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Abstract: The regional-scale estimation of crop evapotranspiration (ETc) over a heterogeneous sur-
face is an important tool for the decision-makers in managing and allocating water resources. This 
is especially critical in the arid to semi-arid regions that require supplemental water due to insuffi-
cient precipitation, soil moisture, or groundwater. Over the years, various remote sensing-based 
surface energy balance (SEB) models have been developed to accurately estimate ETc over a regional 
scale. However, it is important to carry out the SEB model assessment for a particular geographical 
setting to ensure the suitability of a model. Thus, in this study, four commonly used and contrasting 
remote sensing models viz. METRIC (mapping evapotranspiration at high resolution with internal-
ized calibration), SEBAL (surface energy balance algorithm for land), S-SEBI (simplified surface en-
ergy balance index), and SEBS (surface energy balance system) were compared and used to quantify 
and map the spatio-temporal variation of ETc in the semi-arid to arid inter-mountain region of Big 
Horn Basin, Wyoming (Landsat Path/Row: 37/29). Model estimates from 19 cloud-free Landsat 7 
and 8 images were compared with the Bowen ratio energy balance system (BREBS) flux stationed 
in a center pivot irrigated field during 2017 (sugar beet), 2018 (dry bean), and 2019 (barley) growing 
seasons. The results indicated that all SEB models are effective in capturing the variation of ETc with 
R2 ranging in between 0.06 to 0.95 and RMSD between 0.07 to 0.15 mm h−1. Pooled data over three 
vegetative surfaces for three years under irrigated conditions revealed that METRIC (NSE = 0.9) 
performed better across all land cover types, followed by SEBS (NSE = 0.76), S-SEBI (NSE = 0.73), 
and SEBAL (NSE = 0.65). In general, all SEB models substantially overestimated ETc and underesti-
mated sensible heat (H) fluxes under dry conditions when only crop residue was available at the 
surface. A mid-season density plot and absolute difference maps at image scale between the models 
showed that models involving METRIC, SEBAL, and S-SEBI are close in their estimates of daily 
crop evapotranspiration (ET24) with pixel-wise RMSD ranged from 0.54 to 0.76 mm d−1 and an aver-
age absolute difference across the study area ranged from 0.47 to 0.56 mm d−1. Likewise, all the SEB 
models underestimated the seasonal ETc, except SEBS. 
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1. Introduction 
Recent times have seen the unsustainable utilization of water resources, leading to 

short- and long-term water crises. The degrading soil and water resources coupled with 
climate change and variability have made it inevitable to scientifically manage agricul-
tural water [1]. In such a scenario, managing the scarce water resources to fulfill increasing 
demands is a challenge. The accurate quantification of ETc at local and regional scales can 
aid in water resource-based policy and decision making and help manage our water re-
sources. ETc is an energy-driven process and an important component of water budget [2] 
and is an essential component of irrigation water requirement quantification, irrigation 
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planning and design, soil, and hydrological modeling [3], water use efficiency [4], and 
carbon flux [5], amongst others. 

Over time, various highly accurate ETc measurement techniques have been put for-
ward, with each method having its purpose, advantages, and limits. Some of the widely 
used methods are: (a) lysimeter [6]; (b) eddy covariance [7]; (c) Bowen ratio energy balance 
[8]; (d) the crop coefficient approach [3]; (e) the plant monitoring (sap flow) method [9]; 
(f) the energy balance method [10]; and (f) the soil water balance method [11]. In general, 
the footprint of ETc measurement by the aforementioned methods is relatively smaller 
[12], which can create substantial bias when extrapolating to a regional scale. Unlike 
ground-based resource-intensive methods, this research will put forward the potential of 
measuring ETc via satellite-driven surface energy balance (SEB) models. 

The SEB algorithm developed in recent years uses visible, near-infrared, and thermal 
spectrum of an image to calculate energy balance fluxes. SEB models can be a single source 
or dual source. Single source models do not consider vegetation and soil as different enti-
ties and thus, are relatively easy to perform. On the other hand, the dual-source models 
consider vegetation and soil as a different entity and partitioned H between soil and veg-
etation. Commonly used single-source models are mapping evapotranspiration at high 
resolution with internalized calibration (METRIC; [10,13]), surface energy balance algo-
rithm for land (SEBAL; [14,15]), surface energy balance system (SEBS; [16,17]), operational 
simplified surface energy balance (SSEBop; [18]), simplified surface energy balance index 
(S-SEBI; [19]), and surface energy balance index (SEBI; [20]). Likewise, atmosphere land 
exchange inverse (ALEXI; [21]), the two-source time integrated model (TSTIM; [22]), and 
the two-source energy balance model (TSEB; [23]) are some of the representative dual-
source models. All these SEB models differ in input data requirements and the selection 
of a model is dependent upon the availability of the primary inputs. In this research, four 
common and contrasting single source satellite-based image processing models viz. MET-
RIC, SEBAL, S-SEBI, and SEBS were compared and used to quantify and map the spatio-
temporal variation of ETc in the semi-arid to arid inter-mountain terrain of Wyoming. 

