference matching similarity metric [11]. Yang et al. proposed a combination of shape
context features and SIFT feature descriptors for remote sensing image registration [12]. There
are approaches that integrate the advantages of the area-based and feature-based frameworks.
The iterative multi-level strategy proposed by Xu at el. could re-extract and re-match features by
adjusting the parameters [13]. The coarse-to-fine image registration framework by Gong et al.
acquired coarse results from SIFT and then obtained precise registration based on MI [14].

Conventional feature-based frameworks require domain knowledge to design a fea-
ture extractor. This makes the handcrafted features less generic for diverse applications
and data. Researchers often recommend feature-based frameworks if the images contain
distinct artifacts. Feature-based frameworks are used in remote sensing image applications
because the remote sensing images contain distinct artifacts [1]. To ensure the accuracy of
feature-based frameworks, a well-designed feature extractor that can extract reliable fea-
tures through trial and error is required. Aerial images used for remote sensing applications
contain a large amount of appearance distortions caused by radiometric and geometric
factors, attitude acquisition-related factors, seasonal factors, and so on. Consequently,
many registration frameworks suffer poor correspondence between points detected by
handcrafted feature extractors. In worst-case scenarios, these handcrafted feature extrac-
tors may be unable to detect a sufficient number of correspondence points to achieve
satisfactory registration.

In recent years, deep learning has proven to be superior and robust in the field of
remote sensing imaging—object detection [15,16], image classification [17,18], and image
registration [19]. In particular, patch-based convolutional neural network (CNN) architec-
tures have been extensively used in the area of image matching. Finding accurate corre-
spondences between patches is instrumental to a broad range of applications, including
wide-baseline stereo matching, multi-view reconstruction, image stitching, and structure
from motion. Conventional patch matching methods use handcrafted features and distance
measures. Zagoruyko and Komodakis proposed a CNN-based model that directly trains a
general similarity function for comparing image patches from image data [20]. CNNs can
generate powerful feature descriptors that are more robust to appearance changes than
classical descriptors. These approaches divide the input image into a set of local patches
and extract descriptors individually from each patch. The extracted descriptors are then
compared with an appropriate distance measure to measure the similarity score even for a
binary matching/unmatching decision. Han et al. proposed “MatchNet”, which extracts
patch pair features from two identical CNNs via the Siamese network for image patch
matching [21]. Alternatively, Zagoruyko and his colleagues proposed an image matching
method by training the joint features of patches from two input images and evaluating the
features extracted from two similar CNNs or two different CNNs [22].

Wang and his colleagues proposed a deep learning framework for remote sensing
image registration [19]. They employed the deep belief network (DBN) to maintain the
invariance feature against the distortion characteristics of remote-sensed images. Unlike
conventional feature-based frameworks, their proposal directly trained an end-to-end
mapping function by taking the image patch pairs as inputs using DBN and matching
the labels as output. Furthermore, they attempted to reduce the computation cost in the
training step. Their framework not only reduced the training time but also demonstrated
better registration performance. As vectorized one-dimensional data from two-dimensional
images are fed into the DBN, which may remove the spatial information for patch matching,
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they cannot handle geometric invariances in terms of rotation, translation, scale, shearing
and so on. These variance factors in DBN may generate distortion in the registration result.
To address this problem, Lee and Oh have proposed a MatchNet-based method which can
improve the registration accuracy by maintaining the spatial information of features [23].
However, there still exists geometric distortion as shown in Figure 1. Rocco and his
colleagues recently proposed the CNN architecture for geometric matching where they
could handle global changes of appearance and incorrect matches between two matched
images in a robust way [24]. However, it is not efficient to apply their model to applications
which require a precise local patch matching process in each matched patch of two input
images such as remote sensing image registration. Therefore, their robust model should be
modified for remote sensing image registration.
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Figure 1. Examples of matched patch pairs using MatchNet. (a) Patch of reference image, (b) patch
of current image, and (c) checkerboard mosaic image of the reference and current images.

