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Abstract: Non-linear behavioral links with atmospheric teleconnections were identified between the
Indian Ocean Dipole (IOD) mode and seasonal precipitation over East Asia (EA) using statistical
models. The analysis showed that the lower the lag time, the higher the correlation; more than a two-
fold correlation for non-linear regression with a kernel density estimator than for the linear regression
method. When the IOD peaked, a pattern of significant reductions in seasonal precipitation during the
negative IOD period occurred throughout the Korean Peninsula (KP). The occurrence of the positive
IOD was in line with the El Niño phenomenon and generated greater seasonal precipitation than
only the positive IOD, which takes place from March to May. This change occurred more in the cold
tongue El Niño than the warm pool El Niño, inducing much higher spring precipitation throughout
the KP. When negative IODs and La Niña coincided, there was slightly greater precipitation from
March to May compared to the sole occurrence of negative IODs. In positive (negative) IOD years,
there was anti-cyclonic (cyclonic) circulation in the South China Sea (SCS), helping to transport
moisture to EA. The composite precipitation anomalies in the positive (negative) IOD years show
above (below) normal precipitation in southern China. In contrast, other parts of the EA experienced
drier (humid) signals than normal years. In positive IOD years, the anti-cyclonic circulation strength
of the Bay of Bengal and the SCS continued until autumn and spring of the following year. This
shows possible remote connections between climate events related to the tropical Indian Ocean and
variations in precipitation over EA.

Keywords: Indian Ocean Dipole mode; El Niño–Southern Oscillation; singular spectrum analysis;
mutual information; non-stationarity of seasonal precipitation

1. Introduction

The frequency and intensity of extreme climate events have gradually increased; this
has been attributed to rising global temperatures [1–3]. Seasonal variations in regional
water resource availability are also closely linked to the characteristic changes in global
climate [2,4–7]. These trends have significant implications for the efficient prediction and
management of available water resources. It is increasingly important to understand the
relationship between extreme climatic events and the seasonal variability of water resources
using hydro-meteorological variables.

Long-term hydro-meteorological changes are highly correlated with large-scale at-
mospheric teleconnections that predict the behavior of non-linear climate systems using
ocean-related climate indices, such as the El Niño–Southern Oscillation (ENSO) and the In-
dian Ocean Dipole (IOD) mode [8–12]. Many studies on ENSO and the IOD report the shared
understanding that these systems are major sources of large-scale atmospheric environmen-
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tal changes. These systems are also closely correlated with seasonal variations, such as
precipitation and streamflow within local patterns of hydro-meteorological change [10–15].

The IOD mode defined by Saji et al. [10] is characterized by extreme rainfall and wet
conditions in the East African region during positive IOD (p-IOD) years. During negative
IOD (n-IOD) years, wet conditions typically occur in the western part of the Indian Ocean
and Indonesia; this is directly impacting East Africa, triggering dry conditions. Several
studies have argued that the IOD phenomenon currently precedes ENSO events evidenced
by the rise in sea surface temperature (SST), leading the latter by three to six months [16,17].
However, correlation analyses between SST anomalies of ENSO and IOD in the tropical
ocean region indicates that the IOD is a phenomenon that occurs independently of ENSO,
and is an internal mode within the Indian Ocean region. The results from past research
also demonstrate that the Indian Ocean SST is experiencing changes to its trends over time,
affecting the cycle, intensity, and genesis of the IOD mode [10,18–21].

A previous study on the potential mechanism of IOD patterns over the East Asian (EA)
region presented the Bonin high formation mechanism during August for the deep ridge
near Japan [22]. This theory was based on the hypothesis that an equivalent-barotropic
ridge near Japan was formed because of the upper troposphere (Silk Road pattern). Fur-
thermore, Guan and Yamagata [23] suggested that the IOD event was closely related
to teleconnections around Japan, Korea, and the northeastern part of China during the
sweltering and dry summer of 1994. They determined that the monsoon–desert mecha-
nism [24], producing dry conditions over the EA region, connects a Rossby wave source
with IOD-induced heating around the Bay of Bengal. The upper troposphere propagates
northeastward from southern China, and the Rossby wave pattern influences precipitation
changes over EA. Zhang et al. [25] examined the effects of the IOD on summer precipi-
tation over eastern China. They found that IOD forcing in the preceding autumn has a
pronounced, albeit delayed, influence on the precipitation in the following summer, partic-
ularly over the Yangtze-Huaihe River Valley. Weng et al. [26] discovered a possible link
between the Indian Ocean SSTA pattern and summer precipitation in China by anomalous
mid- and low-level tropospheric circulations. Cai et al. [27] identified the IOD impact on
Australian winter rainfall using the Rossby wave train.