The success of the METRIC algorithm is bound to choosing appropriate hot and cold 
pixels during H estimation [13]. METRIC is considered distinct as compared to other con-
temporary models as it utilizes ground-based reference evapotranspiration (ETr) values 
to internally calibrate during H calculation as well as to upscale instantaneous crop evap-
otranspiration (ETinst). The internal calibration purportedly reduces the biases in the esti-
mation of H and reduces the effect of advection on ETc [13]. Like METRIC, SEBAL uses 
anchor hot and cold pixels selected within a satellite image to compute energy balance 
fluxes. SEBAL and METRIC models are similar in many of their assumptions. METRIC 
was developed based on the SEBAL model. Compared to METRIC and SEBAL, the SEBS 
model is based upon atmospheric turbulent fluxes and evaporative fraction (Λ) and uses 
various physically based equations for determining a kB−1 parameter to calculate the dif-
ference between radiometric and aerodynamic temperature [16]. The model constrains the 
surface heat flux in between the dry limit (latent heat (LE) = 0) and wet limit (LE is at its 
potential rate) of H. On the other hand, S-SEBI has the simplest algorithm of all the models 
compared in this research. The fact that S-SEBI requires no meteorological data and its 
utilization of surface temperature (Ts) vs. surface albedo (α) feature space to compute (Λ) 
makes it simpler than all other models. Besides, a Ts vs. α feature space plot is reported to 
be more suitable in heterogeneous land cover [24]. 

All these SEB models have been applied individually to evaluate and estimate spatial 
and temporal variability of ETc under different vegetative and climatic conditions 
[10,17,25–28]. However, limited research is concentrated in comparison of SEB models 
that identify a suitable model for a specific region and climatic conditions, and highlight 
the model benefits and inadequacies [26,29,30]. Singh and Senay [26] compared METRIC, 
SEBAL, SEBS, and SSEBop models using Landsat 5 and 7 images in the mid-western U.S. 
They reported all the four models performing well on estimating ETinst despite their dif-
ferences in complexity and assumptions when model estimates were compared with three 
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AmeriFlux cropland sites. However, METRIC and SSEBop ET24 estimates were closer with 
overall R2 for both models at 0.92 and RMSD at 0.93 mm d−1 and 0.84 mm d−1,respectively. 
A density plot between models on predicting ET24 revealed a high degree of linearity for 
plots involving METRIC, SEBAL, and SEBS models compared to SSEBop. Wagle et al. [30] 
compared five different remote sensing models viz. METRIC, SEBAL, SEBS, S-SEBI, and 
SSEBop on a sorghum field during the 2012 and 2013 growing seasons using 19 Landsat 
7 and 8 images. They reported poor performance of METRIC (R2 = 0.71 and RMSD = 1.5 
mm d−1) and SSEBop (R2 = 0.59 and RMSD = 1.24 mm d−1) as compared to SEBAL (R2 = 0.82 
and RMSD = 0.97 mm d−1), SEBS (R2 = 0.69 and RMSD = 1.08 mm d−1), and S-SEBI (R2 = 0.77 
and RMSD = 0.9 mm d−1) when model estimates of ET24 estimates were compared with 
eddy covariance-measured corresponding flux. On a seasonal basis, models overesti-
mated evapotranspiration (ET) (ranged between 4.7% for SEBS to 30.1% for METRIC) ex-
cept for S-SEBI (−14.8%) and SSEBop (−10.7%) in the 2013 growing season. Bhattarai et al. 
[29] also compared METRIC, SEBAL, SEBS, S-SEBI, and SSEBop in a humid subtropical 
climate using 149 Landsat 5 and 7 images. Their research reported the poor performance 
of SSEBop (R2 = 0.71 and RMSD = 1.67 mm d−1), average performance of METRIC (R2 = 0.81 
and RMSD = 0.95 mm d−1), SEBAL (R2 = 0.77 and RMSD = 0.83 mm d−1), and S-SEBI (R2 = 
0.75 and RMSD = 0.92 mm d−1), and good performance by SEBS (R2 = 0.82 and RMSD = 
0.74 mm d−1) when model estimates were correlated with eddy covariance-measured ET24 
at three vegetated sites: Blue Cypress, Citrus and Ferris Farm and BREBS-measured ET24 
at Reddy Lake, Florida. Similarly, Losgedaragh and Rahimzadegan [31] performed a 
model evaluation of SEBS, SEBAL, and METRIC on estimating evaporation from a reser-
voir and its nearby agricultural land in a semi-arid climate of Iran using 16 Landsat 5 
images and pan evaporation measurements as the ground truth. Their result indicated the 
SEBS model (R2 = 0.93 and RMSD = 0.62 mm d−1) performed better in estimating evapora-
tion inside the reservoir (water surface) followed by METRIC (R2 = 0.57 and RMSD = 2.02 
mm d−1) and SEBAL (R2 = 0.36 and RMSD = 5.1 mm d−1). However, the same study also 
compared model performance on estimating evaporation from a reservoir bank, which 
resulted in the SEBAL model (R2 = 0.85 and RMSD = 0.82 mm d−1) performing better, fol-
lowed by METRIC (R2 = 0.79 and RMSD = 1.01 mm d−1) and SEBS (R2 = 0.36 and RMSD = 
8.06 mm d−1). Likewise, Chirouze et al. [32] compared four satellite-based SEB models viz. 
S-SEBI, VIT (modified triangle method), TSEB, and SEBS to estimate ETc and the water 
stress of irrigated fields in semi-arid northern Mexico. Their study showed the S-SEBI 
model (RMSD = 117 W m−2) better predicted LE followed by TSEB (RMSD = 122 W m−2) 
and SEBS (RMSD = 131 W m−2). They also indicated SEB models tend to overestimate ETc 
and the model performance declines during low LAI and at vegetation senescence. Like-
wise, Liaqat and Choi [33] compared the METRIC and SEBS models using Landsat prod-
ucts in Northeast Asia having both flat as well as complex mountainous terrain. Both the 
models correlated (r) greater than 0.75 and had an RMSD of 0.88 mm d−1 and 1.03 mm 
d−1,respectively when estimated ET24 (unadjusted) from four different sites were com-
pared with corresponding flux tower measurements. The study also showed a density 
plot comparison of estimated ET24 between METRIC and SEBS with R2 ranging between 
0.87–0.92 and RMSD in between 0.2 mm d−1 to 0.3 mm d−1. A comparison of Landsat pre-
dicted ET and observed ET using the METRIC and TSEB models over a cotton field by 
French et al. [34] found average discrepancies less than 1.9 mm d−1 for both models. 