In this paper, we propose a CNN-based registration framework for remote sensing
that can improve the registration accuracy between two remote-sensed images acquired
from different times and viewpoints. The framework can be summarized as follows:
First, multiple key-points and their patches are extracted from two input images using
scale–space extrema detection. Each patch contains one key-point at its center. Using the
conventional network, finding the corresponding patch pair in the matching step would
yield geometric distortions, such as translation, scale, and shearing because learning the
invariance mapping function is difficult. For an accurate local patch matching process,
we adopt the geometric CNN proposed in [24] to compensate the geometric distortion
of each matched patch pair. From now on, the geometric CNN is called GMatchNet. A
local geometric transformation is estimated from each matched patch pair. Using this
local geometric transform, the corresponding center coordinate of each input patch is
finely adjusted. Then, we compute the global geometric affine parameter set from all the
adjusted coordinates by the random sample consensus algorithm (RANSAC). Finally, a
registered image is generated after warping the input sensed image by the global affine
parameter set. The proposed framework is evaluated on the KOMPSAT-3 dataset by
comparing the conventional frameworks based on machine learning and deep-learning-
based frameworks. We perform registration of images in which magnetic north is aligned
with the universal transverse Mercator coordinate system. It is shown that the proposed
high-accuracy registration framework can improve the accuracy of image registration by
compensating the geometric distortion between matched patch pairs and can be applied to
other registration frameworks based on patches.

The remainder of this paper is structured as follows: Section 2 introduces related
work on image registration, deep learning, and patch matching. Section 3 details the
proposed registration framework that uses the estimated geometric transformation in
the corresponding patch pairs. Section 4 discusses the experimental results, and, finally,
Section 4 summarizes the conclusions of the study.
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2. High-Accuracy Registration Framework

The proposed framework consists of two different CNNs—MatchNet [21] and GMatch-
Net [24], as shown in Figure 2. First, multiple key-points and their patches were extracted
from the reference image and the sensed image. Note that each patch (64 × 64 pixels)
includes one key-point at its center. The next stage consists of three distinct processes
for patch matching. For each reference patch of the reference image, multiple candidate
lists were selected from the sensed image by MatchNet. Then, one-to-one matched labels
for each reference patch were determined for its matched candidate lists based on cross
correlation. The local affine parameter set was estimated between each input patch from
the output of matched labels selection by GMatchNet, and the coordinate of the matched
patch was finely adjusted using a local transformation. Then, the global geometric affine pa-
rameter set was computed from all the adjusted reference coordinates using the RANSAC
algorithm. Finally, the warping process was performed to geometrically synchronize the
reference image and sensed image.
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2.1. Patch Extraction Based on Scale–Space Extrema

In the first stage of key-point detection, the locations and scales that can be repeatably
assigned for different views of a same object were identified. Locations that are invariant to
a change in the scale of the image can be detected by searching for stable features across all
possible scales using a continuous function of scale known as the scale–space. Subsequently,
the Laplacian of Gaussian (LoG) for the image with various standard deviation (σ) values
was determined. The LoG operates as a blob detector that detects blobs in various sizes
due to changes in σ. However, the LoG requires, to some extent, a heavier computational
load. Therefore, the proposed framework adopts the difference of Gaussians (DoG), which
approximates the LoG. The DoG is the difference between the Gaussian blurring of an
image with two different standard deviations, denoted by σ and kσ. When this DoG is
generated, the local extrema are retrieved from the image, which results in the key-points.
Lowe proposed several empirical parameter set, the number of octaves set to 4, number
of scale levels set to 5, initial σ set to 1.6, and k set to

√
2 [6]. In the second step, the

detected key-points as the central point were used to extract the image patches with a size
of 64 × 64 pixels. Here, we assumed that the reference images and the sensed images are I1
and I2, respectively. If I1 has m key-points, then the patches are P1 =

{
p1

1, p2
1, · · · , pm

1
}

. If
I2 has n key-points, the patches are P2 =

{
p1

2, p2
2, · · · , pn

2
}

. Thus, we can acquire the image

patch pairs
{(

pi
1, pj

2

)}
by combining the patches in images I1 and I2, where i = 1, 2, · · · , m,

j = 1, 2, · · · , n.