IOD and ENSO patterns are considered the main causes of large-scale atmospheric
change, leading to significant changes in the hydro-meteorological patterns of several EA
countries [12,22,23,28–30]. Recent studies have suggested that global surface temperature
rise may have to slow down due to significant heat transfer from the Pacific to Indian
Oceans via the Indonesian Throughflow [31–33]. Studies on Indo-Pacific thermocouples
are required to improve the current understanding of climatic variability and quantitatively
diagnose such variability at a regional scale. Existing quantitative studies on the character-
istics of the IOD and ENSO phenomena, relating to Korean watersheds and their regional
assessments, are relatively inadequate. This study analyzed the influence of long-term
precipitation variability in the EA region by examining p-IOD and n-IOD events [10]. The
classification of IOD events in accordance with the patterns of p-IOD and n-IOD events
was also analyzed, and the analysis of the evolution patterns of the IOD was based on
the approach of Saji and Yamagata [20]. This study addresses three specific objectives:
(1) to analyze the significant changes in large-scale pattern and long-term precipitation
variability in the EA, and in the KP region sub-watershed using ocean-related, abnormal
climate phenomena, in accordance with the IOD mode index; (2) to investigate linkages
between atmospheric teleconnections and possible mechanisms between different phases
of the IOD and seasonal precipitation over the KP using statistical methods; and (3) to carry
out a diagnostic study on the non-stationarity and possibility of seasonal precipitation
prediction, using climate indices during significant IOD and ENSO seasons over the KP.
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2. Materials and Methods
2.1. Data

SST data obtained from the National Center for Environmental Prediction and the
National Center for Atmospheric Research (NCEP-NCAR) reanalysis v2 were used to
classify the IOD events in the Tropical Indian Ocean (TIO). IOD Mode Index (DMI) data
were obtained from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
and the Hadley Centre Sea Ice and Sea Surface Temperature dataset. The DMI is defined as
the SST anomaly difference between the western (50◦E–70◦E, 10◦S–10◦N) and southeastern
(90◦E–110◦E, 10◦S–equator) regions of the TIO region [10]. The DMI calculated by the
Asia-Pacific Economic Cooperation Climate Center (APCC), Busan, South Korea, was used;
this utilizes monthly SST from the National Oceanic and Atmospheric Administration
(NOAA) Extended Reconstructed Sea Surface Temperature (ERSST) v4 in the TIO region.
The Global Precipitation Climatology Center (GPCC) monthly precipitation, which has a
regular grid with a spatial resolution of 0.5◦ × 0.5◦ latitude by longitude from Deutscher
Wetterdienst in Germany was used to diagnose precipitation variability and its long-term
changes in the EA region. In addition, spatially averaged daily precipitation data provided
by the Water Resources Management Information System (WAMIS) were used to undertake
a detailed examination of the regional impact in five major Korean river basins in the KP
(Figure 1). The average precipitation was calculated using the Thiessen polygon network
from 125 precipitation gauge stations for 117 sub-watersheds within these five major river
basins foMIr 1966–2016. For the composite analysis, monthly vector wind anomalies at
850 hPa were used; these were obtained from the NCEP-NCAR. Student’s t-test was used
for statistical significance testing for composite analysis.
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Figure 1. Map of the East Asia region, including the location of the five major river basins of the
Korean Peninsula.

2.2. Classification of IOD Events

This study used the methodology proposed by Saji and Yamagata [20] to classify
positive and negative IOD events in the TIO region. The process included data pre-
processing and exclusion of data that did not meet the following criteria:

(1) Pre-processing of data: SST anomalies in the Western Indian Ocean (10◦S–10◦N,
60◦–80◦E) and eastern Indian Ocean (10◦S–0◦, 90◦–110◦E), and zonal wind anomalies
over the equator (Ueq, area-averaged wind anomaly over 5◦S–5◦N, 70◦–90◦E), were
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first detrended. A three-month running mean was then applied once over the three
time-series datasets to reduce the impact of intra-seasonal fluctuations;

(2) Identifying criteria: The DMI and Ueq needed to exceed 0.5 σ in amplitude for at least
three months. In addition, the SSTA in the west and east Indian Ocean have opposite
signs, and the magnitude should exceed 0.5 σ for at least three months.