The SEB models differ in their level of complexity, assumptions, and are developed 
in contrasting geographical and climatic settings. Lu et al. [35] recommend running a com-
parison test between models to identify the best-fit model in a climatic setting before those 
models are involved in decision making. This study was carried out in the semi-arid to 
arid region of mid-western USA surrounded by complex mountainous terrain. Unlike flat 
terrain, adjustments in SEB algorithms are needed with varying slopes, aspects, and ele-
vation [10,13,36,37]. Thus, this research anticipates identifying the best fit model suitable 
to semi-arid to arid mountainous climatic settings. Likewise, complex models require ex-
tensive time and effort to set up and do not necessarily outperform the simpler models 
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[38]. Similarly, the evaluation of different models helps to identify the limitations and un-
certainties of a model. Therefore, the specific objectives of this study were to: (i) assess and 
compare the performance of METRIC, SEBAL, SEBS, and S-SEBI algorithms using Land-
sat imagery on estimating ETc with respect to measured ETc from the Bowen ratio energy 
balance system for the different vegetative surfaces in the intermountain region of Wyo-
ming; (ii) quantify, map, and evaluate spatial and temporal distribution (daily, monthly, 
and seasonal) of ETc over the study region via the METRIC, SEBAL, SEBS, and S-SEBI 
model. 

2. Materials and Methods 
2.1. Study Area, Climate and Satellite Dataset, and Image Processing 

The study area is situated in the Rocky Mountain region of the United States covering 
the majority of the Bighorn Basin, Wyoming (Landsat Path: 37 and Row: 29; Figure 1) [25]. 
The study area encompasses 7930 Km2 with an elevation between 1110 m to 3254 m. A 
total of 19 Landsat 7- Enhanced Thematic Mapper Plus (ETM+) and Landsat 8- Opera-
tional Land Imager (OLI) and thermal infrared sensor (TIRS) images (Path: 37, Row: 29) 
were retrieved for the 2017 (5 images), 2018 (9 images), and 2019 (5 images) growing sea-
sons (Table 1). The majority of the study area is covered by natural vegetation (83%) com-
prising evergreen and deciduous forest, grassland, shrubland, and woody and herbaceous 
wetlands. The growing season is generally short due to a limited number of frost-free days 
in the year. The major soil type in the study area is sandy loam while major crops are 
alfalfa, barley, dry bean, sugar beet, and corn. 

In general, the study area is dominated by a semi-arid to arid climate, with average 
annual precipitation (1981–2010) as low as 235 mm [39]. Over the study duration, substan-
tial variations were observed in weather variables during each of the three years. Com-
pared to long-term average values, 2017 had below-normal precipitation and higher ETr. 
The total seasonal P of 94 mm, 128 mm, and 218 mm was observed in 2017, 2018, and 2019, 
respectively. Likewise, the cumulative ETr was highest in 2017 (883 mm) followed by 2018 
(820 mm), and the 2019 (794 mm) growing season. A detailed description of the study area 
characteristics and weather conditions were reported in Acharya et al. [25], Sharma et al. 
[40], and Rai et al. [41]. High quality hourly and daily weather data to estimate ETr and 
precipitation data were retrieved from the Wyoming Agricultural Climate Network 
(WACNet) weather station at the University of Wyoming, Powell Research and Extension 
Center (PREC), located within the Landsat scene footprint. The quality control of meteor-
ological data was performed by the Water Resources Data System at the University of 
Wyoming and the data were disseminated via the WACNet website [42]. Quality control 
involves both automated and manual techniques. The flagged and missing datasets (failed 
quality control) are estimated via spatial and statistical methods to result in a complete 
data-set [43]. Based on the quality analyses, all climate data used over the study duration 
were judged to be of good quality. The meteorological condition at PREC, Wyoming on 
image acquisition day is provided in Table 1. 