2.2. Training Method for Matched Candidate List Generation

MatchNet is a deep network architecture that determines the correspondence of two
images by analyzing the similarity of features in two input images. The structure of
MatchNet is illustrated in Figure 3, and its layer parameters are listed in Table 1. To
compare the similarity of two patches, they are first passed through the same feature
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network. In the training stage, only one of the two feature networks is trained, while the
other shares parameters.
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Figure 3. MatchNet architecture for matched candidate list generation.

Table 1. Layer parameters of MatchNet.

Name Type Output Dimension Patch Size Stride

Conv 1-1 Convolution 64 × 64 × 24 7 × 7 1
Pool 1 Max pooling 32 × 32 × 24 3 × 3 2

Conv 2-1 Convolution 32 × 32 × 64 5 × 5 1
Pool 2 Max pooling 16 × 16 × 64 3 × 3 2

Conv 3-1 Convolution 16 × 16 × 96 3 × 3 1
Conv 3-2 Convolution 16 × 16 × 64 3 × 3 1
Conv 3-3 Convolution 16 × 16 × 64 3 × 3 1

Pool 3 Max pooling 8 × 8 × 64 3 × 3 2
Bottleneck Fully connected 256 - -

FC1 Fully connected 512 - -
FC2 Fully connected 512 - -
FC3 Fully connected 2 - -

The performance of MatchNet strongly depends on sufficient training dataset for
optimizing parameters. However, it is difficult to obtain a labeled remote sensing image
dataset. Thus, we adopt augmentation to construct a training dataset. The augmented
dataset consists of remote sensing images transformed by a set of rotation matrices, where
θ =

{
0
◦
, 90

◦
, 180

◦
, 270

◦}
. Let Pi and M be the i-th image patch and the number of image

patches, respectively. Then, Pi can be transformed to an image set of Rθ(Pi). The patch size
of MatchNet is 64 × 64. The matched patch pairs are

{(
Pi, Rθ

(
Pj
))

, i = j and θ = 0
◦}

and
unmatched patch pairs

{(
Pi, Rθ

(
Pj
))

, i = j and θ 6= 0
◦}

and
{(

Pi, Rθ

(
Pj
))

, i 6= j
}

, where i

and j = 1, 2, · · ·M. Therefore, the structure of a training sample is
{(

Pi, Rθ

(
Pj
))

, yθ
ij

}
.

yθ
ij =

{
1, i = j and θ = 0

◦

0, otherwise
(1)

Figure 4 illustrates examples of training patch pairs. The feature and metric networks
were jointly trained in a supervised setting using the Siamese structure. The training
dataset was constructed with a matched patch pairs to unmatched patch pairs ratio of 1:1
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using the sampling method [21]. The cross-entropy error was minimized over a training
set of n patch pairs using the SGD with momentum. The cross-entropy was defined by

E = − 1
n

n

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (2)Remote Sens. 2021, 13, 1482 7 of 15 
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The training parameters were set as follows: 200 iterations of MatchNet training and a
learning rate of 0.01, a batch size of 32, and a momentum item parameter of 0.9 [21].

2.3. Matched Label Selection

In the matched label selection of the proposed framework, all image patch pairs{(
pi

1, pj
2

)}
from the sensed image I1 and the reference image I2 were fed to the trained

CNN to predict multiple candidate lists. These lists were generated through patches with
matched label sets. Owing to the remote sensing imaging mechanism and the small patch
size, MatchNet is capable of finding more than one similar image patches between I1 and
I2. This one-to-many matching leads to an ill-posed problem, which can be a major reason
for the appearance of an inaccurate geometric affine parameter set. We adopted a local
constraint using NCC to select one matching pair among the patches from the multiple
candidate lists.