Figure 2 shows the DMI region in the Indian Ocean and the normalized anomaly time
series for the DMI between the Hadley Centre Sea Ice and the Sea Surface Temperature
dataset (HadISST) by the NOAA Climate Prediction Center (CPC), and the method pro-
posed by Saji et al. [10]. Two time-series datasets were compared using a similar method;
the 13 strongest p-IOD, and the 15 strongest n-IOD years were classified based on the
HadISST data from 1956 to 2018.
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by HadISST, Saji et al. [10] and APEC Climate Center (APCC), respectively. “corr” indicates the
correlation coefficient.

2.3. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a non-parametric spectral estimation method that
reduces dispersion by changing the coordinates in time series through techniques derived
from principal component analysis (PCA); this enables the extraction of information from
noisy time series. By removing the non-harmonic components from the original time series
data, the long-term frequency and trend may easily be understood [34]. SSA embeds
the data of a time series Xi(1 < i < N) in a vector space of dimension M, and applies the
empirical orthogonal function (EOF) method. This enables the projection of original data
in the orthogonal functions EOF 1 and EOF 2. By composing the axes using these EOFs,
the trend, cycle, and tendency of total variance in the data, are more clearly apparent.

To separate the non-harmonic components, the size of the eigenvalues was defined by
an orthogonal process. The orthogonal function was calculated between α1

i and α2
i ; these

are the orthogonal coefficients of the principal component (PC1) and PC2 time series that
correspond with the harmonic components in the original coordinates, X and Y. Finally,
it was converted to the reconstruction component (RC) as R1

i and R2
i . The estimation

forecasting model may be configured to reflect specific characteristics such as frequency
and trend in the original data. By using Equation (1) to reconstruct the data, the original
data may be replaced with a new time series with a constant frequency and less noise:

(RAX)i =
1
i ∑i

j=1 ∑i
k∈A αk

i−jE
k
j , 1 ≤ i ≤ M− 1

(RAX)i =
1
M ∑M

j=1 ∑i
k∈A αk

i−jE
k
j , M ≤ i ≤ N−M + 1

(RAX)i =
1

N−i+1 ∑i
j=1−N+M ∑i

k∈A αk
i−jE

k
j , N−M + 2 ≤ i ≤ N

(1)
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where αk
i is an orthogonal coefficient; Ek

j is the empirical orthogonal function (1 ≤ k ≤ M);
M indicates a dimension; and τ is the sampling rate. Additional detailed information is
available from Moon and Lall [35].

2.4. Mutual Information

Mutual information (MI) is one of the most popular measures that determines the
extent to which one random variable (Y) may communicate information on another random
variable (X). This may also be considered an exercise in reducing uncertainty on one random
variable given some knowledge of another variable. This is a useful tool to calculate non-
linear correlations between different datasets. Non-linear correlations indicate that the
ratio of change between variables is not constant. Here, MI was used to extract information
regarding the non-linear correlation between climate indices and seasonal precipitation
in the KP. In general, the nonlinear correlation is high or low as the sum of MI values
quantitatively represents the correlation. The MI method has a conditional occurrence
probability by section. If the MI is large, the non-linear correlation between the two
datasets is also large. Where appropriate lag times are selected, the MI technique may
also be used to estimate the probability density function using a kernel function in a
non-parametric manner.

If there are two types of time series datasets, such as (s1, s2, s3, · · · , sn, q1, q2, q3, · · · , qn);
where n is the observed period, then the MI between observations si and qj is defined by
Equation (2) [35]:

MIs,q
(
si, qj

)
= log2

(
Ps,q
(
si, qj

)
Ps(si)Pq

(
qj
)) (2)

where Ps,q
(
si, qj

)
indicates the joint probability density function between s and q, calculated

by a time series of
(
si, qj

)
, and Ps(si) and Pq

(
qj
)

are the marginal probability densities
calculated from si and qj, respectively. The average mutual information (Is,q) of the two
discrete random variables s and q can be defined using Equation (3):

Is,q = ∑
i,j

Ps,q
(
si, qj

)
log2

(
Ps,q
(
si, qj

)
Ps(si)Pq

(
qj
)) (3)

where Ps,q
(
si, qj

)
is the joint probability distribution function of X and Y, and Ps(si) and

Pq
(
qj
)

are the marginal probability distribution functions of s and q, respectively. This
equation is useful to determine whether the components in multivariate sampling are
independent or dependent. In particular, Martinerie et al. [36] and Gao and Zheng [37]
used MI techniques to construct a state space for appropriate lag time selection in an
orthogonal time series.