Likewise, the BREBS installed in 2017 in a center-pivot-irrigated field in PREC, Wy-
oming (44.46°N, 108.45°W) was used to assess the performance of the SEB model over 
three irrigated vegetative surfaces, i.e., sugar beet in 2017, dry bean in 2018, and barley in 
2019. These crops were selected based on their high acreage, high economic value, and 
high irrigation demand in the intermountain region of Wyoming. In 2017, sugar beet cul-
tivar 9418RR was planted on 8 May at 0.3 m plating depth with a planting density of 
118,600 seeds per hectare and harvested on 13 October. In 2018, dry bean cultivar La Paz 
was planted on 5 June at 0.05 m soil depth and 0.56 row spacing at a seeding rate of 222,395 
seeds per hectare and harvested on 10 September. In 2019, barley was planted on 5 April 
at a target planting density of 850,000 plants per hectare on 0.19-row spacing and har-
vested on 14 August. A thorough description of the BREBS station installed at PREC, Wy-
oming is provided on our precedent paper [25]. The BREBS data were closely supervised 
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and general maintenance was provided on a regular basis (once a week). The meteorolog-
ical data (e.g., air temperature, relative humidity, incoming shortwave solar radiation, 
wind speed) collected from BREBS underwent rigorous quality checks with comparisons 
with nearby weather station data. In BREBS, the accuracy of the calculated LE and H 
fluxes depends on the accuracy of the Bowen ratio. A negative Bowen ratio during the 
day and a larger Bowen ratio during sunset and sunrise indicate an error in H and/or LE 
fluxes. In such instances, H and LE fluxes are recalculated via bulk aerodynamic estima-
tion techniques using wind speed and temperature gradient [44]. 

 
Figure 1. Location and land use map of the study area (Landsat Path 37 Row 29) within the Big Horn Basin (BHB), Wyo-
ming. 
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Table 1. Image acquisition date, spacecraft ID, and daily weather parameters measured at BREBS station, Powell Research 
and Extension Center, Wyoming. Daily weather parameters include minimum air temperature (Tmin), maximum air tem-
perature (Tmax), minimum maximum air temperature (Tmax), minimum relative humidity (RHmin), maximum relative hu-
midity (RHmax), wind speed (u2), solar radiation (Rs), precipitation (P), and ASCE PM alfalfa-ETr. 

Date ID Julian 
Date 

Tmin 
(°C) 

Tmax 
(°C) 

RHmin (%) RHmax (%) u2 (ms−1) Rs (W m−2) P (mm) ETr (mm d−1) 

15/7/2017 L08 196 15.9 36.8 13.0 66.2 1.2 280.1 0 7.28 
31/7/2017 L08 212 10.8 33.3 12.4 84.3 0.9 306.0 0 6.3 
16/8/2017 L08 228 9.7 25.3 22.6 82.6 0.8 217.8 0 4.14 
1/9/2017 L08 244 15.0 31.4 17.6 68.4 1.2 178.3 0 5.15 
9/9/2017 L07 252 8.1 30.2 11.6 65.6 0.8 198.2 0 4.25 

15/5/2018 L08 135 6.2 19.9 33.8 100 1.4 235.9 0 4.33 
8/6/2018 L07 159 10.7 27.0 24.6 82.1 1.4 230.4 0 5.55 
2/7/2018 L08 183 10.4 27.8 16.2 81.7 0.8 300.0 0 5.55 

18/7/2018 L08 199 11.8 29.5 23.6 84.0 0.7 210.6 0.254 4.55 
26/7/2018 L07 207 14.6 28.8 26.8 69.6 1.5 262.7 0 6.36 
11/8/2018 L07 223 12.4 36.4 9.0 68.2 0.7 302.5 0 5.95 
4/9/2018 L08 247 6.8 30.7 11.6 77.8 1.3 261.8 0 6.03 

12/9/2018 L07 255 8.7 24.7 18.1 69.6 1.0 207.3 0 4.12 
22/10/2018 L08 295 −0.2 21.6 16.8 74.0 0.9 151.5 0 2.49 
3/6/2019 L08 154 8.9 27.3 20.3 84.4 1.1 301.2 0 5.97 