The NCC measures the similarity of two patches based on pixel intensity as the local
constraint. In this study, we only selected the matched patch pair with the maximum NCC.
The NCC of a patch pair

(
pi

1, pj
2

)
was computed as follows:

c
(

pj
1, pj

2

)
=

∑x,y

[(
pi

1(x, y)− pi
1

)(
pj

2(x, y)− pj
2

)]
√

∑x,y

(
pi

1(x, y)− pi
1

)2
∑x,y

(
pj

2(x, y)− pj
2

)2
(3)

where pi
1(x, y) and pj

2(x, y) are the gray values of image patches pi
1 and pj

2 at location (x, y),
respectively. Further, pi

1 and pj
2 are the average gray values of image patches pi

1 and pj
2,

respectively. One patch with the highest NCC value among the patches from multiple
candidate lists was selected as the matched label.
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2.4. Matched Patch Compensation with Local Geometric Transformation

As learning the invariance mapping function is difficult, geometric distortions, such
as translation, scale, and shearing, appear between the matched patch pairs. It is necessary
to correct the geometric distortion in the matched patch pairs. Figure 5a,b illustrate the
matched patch pairs; however, two patches exhibit geometric distortions. To compen-
sate for the geometric distortion, we adopted a pre-trained GMatchNet, which has been
proposed for determining correspondences between two images in agreement with a geo-
metric model, such as the geometric affine parameter set. Figure 6 shows a diagram of the
GMatchNet architecture. The process of GMatchNet proceeds in four steps. First, input
images P1 and P2 are passed through the Siamese architecture consisting of the convolu-
tional layers, thus extracting feature maps F1 and F2. Second, feature maps across images
are matched to a tentative correspondence map F12. Third, a regression CNN that directly
outputs the geometric affine parameter set θ̂ is constructed. Finally, the network generates
a new transformed image, P′2, by applying the transform Tθ̂ to image P2. We calculated the
central coordinates of the newly generated image P2

t and used it to adjust the key-point
position. In the case of GMatchNet, pre-trained weights were publicly available and could
be used without any fine tuning since we could achieve the satisfied performance when
those pretrained weights were applied to our framework. Figure 5 depicts an example of
an adjusted key-point position. The red and yellow crosshairs indicate the central point of
patch (a) and patch (b), respectively. In patch (c), the geometric distortion is compensated
through GMatchNet, the previous yellow central position is shifted, and a new blue center
position is assigned.
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2.5. Global Constraints and Warping

The RANSAC algorithm estimates a model from a set of observed data through a ran-
dom sampling and voting scheme often interpreted as an outlier detection method, which
can further remove the falsely matched points globally associated with local constraints. By
using the compensated matching labels from the previous step in the RANSAC algorithm,
we calculated the global geometric affine parameter set W with the RANSAC algorithm.
Finally, we warped the sensed image using the global geometric affine parameter set W,
generating the registered image I′2.

3. Results

In this study, we constructed datasets for both patch matching and registration using
multispectral red, green, and blue images of cities around Seoul, South Korea, captured by
the KOMPSAT-3 satellite with a resolution of 2.8 meter. Regions in Seoul are densely popu-
lated and their landscape is frequently changed by the emergence of new skyscrapers. On
the other hand, areas around Seoul are agricultural areas with different colors depending
on the seasonal conditions. The experiment was performed on a computer powered by
an Intel (R) Core i7-8700K 3.40 GHz CPU with an NVIDIA GeForce GTX 1080 Ti GPU. In
the following sections, we discuss the training and validation methods for patch matching
via MatchNet and the evaluation metrics, and evaluate the performance of each remote
sensing image registration framework.

We also explain the details of the dataset used for MatchNet. The training sets and
validation sets for patch matching consisted of images from Suwon City. This dataset
came with patches extracted using the scale–space extrema detection for extracting the
key-points [6]. The size of the image patch used was 64 × 64 pixels. The resulting dataset
was divided into 130k for training sets and 50k for validation sets. We used a sampler to
generate an equal number of matched and unmatched patch pairs in each batch so that the
network would not be overly biased toward the unmatched decision [25].