The MI analysis between the two datasets was performed using Equation (4), proposed
by Joe [38], following the standard normal distribution of the axis (X, Y) and its linear
correlation analysis:

I(X; Y) = −0.5 log
[
1− ρ(X, Y)2

]
(4)

where I(X; Y) indicates the calculated average MI value through MI analysis, and ρ(X, Y)
is the linear correlation between X and Y.

MI based on the non-linear correlation coefficient may be used to obtain λ[0 ≤ λ ≤ 1].
To calculate λ by estimating the average MI value following the standard normal distri-
bution in the two variables X and Y, Equation (5) proposed by Joe [38] and Granger and
Lin [39] was used:

λ̂(X, Y) =
√

1− exp
[
−2 Î(X, Y)

]
(5)

where Î(X, Y) is the average MI value from the two variables X and Y and λ̂(X, Y) is a
non-linear correlation coefficient estimated from the average MI value between the two
variables (X, Y). In this study, a linear regression (LR) method using Equation (5) was used



Remote Sens. 2021, 13, 1806 6 of 17

with the estimated average MI values and non-linear regression using Equation (5) with
two-dimensional Kernel density estimators (KDE) [34]. The 95% confidence limits were
estimated using 1000 bootstrap resampling replications, enabling more accurate calculation
of the confidence limits, given the limited data. The advantages of the MI and SSA used in
this study are highly suitable to capture non-parametric relationships from data without
imposing structures or restrictions on the model. SSA helps to identify similar spectral
components in two or more time series, which may be interpreted as connections between
these series. However, wavelet coherence considers two time series. SSA is primarily
driven by data, while wavelet analysis may be influenced by the selection of the parent
wavelet function [40].

In general, abnormal SSTs in the TIO region may have triggering effects on the tro-
posphere temperature rise due to enhanced air–sea interaction [41–43]. Atmospheric
teleconnection links with the jet stream can affect variations in local precipitation world-
wide, even in the EA region [44,45]. The effects of precipitation variability over the KP and
EA regions due to changes in IOD patterns were diagnosed. Although they are geographi-
cally remote areas, they may affect and hydrologically correlate by atmospheric-dynamic
processes and associated mechanisms [10,20]. The p-IOD and n-IOD events were analyzed
from April (when developing had commenced), through September (when it peaked), and
up to November, where it had begun to disappear. This study analyzed the impact of
IOD evolution patterns on the KP within a three-month window, accommodating for a
one-month delay. To understand the role of IOD events in atmospheric variability over the
KP, linear and non-linear correlations were analyzed, along with the lag time correlations
between the IOD and local precipitation variations.

3. Analysis and Results
3.1. Nonlinear Atmospheric Teleconnections over the KP

The non-linear lag time correlations were calculated using MI, and their lag-time
correlations were simulated from lag-0 to lag-11 (Figures 3 and 4). Figure 3 shows the joint
probability kernel density functions among the normalized three-month moving average
precipitation and p-/n-IOD indices over the KP. The result of the joint probability kernel
density function is based on the MI results for lag-1 month non-linear correlations. For
the precipitation of the KP, the probable mode values corresponding to the vertices of the
joint probability density function were 0.632, 0.603, and 0.601 at lag times of 1, 3, and 6,
respectively; the probable mode values tended to decrease with respect to lag time. There
was a positive correlation between seasonal precipitation and IOD pattern changes in each
lag time over the KP. This result was based on the analysis of the location of central points
of the joint probability kernel density functions with precipitation and the IOD index, using
MI techniques.
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Figure 4 presents the linear and non-linear correlation coefficients (CCs) with their
95% confidence limits between climate indices and precipitation for the five major Korean
rivers using the KDE and LR approaches. The lag-0 correlation had the highest correlation
for LR and KDE, which was correlated with the IOD index and KP precipitation (LR: 0.315,
KDE: 0.684). These time lags indicate a non-linear correlation between climate indices and
monthly precipitation; as such, there is a possibility for a diagnostic study on the seasonal
or sub-seasonal prediction of local precipitation over the KP using ocean-related large-scale
climate indices.