13/7/2019 L07 194 13.3 33.4 20.8 82.5 0.9 300.5 0 6.26 
21/7/2019 L08 202 12.0 27.5 21.8 57 1.9 332.8 0 7.63 
14/8/2019 L07 226 9.5 28.3 19.4 77.8 1.2 298.5 0 6.01 
15/9/2019 L07 258 8.6 29.1 13.9 80.7 1.9 192.3 0 5.99 

The SEB models convert the digital numbers (DNs) of each image pixel to compre-
hensible SEB fluxes. The conversion begins with the computation of top of atmosphere 
radiance and reflectance from the geo-rectified images using equations as provided in 
USGS Landsat 7 and 8 handbooks. Moreover, the data loss incurred in Landsat 7 due to 
scan line correction error was overcome by carrying out natural neighbor interpolation in 
ArcGIS 10.6. The final output images (instantaneous) were gap filled by finding the closest 
subsets of missing pixels from the surrounding pixels. Image processing was carried out 
using the ERDAS IMAGINE 2020 (Leica Geosystems GIS and Mapping, LLC, Atlanta, 
Georgia, USA) graphical model maker tool. Likewise, ArcMap 10.8 and R-Studio Version 
1.4.1103 were employed for the presentation of analyzed images. To account for aspects, 
slopes, and elevation on Ts, the solar incidence angle was computed for each pixel and a 
lapse rate of 6.5 K km−1 was considered in all the models. METRIC additionally used a 
second lapse rate of 10 K km−1 in the mountainous terrain to compute elevation-corrected 
surface temperature (Ts_dem) [13]. A lapse rate change of 2000 m (foot of the mountain) was 
considered based upon the average elevation of the study area to toggle between the two 
lapse rates in METRIC. In addition to the above modification, Zom, wind speed, and at-
mospheric pressure were adjusted [13] as they appeared in the model algorithm. The dig-
ital elevation model (DEM) was used to account for slopes, aspects, and elevation in the 
above adjustments. In this study, a land-use map was used to estimate Zom and extract 
information for different land cover types during the result presentation. Table 2 provides 
the source of various datasets and the computation of primary and secondary inputs (in-
termediate outputs) needed in the SEB models. 
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Table 2. A table describing how various datasets were acquired/ computed in the study. 

Datasets Models Source/ Computation 
Landsat 7- ETM+ and 

 Landsat 8- OLI and TIRS All USGS (https://earthexplorer.usgs.gov/)(ac-
cessed 6 March 2019) 

Land use map All USDA National Agriculture statistical ser-
vice (NASS) 

Digital Elevation Model (DEM) All USDA Geospatial Data Gateway 
Leaf Area Index (LAI) All Bastiaanssen [14] empirical equation 

NDVI and SAVI All Using red and near-infrared bands (Huete 
et al. [45], Huete [46]) 

Albedo (α) 
METRIC and SEBS 

Integrating the at-surface band reflectance 
using weighting coefficients (Starks et al. 
[47]; Tasumi et al. [48]; Olmedo et al. [49]) 

SEBAL and S-SEBI Morse et al. [50] 
Surface Temperature (Ts) All Modified Planks equation 

Solar Incidence angle All Duffie and Beckman [51] 

ETr All 
Wyoming Agricultural Climate Network 
(WACNet; Sharma et al. [42]) 

2.2. Energy Balance Models (SEB) 
The SEB models compute ETc as a residual of other energy balance fluxes viz. Rn, soil 

heat (G) and H [13] (Equation (1)) as: 

ETc =  Rn − G − H (1) 

The following section provides a brief overview of the SEB models used in this study. 

2.2.1. METRIC Model and SEBAL Model 
The net radiation (Rn) is derived for each pixel by deducting reflected short- (αRs↓) 

and longwave ((1 − εo) RL↓) as well as emitted long-wave (RL↑) from incident short- (Rs↓) 
and longwave (RL↓) [13]. 

Rn =  Rs ↓ − αRs ↓  + RL ↓  − RL ↑  − (1 −  εo) RL ↓ (2) 

where Rs ↓ is the incoming shortwave radiation (W m−2), RL ↓ is the incoming longwave 
radiation (W m−2), RL ↑ is the emitted outgoing longwave radiation (W m−2), and εo is the 
surface thermal emissivity (dimensionless). 

For METRIC, G was empirically calculated as a G/Rn fraction using vegetation indices 
and surface temperature [52]. 

G
Rn

= 0.05 + 0.18 × e−0.521LAI (LAI ≥ 0.5) (3) 

G
Rn

 =
1.80 × ( Ts –  273.15)

Rn
+ 0.084 (LAI < 0.5) (4) 

where Ts is the surface temperature in Kelvin and LAI (dimensionless) is the leaf area 
index. 