3.1. Evaluation Datasets and Metrics for Remote Sensing Image Registration Frameworks

The datasets for evaluation of remote sensing image registration consisted of images
from Seoul and its surroundings from different times—three areas in the city and one area
around it. Table 2 lists the detailed information of those images. In the same area, the
upper row represents the reference image and the lower row represents the sensed image.
All satellite images were divided into 500 × 500 images. Each pair of images consisted of
images from the same area captured at different times. The characteristics for each area are
as follows: Area 1 dataset consists of images of residential areas, Area 2 dataset consists of
images of residential and green lung areas, Area 3 dataset consists of images of industrial
facilities, and Area 4 dataset consists of images of skyscrapers.

Table 2. Evaluation datasets description.

Class Location Size Time

Area 1 Gwanak-gu 500 × 500 March 2014
500 × 500 October 2015

Area 2 Guro-gu 500 × 500 April 2014
500 × 500 October 2015

Area 3 Gwangmyeong City 500 × 500 April 2014
500 × 500 October 2015

Area 4 Yeongdeungpo-gu 500 × 500 December 2014
500 × 500 October 2015

The metrics from [26] were employed in this study to objectively evaluate the proposed
high-accuracy registration framework, which are as follows: the number of control points
(Nred); the root-mean-square error (RMSE) based on all control points and normalized to
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the pixel size (RMSall); the RMSE computed by the control point residuals based on the
leave-one-out method (RMSloo); the statistical evaluation of the residual distribution across
quadrants

(
Pquard

)
; the bad point proportion with a norm greater than 1.0 (BPP(1.0));

the statistical evaluation of the presence of a preference axis on the residual scatter plot
(Skew); the statistical evaluation of the goodness of control points distribution across the
image (Scat); and the weighted sum of the above seven measures, the cost function (φ).
Smaller values indicate better performance for six metrics except Nred. The cost function
was used as an objective tool to evaluate the different control points for the pair of images.
The equation of the cost function φ is expressed as follows:

φ =
2

Nred
+ RMSall + 2× RMSloo + 1.5× Pquad + 2× BPP + 1.5× Skew + 2× Scat (4)

The registration accuracy was measured in terms of RMSall and RMSloo. The quantity
and quality of matching points were measured in terms of Nred and φ, respectively. The
lower the values of these metrics, the better Nred. We can observe that both RMSall and
RMSloo equal or tend to the subpixel error, which are significant results of registration.
Nred measures the number of points that have been matched correctly. Further, a larger
Nred and a smaller RMS imply a higher accuracy of point matching.

3.2. Evaluation of Remote Sensing Image Registration Framework

The proposed frameworks were compared with the conventional feature-based image
registration framework, SIFT, and the state-of-the-art deep learning-based image regis-
tration framework. We used the DBN network structure proposed by Wang et al. [19].
The deep learning-based frameworks were experimented with two trained methods—the
conventional method and proposed training method. We defined the improved accuracy,
IAφ, of φ as follows:

IAφ =
SIFTφ − DNNφ

SIFTφ
× 100 (%) (5)

where SIFTφ and DNNφ are the φ values of the SIFT-based framework and each DNN-
based framework, respectively.

Nred measures the number of correct corresponding points. A larger Nred and a smaller
RMSall imply more accurate point matching. Table 3 summarize the experimental results
using eight metrics on four evaluation datasets. The last line in Table 3 illustrates the
averaged results using eight metrics for the evaluation datasets in all areas. In the DBN-
based framework of Wang et al. [19], although the number of control points (Nred) was
large, it had mismatched points and therefore an increased RMSall value. For qualitative
assessment, we used the checkerboard mosaic image, which can demonstrate the subjective
quality better than any other image in terms of edge continuity and region overlapping.

In Table 3, on the one hand, the DBN-based framework generated a large Nred, but
the RMS values increased due to the RMSE for all control points. On the other hand, the
proposed framework for the Area 1 dataset had a smaller Nred, but the lowest RMS value
representing the pixel error. In addition, the smallest Nred of 0.855 was obtained for the
quality of matching points φ. The performance of the proposed framework was 40.2%
better than that of the SIFT-based framework in Area 1. Figure 7a,b illustrate the pair of
images from Area 1, which were acquired by the KOMPSAT-3 satellite in March 2014 and
October 2015. The green boxes indicate the same region in the three images and show
smooth edges.
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Table 3. Quantitative comparison of model performance in evaluation datasets.