3.2. Evolution Pattern of the Indian Ocean Dipole and Its Local Impacts over the KP

Figure 5 presents analysis results for the change in precipitation in the KP according
to the evolution pattern of the p-IOD years from April to November. Total precipitation in
the KP decreased significantly from the long-term average, with −11.90% in April–June,
−8.63% in May–July, −14.32% in June–August, −9.92% in July–September, −15.23% in
August–October, and −7.14% in September–November. The total amount of precipitation
change was analyzed using Student’s t-test; it was found that there was a significant
decrease in the southern part of the KP at a 95% confidence level. For the p-IOD phases,
the pattern of decreased precipitation was more likely to occur at a significant level in the
southern part than the mid-northern part of the KP. The changes in this pattern persisted
significantly between April and November in the p-IOD years. During the August–October
period (autumn in Korea), a distinct pattern of decreased precipitation was observed mainly
in the central and southern KP.
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three months, from April to November.

Figure 6 presents the results from the analysis of changes in precipitation in the KP
according to the evolution pattern of the n-IOD years from April to November. Total precipi-
tation in the KP tended to decrease or increase more than usual, with−0.71% in April–June,
+7.91% in May–July, −1.39% in June–August, −4.05% in July–September, 7.89% in August–
October, and −1.07% in September–November. A pattern of significant decreased precipi-
tation in the central part of the KP was observed. However, a pattern of increased precip-
itation occurred in the southern part of the KP during May–July. For the n-IOD phases,
contrary to the p-IOD phases, the pattern of significant decreased precipitation was more
likely to appear in the northern KP, as opposed to the central or southern KP. These changes
appear to be conspicuous between April and November, when an n-IOD was observed.
During p-IOD events (Figure 7a,c), the annual/June–September precipitation in the KP was
−7.14%/−14.74% lower than the long-term average annual/June–September precipitation
(1971–2000). During n-IOD events (Figure 7b,d), the annual/June–September precipitation
in the KP slightly decreased to −1.07%/−3.31%. The composite analysis revealed that
the June–September precipitation during p-IOD events was substantially lower than that
during long-term normal years. In contrast, n-IOD events had annual/June–September
precipitation that was slightly below normal conditions.
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The mechanisms of major climate phenomena associated with tropical oceans, such
as ENSO and IOD, are not yet fully understood because it is still a challenge to simulate
them completely using physical climate models of the global environment. In addition, an-
alyzing and predicting climate phenomena through physical models involves considerable
difficulties. Based on the physical model results, applying them to hydrologic circulation
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systems in a specific EA region, such as KP and China, may follow the problem of scientific
reliability and understanding. Therefore, this study analyzed non-linear behavior links
with atmospheric teleconnections between hydro-meteorological variables and the climate
index using statistical models over the KP with the ocean-related major climate indices,
including ENSO and IOD. Statistical approaches have the disadvantage of making it diffi-
cult to expect significant levels of results because of the limited number of observations.
However, it is one of the most important methods that can be used to complement the
prediction results of physical models.

3.3. Nonstationarity of Seasonal Precipitation Anomalies for Different Phases of the IOD

Figures 8 and 9 show changes in the 30-year mean precipitation in five major rivers of
the KP. In each figure, Case I shows change over time in the 30-year mean precipitation
without excluding the effects of the IOD. Case II is the result of excluding the precipitation
in the p-IOD years, and Case III excludes the precipitation in the n-IOD years.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Changes in seasonal precipitation anomalies (August–October) when the IOD peaked. In 
each panel, Case I shows the changes over time in the 30-year mean precipitation without exclud-
ing the effects of IOD separately. Case II is the result of excluding the precipitation in the positive 
IOD years, and Case III shows the change in the 30-year mean precipitation, excluding the precipi-
tation in the n-IOD years. 