For SEBAL, an empirical relation put forward by Bastiaanssen et al. [14] was used to 
compute G as: 

G =  Rn ×  (Ts – 273.15)  ×  (0.0038 +  0.074 α)  ×  (1 −  0.98 × NDVI4) (5) 

The main feature of the METRIC and SEBAL model is the assumption of linearity 
between Ts and the near-surface air temperature difference [10,13–15]. In fact, the METRIC 
model was developed on the back of the SEBAL model [10,13], emphasized to accurately 
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predict energy balance fluxes, particularly in advective conditions and undulating terrain 
[10,13]. The major difference between these two models lies in how anchor pixels (hot and 
cold pixel) are selected during H calculation. METRIC assumes a wet, well-irrigated crop 
surface with full cover as a cold pixel candidate, whereas a dry, bare agricultural field is 
its hot pixel candidate [10,13]. On the other hand, local water bodies and dry, bare agri-
cultural fields are cold and hot pixel candidates in SEBAL, respectively [10,13–15]. NDVI, 
α, LAI, Ts, and land use map was taken into consideration while selecting the anchor pix-
els for both the model. In this study, a manual selection of hot and cold pixels was per-
formed for both METRIC and SEBAL models. Both the anchor pixels were selected within 
a 20 km distance from the meteorological station. For METRIC, cold pixel candidates were 
selected from the well-irrigated densely vegetated area with the NDVI between 0.76 and 
0.84, mid-season LAI higher than 3 or 4 m−2 m−2, surface albedo between 0.18 to 0.24, and 
comparatively lower Ts. However, for SEBAL, cold pixel candidates were picked from the 
nearest water body to the meteorological station. The hot pixel candidate for both the 
models had an NDVI less than 0.2, surface albedo between 0.17 to 0.23, and comparatively 
higher Ts. Thus, hot pixels were the same for METRIC and SEBAL models in all the images 
considered in the study. A detailed description of how the selection of hot and cold pixels 
is performed is presented in our companion paper [25]. For both METRIC and SEBAL, H 
is calculated as a function of aerodynamic observations such as wind speed at 2-m height 
(u2), vegetation type and roughness, and surface to air temperature differences (Ts − Ta) 
as [13,14]: 

H =  
ρ × Cp × dT

rah
=  
ρ × Cp ×(Ts − Ta)

rah
 (6) 

where ρ is the air density (kg m−3), Cp is the specific heat of the air (1004 J kg−1 K−1), dT is 
the near-surface air temperature difference (Ts − Ta) between two reference heights Z1 
and Z2, Ts is the surface temperature (K), Ta is the air temperature (K), and rah is the aer-
odynamic resistance to heat transfer (s m−1) over the vertical distance. Our companion 
paper, Acharya et al. [25], provides a detailed description of the METRIC algorithm as 
well as for H computation of the SEBAL model. Unlike SEBAL, METRIC uses ground- 
measured instantaneous ETr to internally calibrate the cold pixel during H calculation 
[10,13]. 

SEB models compute ETinst as residual of the surface energy balance components 
(Equation (7)). 

ETinst =  
3600 × (Rn − G − H)

λ ×ρw
 (7) 

where ρ𝑤𝑤 is the density of water (~1000 kg m−3) and λ refers to the latent heat of vapori-
zation (J Kg−1). METRIC uses the reference ET fraction (ETrF) value to upscale ETinst to ET24 
and periodic ETc [13]. ETrF (dimensionless) is computed as a ratio of ETinst to the ETr. 

ETrF =
ETinst

ETr
 (8) 

where ETr is computed using the standardized ASCE Penman-Monteith equation [53] on 
an hourly basis. METRIC utilizes ETrF to minimize the impact of advective heat on ETc. 
Likewise, ETrF is presumed to be equivalent to the crop coefficient and its values remain 
constant throughout the day [54]. The ET24 rate (mm d−1) is then calculated by multiplying 
ETrF values with hourly ETr values summed over 24 h (ETr-24) (Equation (9)). 

ET24 =  ETrF × ETr−24 (9) 

For SEBAL ET24 is computed using Λ and daily average net radiation. Λ is the ratio 
of latent heat (Rn − G − H) to the energy available at the surface (H + LE) and denotes 
the fraction of energy that gets partitioned towards LE. SEB fluxes (Rn, G, H, and ETc) have 
considerable diurnal variation. However, the ratio of these fluxes (Λ) is reported to be 
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relatively constant during the day [55]. Thus, Λ is being used in various SEB models to 
upscale ETinst to ET24. 

Λ =
Rn - G - H  

Rn - G  (10) 

ET24 = (8.64 × 107) × Λ
(Rn24 − G24)

λρw
 (11) 

where Rn24 is the daily average net radiation (W m−2) and G24 (assumed to be zero) is the 
daily average G flux (W m−2). Rn24 was computed using daily extraterrestrial solar radia-
tion (Ra; W m−2) and daily atmospheric transmittance (τsw) [3]. This Rn24 is the same as that 
used in ETr computation using the ASCE Penman-Monteith equation. 

Likewise, cubic spline interpolation was favored over linear interpolation [25] to in-
terpolate ET24 to monthly and seasonal ETc. A detailed description of cubic spline interpo-
lation [13] is also provided in our companion paper [25]. 