Class Framework Nred RMSall RMSloo Pquard BPP(1.0) Skew Scat φ IAφ

Area 1
SIFT-based 154 4.550 3.942 0.949 0.525 0.249 0.920 1.431 -

DBN-based [19] 869 2.671 2.671 1.000 0.527 0.061 1.000 1.105 29.5%
Proposed high accuracy 435 2.161 1.792 1.000 0.474 0.044 1.000 0.855 75.2%

Area 2
SIFT-based 10 17.971 16.545 0.977 0.963 0.400 0.963 4.765 -

DBN-based [19] 183 32.369 32.388 1.000 1.000 0.002 1.000 8.555 −79.54%
Proposed high accuracy 329 4.652 4.058 0.987 0.722 0.026 1.000 1.478 68.98%

Area 3
SIFT-based 26 20.691 18.031 0.998 1.000 0.304 0.998 21.899 -

DBN-based [19] 118 362.339 361.022 1.000 1.000 1.000 1.000 90.951 −315.32%
Proposed 207 11.809 9.826 1.000 0.967 0.137 1.000 3.093 85.88%

Area 4
SIFT-based 12 619.558 506.167 1.000 1.000 0.966 0.907 136.576 -

DBN-based [19] 85 265.764 265.770 1.000 1.000 0.807 1.000 67.004 50.94%
Proposed high accuracy 36 121.066 111.815 0.979 0.861 0.212 0.990 29.187 78.63%

Average
SIFT-based 51 165.693 136.171 0.981 0.872 0.480 0.947 41.168 -

DBN-based [19] 314 165.786 165.463 1.000 0.882 0.468 1.000 41.904 −80.3%
Proposed high accuracy 252 34.922 31.873 0.992 0.756 0.105 0.998 8.653 68.4%Remote Sens. 2021, 13, 1482 12 of 15 
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Figure 7. Representative image registration of the proposed and conventional framework for Area 1.
(a) Reference image acquired by KOMPSAT-3 satellite in March 2014. (b) Sensed image acquired
by KOMPSAT-3 satellite in October 2015. (c) Checkerboard mosaic image of the reference and
registered images obtained using the scale invariant feature transform (SIFT)-based framework.
(d) Checkerboard mosaic image of the reference and registered images obtained using the conven-
tional deep belief network (DBN)-based framework. (e) Checkerboard mosaic image of the reference
and registered images obtained using the proposed framework.

In Area 2, on the one hand, the DBN-based framework increased the RMS values
representing the quality of the matching point because the points did not match. Thus, the
performance reduced by 79.54%. On the other hand, the proposed framework on the Area 2
dataset had a relatively large Nred and the lowest RMS value representing the pixel error.
In addition, the smallest result of 1.478 was obtained from the quality of matching points φ.
The performance of the proposed framework was 68.98% better than that of the SIFT-based
framework in Area 2. Figure 8a,b illustrate the pair of images from Area 2 acquired by the
satellite in April 2014 and October 2015. The green boxes in the three images represent the
same region and demonstrate smooth edges. The red boxes in the three images indicate the
same region and highlight the deviation of results of the conventional frameworks from
those of the proposed framework.
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Figure 8. Representative image registration of the proposed and conventional frameworks for Area 2. (a) Reference
image acquired by KOMPSAT-3 satellite in April 2014. (b) Sensed image acquired by KOMPSAT-3 satellite in October
2015. (c) Checkerboard mosaic image of the reference and registered images obtained using the SIFT-based framework.
(d) Checkerboard mosaic image of the reference and registered images obtained using the conventional DBN-based
framework. (e) Checkerboard mosaic image of the reference and registered images obtained using the proposed framework.