Figure 8 illustrates the seasonal precipitation from August to October when the IOD 
peaked; this precipitation from August to October in all five major rivers had a statistically 
significant increase (P < 0.001). This change in precipitation occurred in the Han River 
Basin and was relatively abundant in the southern part of the KP. In the Youngsan River 
Basin, Cases I and III showed a statistically significant increase in the 30-year mean pre-
cipitation analysis. Although there was an increase in seasonal precipitation, this change 
was not statistically significant (p > 0.05). In the Han River Basin, Cases I and II showed 
statistically significant increases; in contrast, in Case III, there was an increase in seasonal 
precipitation, although it was not statistically significant (p > 0.05). As shown in the GPCC 
composite analysis, the p-IOD years in the Youngsan River Basin led to reduced precipi-
tation from the long-term normal throughout the KP. This was particularly the case in the 
central part of the KP, where a precipitation reduction occurred in the Han River Basin. 
Notably, the central river basins of the KP (Han and Geum River Basins) have experienced 
a sharp decline in seasonal precipitation since 2013, and the southern basins have tended 
to shift from increased seasonal precipitation to declining or plateauing patterns since 
2007. 

Figure 9 shows changes in the 30-year mean precipitation in March–May, when the 
IOD crosses the peak and enters a period of decline. The IOD showed a statistically sig-
nificant decline through the basins of the five rivers, in contrast to precipitation during 
the peak IOD season. The decline in seasonal precipitation from March–May was notice-
able in the Youngsan and Sumjin River Basins in the southern coastal region of Korea. 

Figure 8. Changes in seasonal precipitation anomalies (August–October) when the IOD peaked. In
each panel, Case I shows the changes over time in the 30-year mean precipitation without excluding
the effects of IOD separately. Case II is the result of excluding the precipitation in the positive IOD
years, and Case III shows the change in the 30-year mean precipitation, excluding the precipitation in
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Figure 9. Changes in seasonal precipitation anomalies (March–May) of the following years when the
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precipitation in the n-IOD years.

Figure 8 illustrates the seasonal precipitation from August to October when the IOD
peaked; this precipitation from August to October in all five major rivers had a statistically
significant increase (p < 0.001). This change in precipitation occurred in the Han River Basin
and was relatively abundant in the southern part of the KP. In the Youngsan River Basin,
Cases I and III showed a statistically significant increase in the 30-year mean precipitation
analysis. Although there was an increase in seasonal precipitation, this change was not
statistically significant (p > 0.05). In the Han River Basin, Cases I and II showed statistically
significant increases; in contrast, in Case III, there was an increase in seasonal precipitation,
although it was not statistically significant (p > 0.05). As shown in the GPCC composite
analysis, the p-IOD years in the Youngsan River Basin led to reduced precipitation from
the long-term normal throughout the KP. This was particularly the case in the central part
of the KP, where a precipitation reduction occurred in the Han River Basin. Notably, the
central river basins of the KP (Han and Geum River Basins) have experienced a sharp
decline in seasonal precipitation since 2013, and the southern basins have tended to shift
from increased seasonal precipitation to declining or plateauing patterns since 2007.

Figure 9 shows changes in the 30-year mean precipitation in March–May, when the
IOD crosses the peak and enters a period of decline. The IOD showed a statistically
significant decline through the basins of the five rivers, in contrast to precipitation during
the peak IOD season. The decline in seasonal precipitation from March–May was noticeable
in the Youngsan and Sumjin River Basins in the southern coastal region of Korea.

At times, the IOD co-occurs with ENSO; as such, in this study, the effects of IOD and
ENSO on seasonal precipitation changes were analyzed when the IOD peaked, and when
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the IOD and ENSO entered a period of decline. The effect of the combination of IOD and
ENSO is shown in the composite precipitation analysis (Table 1). For the p-IOD phases
in the August to October period, the pattern of significant decreases in precipitation was
more likely to appear over the entire KP. In contrast, during the p-IOD years, the entire
KP experienced precipitation that was 2.6–9.4% greater than the average precipitation in
March–May. The occurrence of p-IOD coincided with El Niño events, resulting in more
seasonal precipitation in March–May than the occurrence of only p-IODs. This occurred
more frequently with cold tongue (CT) El Niño than warm pool (WP) El Niño, resulting
in significantly greater spring precipitation across the KP. For the n-IOD years, there was
lower precipitation than usual in the Han River Basin (7.4%), followed by the Sumjin River
Basin (5.2% reduction in March–May precipitation), and the Youngsan River Basin (3.4%
reduction in March–May precipitation). When n-IOD co-occurred with La Niña, there was
slightly greater precipitation in March–May than for n-IOD in isolation. These findings
indicate that IOD events strongly influence precipitation and its sub-watersheds in the
KP. This shows a linkage of possible teleconnections and characteristic changes between
tropical Indian-Ocean-related major climactic events and local precipitation variability over
the KP.