ETcumulative =  � �(Kc−i) × (ETr24i)�
last day of month

1st day of month

 (12) 

where ETcumulative (mm) represents the summation of ET24 from the first day  to the last 
day of the month, Kc−i is the interpolated Kc for a month and ETr24i is the daily ETr summed 
over a month. 

2.2.2. SEBS Model 
Figure 2 shows the flowchart of SEB components and other intermediate parameters 

estimated by SEBS. For the SEBS model, Rn is computed as in Equation (2). In this study, 
an empirical relationship between vegetation indices and Ts as provided by Tasumi [52] 
was used to calculate G (Equations (3) and (4)). Unlike METRIC and SEBAL, where anchor 
pixels delineate the energy balance boundary conditions, the selection of hot and cold 
pixels is not required in the SEBS model. In SEBS, H is calculated using an iterative pro-
cedure that solves the relationships for the layers of the friction velocity, the difference 
(∆θ, K) between the near-surface potential air temperature (Ta) and Ts, and Monin-Obu-
khov length (L) which is expressed as: 

u =  
u∗

k
�ln �

z − do
zom

� −  Ψm �
z − do

L
� + Ψm �

zom
L �� (13) 

(Ts − Ta) =  
H

ku∗ρCp
�ln �

z − do
zoh

� −  Ψh �
z − do

L
� + Ψh �

zom
L �� (14) 

L =  −
ρCpu∗3θv

kgH
 (15) 

where u* = (τo/ ρ)1/2 is the friction velocity, τo is the surface shear stress, ρ is the density of 
air, k is von Karman’s constant, do is the zero-plane displacement height, z is the height 
above the surface, zom is the roughness height for momentum transfer, zoh is the scalar 
roughness height for heat transfer, Ψm and Ψh are stability correction functions for mo-
mentum and H transfer, Cp is the specific heat of air at constant pressure, g is the acceler-
ation due to gravity, θv is the virtual temperature near the surface. The Paulson [56] and 
Webb [57] method was used to determine the roughness height for heat and momentum 
transfer and the stability correction function. An empirical relationship provided by Brut-
saert [58] was used to compute wind speed at blending height (z) and the zero-plane dis-
placement height (do). 

Further, the SEBS algorithm utilizes relative evaporation (Λr) derived from H at dry 
(Hdry) and wet limits (Hwet) to compute Λ (Equations (17) and (18)), ETinst (Equation (7)), 
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and ET24 (Equation (11)) [16]. At Hwet, evaporation occurs at a potential rate and H is at its 
minimum value. It is calculated using the Penman-Monteith parameterization equation 
[59], assuming the bulk internal resistance to be zero. Likewise, H is at its maximum value 
(LE = 0) at Hdry. It corresponds to fields where soil moisture is limited for evaporation to 
occur. Periodic ETc in SEBS is computed as in Equation (13). 

Λr = 1 −
H − Hwet

Hdry − Hwet
 (16) 

Λ =
Λr × LEwet

Rn − G
=

LE
Rn − G

 (17) 

λETc = Λ(Rn − G) (18) 

 
Figure 2. Flowchart illustrating the computation of surface energy balance fluxes using SEBS algo-
rithm. 

2.2.3. S-SEBI Model 
Figure 3 is the computational flowchart of SEB components by S-SEBI. The peculiar 

feature of the SSEBI model is that it does not require any meteorological data [19] and the 
model algorithm is also comparatively simpler. The S-SEBI model is based on the correla-
tion observed between Ts and α (Figure 4). The concave Ts vs. α relationship is divisible 
into the evaporation-controlled and radiation-controlled zone. At the evaporation-con-
trolled zone, Ts is first more or less constant and then starts to increase with increasing α 
value. Beyond a certain threshold value of α, Ts decreases with increasing α which is the 
radiative zone. This correlation is used to calculate Λ (Equations (20)–(22)). 

Λ =
TH − To
TH − TλE

 (19) 



Remote Sens. 2021, 13, 1822 11 of 30 
 

 

TH =  ah + bH × ro (20) 

TλE =  aλE + bλE × ro (21) 

H = (1 −  Λ) × (Rn − G) (22) 

where, TH is the temperature of a dry pixel, and TλE is the temperature of a wet pixel, ro is 
threshold α, ah and bh are the regression coefficients for the dry boundary, and aλE and bλE 
are the regression coefficients for the wet boundary. The Ts vs. α regression coefficients 
were computed by excluding α’s below the threshold α value at the wet boundary [19]. 
Threshold α (ro) distinguishes the evaporative and radiative regions of the scatterplot and 
corresponds to the maximum temperature of Ts vs. α relationship. Λ is then used to com-
pute H (Equation (23)) and ETinst (Equation (7)). ET24 and periodic ETc is computed using 
Equations (11) and (12), respectively. 

 
Figure 3. Flowchart illustrating the computation of surface energy balance fluxes using S-SEBI algorithm. 