In Area 3, on the one hand, using the DBN-based framework increased the RMS
values because the points did not match. Thus, the performance reduced by 315.32%. On
the other hand, using the proposed framework on the Area 3 dataset produced the largest
Nred and the least RMS value representing the pixel error. In addition, the smallest result
of 3.093 was obtained from the quality of matching points φ. The proposed framework
performed 85.88% better the SIFT-based framework in Area 3. The greatest performance
improvement was observed in the industrial facility areas. Figure 9a,b illustrates the pair of
images from Area 3 acquired by KOMPSAT-3 satellite in April 2014 and October 2015. The
green boxes in the three images represent the same region and demonstrate smooth edges.
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Figure 9. Representative image registration of the proposed and conventional frameworks for Area 3. (a) Reference
image acquired by KOMPSAT-3 satellite in April 2014. (b) Sensed image acquired by KOMPSAT-3 satellite in October
2015. (c) Checkerboard mosaic image of the reference and registered images obtained using the SIFT-based framework.
(d) Checkerboard mosaic image of the reference and registered images obtained using conventional the DBN-based
framework. (e) Checkerboard mosaic image of the reference and registered images obtained using the proposed framework.
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In Area 4, on the one hand, the DBN-based framework generated a large Nred along
with an increased RMS. On the other hand, the proposed framework produced the second-
largest Nred but the lowest RMS representing the pixel error. In addition, the smallest result
of 29.187 was obtained from the quality of matching points φ. The proposed framework
performed 78.63% better than the SIFT-based framework in Area 4. The largest performance
improvement occurred in the industrial facility areas. Figure 10a,b illustrate the pair of
images from Area 4 acquired in December 2014 and October 2015. The changes observed
in Figure 10 are large owing to the difference between skyscrapers and viewports. The
SIFT-based framework failed to register the image. By contrast, the two proposed models
successfully registered the images. Figure 10c,d are the image registration results of the
SIFT-based framework and the DBN-based framework, respectively. Both frameworks
failed to register the images.
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Figure 10. Representative image registration of the proposed and conventional frameworks for Area 4. (a) Reference
image acquired by KOMPSAT-3 satellite in December 2014. (b) Sensed image acquired by KOMPSAT-3 satellite in October
2015. (c) Checkerboard mosaic image of the reference and registered images obtained using the SIFT-based framework.
(d) Checkerboard mosaic image of the reference and registered images obtained using the conventional DBN-based
framework. (e) Checkerboard mosaic image of the reference and registered images obtained using the proposed framework.

In the KOMPSAT-3 image datasets, the DBN-based framework generated the largest
Nred along with a larger RMS value representing the matching point quality because the
points did not match. The DBN-based framework reduced the RMSall value representing
the registration accuracy by 165.786, but the RMSall value of the proposed framework sig-
nificantly reduced to 34.922. The DBN-based framework reduced the φ value representing
the matching points quality by 41.904, but that of the proposed framework significantly
reduced to 8.653. The proposed framework achieved a performance improvement of
68.4%. The remarkable improvement in the performance of the proposed framework
can be observed in the difference between the high-rise building and the image as the
viewpoint shifts.

4. Conclusions

In this study, we proposed a CNN-based registration framework for remote sensing
that can improve the image registration accuracy between two remote-sensed images
acquired from different times and viewpoints. The matching step often produces geometric
distortions, such as translation, scale, and shearing between the matched patch pairs given
that the invariance mapping function is difficult to learn. To correct these distortions,
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we adopted a geometric CNN with a stronger invariance feature to find a local affine
parameter set for each matched patch pairs. Therefore, we constructed multiple candidate
lists, from which we estimated the local geometric transform. The proposed framework was
evaluated on the KOMPSAT-3 dataset by comparing the conventional machine-learning-
based frameworks and the proposed deep-learning-based framework. The proposed
framework obtained the smallest RMSE of 34.922 based on all control points and achieved
a 68.4% increase in the matching accuracy compared with the conventional registration
framework. As the proposed framework is composed of two different networks, there
is a computational complexity owing to the redundancy of the two feature networks. A
unified network to alleviate the computational complexity can be the future direction of
this research.
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