Table 1. Changes in seasonal precipitation from the long-term normal (1966–2016) (unit: %).

River Basin
August–October March–May

p-IOD Years n-IOD Years p-IOD Years n-IOD Years p-IOD/El Niño n-IOD/La Niña

Han River −11.0 0.8 6.5 −7.4 7.0 (20.5) −1.5

Nakdong River −26.8 −2.0 2.6 2.3 13.6 (20.4) 8.9

Geum River −24.6 4.3 4.0 3.9 11.8 (22.0) −1.5

Sumjin River −26.0 5.2 3.1 −5.2 18.8 (25.1) 7.4

Youngsan River −25.9 6.0 9.4 −3.4 13.3 (20.6) 8.7

p-IOD years (1967, 1972, 1977, 1982, 1983, 1994, 1997, 2006, 2007, 2012, and 2015), n-IOD years (1971, 1974, 1975, 1981, 1989, 1992, 1993, 1996,
1998, 2010, 2014, and 2016). The numerical values in parentheses show the results of Case I, coinciding with CT El Niño.

3.4. Large-Scale Air–Sea Environment and Precipitation Variations over East Asia

Based on the p-IOD and n-IOD years defined above, a composite analysis of autumn
(August–October) SSTA in the TIO was conducted (Figure 10). During the p-IOD years,
cold SST anomaly patterns appeared in the eastern Indian Ocean, including Indonesia and
the maritime continent; warm SSTA patterns emerged in the equatorial region of the Indian
Ocean. The warm and cold SST distributions were not extensive, although strong signals
were observed in the East Indian Ocean. Conversely, although not strongly dependent on
IOD phases, there was a warm and cold SSTA distribution over large areas in the western
Indian Ocean. Furthermore, in most areas where warm and cold signals appeared, the
confidence level was greater than 95%.

Many recent studies have shown that these different SST anomaly patterns in the TIO
region may affect air changes in circulation. Moreover, they detected several teleconnection-
based significant changes in different regions of experiencing seasonal precipitation in
Northeast Asia. The large-scale physical mechanism of the developing and decaying IOD
phases in the atmosphere has not yet been clearly understood. However, there are several
reliable studies; some are diagnostic studies, while others are regional impact assessments
of the p-IOD and n-IOD [10,17–20]. After a p-IOD (n-IOD), basin-scale warming (cooling)
was referred to as the Indian Ocean Basin (IOB) mode [32]. These influences on the IOB
may affect the climate of EA in the following season.
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Figure 10. Composite anomalies of mean SST in the TIO region during positive and negative IOD
years, from August to May in the following year. NOAA Extended Reconstructed Sea Surface Tem-
perature version 5 (ERSSTv5) monthly data were used for the SSTA composite analysis; climatology
data were used for the normal years from 1956 to 2018. Dotted points indicate values over 95%
confidence based on Student’s t-test.

Figure 11 shows the composite anomalies (1981–2010 climatology) of the GPCC precip-
itation and 850 hPa wind over northeast Asia during strong IOD events, in the same way as
SSTA. During the warm boreal season, southwesterly winds from the Indian Ocean and the
South China Sea (SCS) were dominant and advected a large amount of moisture from the
Indian Ocean to EA [34]. In p-IOD (n-IOD) years, there was an anticyclonic (cyclonic) circu-
lation in the SCS. This large circulation may help to transport (prevent) moisture to EA. The
composite precipitation anomalies of p-IOD (n-IOD) years showed that they were above
(below) normal over the southern parts of China. In contrast, other parts of EA, including
the KP, experienced drier (wetter) signals than normal years (Figure 11a,b). In p-IOD years,
southern China and the SCS are mainly affected by the southwesterly winds, and this
pattern continues until the following spring. In particular, heavy precipitation occurred in
southern China during the boreal winter season; this is consistent with the findings of Qui
et al. [35]. During n-IOD years, easterly winds were observed in EA (Figure 11e–h).



Remote Sens. 2021, 13, 1806 14 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 11. Composite anomalies of the GPCC precipitation and 850 hPa low-level wind anomalies from autumn (August–
September–October) to spring (March–April–May) of the following year during IOD events over the northeast Asia region. 
The left (middle) panel indicates the p-IOD (n-IOD) events, and the right panel shows the large-scale circulation differ-
ences between p-IOD and n-IOD years. Dots denote values over 95% confidence based on Student’s t-test. 

4. Conclusions 
Understanding the relationship between air–sea environments and precipitation var-

iations in EA for areas experiencing high seasonal variability and uncertainty regarding 
seasonal precipitation data is critical to develop a sustainable freshwater management 
system. In this study, statistical models were used to analyze non-linear behavior links of 
atmospheric teleconnections between climate indices and seasonal precipitation. The IOD 
mode, a major ocean-related climatic factor in the Indian Ocean, was used to analyze long-
term changes in seasonal precipitation over the EA region. The primary results are sum-
marized as follows: 
(1) The analysis of atmospheric teleconnections was conducted using PCA and SSA tech-

niques. Non-linear lag correlations between climate indices and seasonal precipitation 
were calculated using the MI technique, and their lag-time correlations were simu-
lated from lag-0 to lag-11. Teleconnection-based non-linear and linear CCs were con-
ducted between climate indices and seasonal precipitation using LR and KDE based 
on the MI results. Results from non-linear CCs were higher than those from linear 
correlations, and IOD was found to directly influence the precipitation anomaly time 
series over the KP. This study demonstrates a method for teleconnection-based long-
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(n-IOD) events, and the right panel shows the large-scale circulation differences between p-IOD and
n-IOD years. Dots denote values over 95% confidence based on Student’s t-test.

4. Conclusions

Understanding the relationship between air–sea environments and precipitation vari-
ations in EA for areas experiencing high seasonal variability and uncertainty regarding
seasonal precipitation data is critical to develop a sustainable freshwater management
system. In this study, statistical models were used to analyze non-linear behavior links
of atmospheric teleconnections between climate indices and seasonal precipitation. The
IOD mode, a major ocean-related climatic factor in the Indian Ocean, was used to analyze
long-term changes in seasonal precipitation over the EA region. The primary results are
summarized as follows:

(1) The analysis of atmospheric teleconnections was conducted using PCA and SSA
techniques. Non-linear lag correlations between climate indices and seasonal pre-
cipitation were calculated using the MI technique, and their lag-time correlations
were simulated from lag-0 to lag-11. Teleconnection-based non-linear and linear CCs
were conducted between climate indices and seasonal precipitation using LR and
KDE based on the MI results. Results from non-linear CCs were higher than those
from linear correlations, and IOD was found to directly influence the precipitation
anomaly time series over the KP. This study demonstrates a method for teleconnection-
based long-range water resource management to reduce climate uncertainty when an
abnormal SSTA occurs in the TIO region;

(2) When the IOD reached its peak (August to October), a significant decrease in seasonal
precipitation during the n-IOD period was observed throughout the KP. For the spring
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period (March to May), seasonal precipitation during p-IOD years coincided with
the El Niño phenomenon, which was higher than those of only p-IOD years. These
changes occurred more frequently in the CT El Niño than in the WP El Niño years.
For the co-occurrence of n-IODs and La Niña, there was greater precipitation than
when only n-IODs occurred in isolation;

(3) The characteristics of non-stationary 30-year averaged seasonal precipitation were
detected throughout the KP. The precipitation in autumn (August to October) was
observed to increase significantly (p < 0.001) when excluding the p-IOD year across
the KP. In contrast, seasonal precipitation in the central river basins of KP had plum-
meted since 2013 and decreased in the southern basins of the KP since 2007. Spring
precipitation showed statistically significant declines across the five major rivers in the
KP when IODs peaked and entered a period of decline. The decline in seasonal pre-
cipitation from March to May was noticeable in the southern coastal regions of Korea;

(4) During p-IOD years, there were more precipitation signals than usual in the south-
ern part of China, including the SCS and the southern part of Japan, with cyclonic
circulation patterns. A high-pressure anti-cyclonic pattern was observed over eastern
China and the KP. There was a drier signal in n-IOD years than normal in the SCS and
southern China, along with a high-pressure anti-cyclonic pattern. Conversely, inland
and eastern regions of China and Japan showed wetter signals than usual, with a
cyclonic circulation pattern. However, the KP was located between the two cyclonic
circulations, and the district precipitation signal was not visible. The signal was less
dry than the p-IOD years.

The results of this diagnostic study may be utilized in decision-making processes
to minimize climate-related disasters, such as floods and droughts, through seasonal
prediction. Additionally, these results may inform the development of optimal strategies to
ensure best management practices for water use under a changing climate.
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