 
Figure 4. Scatterplot of Surface albedo and surface temperature (Ts) for Landsat path/row 37/29 on 
2 July 2018. 

y = −20.92x + 324.09 

y = 19.06x + 294.74 



Remote Sens. 2021, 13, 1822 12 of 30 
 

 

2.3. Models Validation 
Model accuracy was assessed using the standard regression statistics, i.e., mean, 

standard deviation, and coefficient of determination (R2) along with three error-index sta-
tistics, i.e., root mean square difference (RMSD), percent bias error (PBE), and Nash–Sut-
cliffe’s efficiency (NSE) for estimating ETc as compared to corresponding BREBS flux as: 

RMSD =  �
∑ (O − P)2n
i=1

n
 (23) 

PBE =  
∑ (P − O)n
i=1
∑ On
i=1

× 100 (24) 

NSE = 1 − � 
∑ (O − P)2n
i=1

∑ (O − Omean)2n
i=1

� (25) 

Besides, intercomparison between the models was carried out using density plots and an 
absolute difference map. 

3. Results 
3.1. Comparison between SEB-Estimated and BREBS-Measured Instantaneous Fluxes 

To evaluate the performance of SEB models, model-estimated instantaneous fluxes 
are compared with corresponding BREBS fluxes measured at the BREBS flux tower foot-
print in the Powell Research and Extension Center, Powell, Wyoming (Figures 5 and 6) 
using the approach described by Acharya et al. [25]. BREBS values were retracted at sat-
ellite overpass time (11:00 a.m. MST). A total of 19 different data points acquired for the 
three vegetative surfaces (sugar beet in 2017, dry bean 2018, and barley in 2019) along with 
the pooled data were used in the analyses. Table 3 provides a statistical comparison be-
tween the model-estimated and BREBS-measured ETinst. Our results indicated that all SEB 
models are effective in capturing the variation of ETinst with R2 ranging in between 0.06 to 
0.95 and RMSD from 0.07 to 0.15 mm h−1. Pooled data over three vegetative surfaces for 
three years under irrigated conditions revealed that METRIC (NSE = 0.9) performed better 
across all land cover types, followed by SEBS (NSE = 0.76), S-SEBI (NSE = 0.73), and SEBAL 
(NSE = 0.65). Although no significant difference was observed between R2 values of MET-
RIC and SEBS-estimated vs. BREBS-measured ETinst (0.91 vs. 0.87), the RMSD, NSE, and 
PBE of SEBS model was 27% larger, 18% lower, and 54% higher compared to the METRIC 
model. 

Since the performance of SEB models varies with the underlying surface, this study 
also assessed the performance of SEB models individually for each surface. All SEB mod-
els performed poorly in 2017 over sugar beet, except the SEBS model. The scatter plot 
between the model-estimated vs. BREBS-measured ETinst revealed an R2 of 0.21, 0.06, 0.71, 
and 0.21 and an NSE of 0.2, −0.9, 0.2, and −0.2, for METRIC, SEBAL, SEBS, and S-SEBI, 
respectively. The regression analysis of estimated vs. measured ETinst in 2017 showed a 
non-significant correlation (p-value > 0.05) for all models except SEBS. A comparison of 
the SEB model-estimated ETinst in 2018 over the dry bean vegetative surface revealed the 
METRIC, SEBAL, SEBS, and S-SEBI explained 95% (RMSD = 0.07 mm h−1), 75% (RMSD = 
0.13 mm h−1), 90% (RMSD = 0.14 mm h−1), and 81% (RMSD = 0.11 mm h−1) variability in 
measured ETinst, respectively. Similar to 2018, in 2019, METRIC (R2 = 0.80; RMSD = 0.08 
mm h−1, PBE = 0.4%, NSE = 0.7) and SEBS (R2 = 0.80; RMSD = 0.09 mm h−1, PBE = 11%, NSE 
= 0.6) performed well compared to SEBAL (R2 = 0.61; RMSD = 0.17 mm h−1, PBE = 7.3%, 
NSE = −0.8) and S-SEBI (R2 = 0.44; RMSD = 0.15 mm h−1, PBE = 5.5%, NSE = −0.4), with all 
the models performing well over barley. 

The fact that the 2018 growing season had nine images spread across the growing 
season can lead to disproportionally more accuracy for the dry beans as compared to 
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sugar beet (2017 with five images) and barley (2019 with five images) (Table 1). An anal-
ysis of temporal biases towards the end of the 2018 growing season was carried out to 
better understand the model performance. For that, 2018 images from mid-July to Sep-
tember (resembling the images from 2017 and 2019) were analyzed and compared with 
BREBS measurements. The results revealed that METRIC, SEBAL, SEBS and S-SEBI ex-
plained 87% (RMSD = 0.09 mm h−1, NSE = 0.76), 48% (RMSD = 0.16 mm h−1, NSE = 0.20), 
91% (RMSD = 0.12 mm h−1, NSE = 0.55), and 57% (RMSD = 0.15 mm h−1, NSE = 0.32) varia-
bility in measured ETinst, respectively (data not shown). A reduction in correlation statis-
tics, i.e., R2, NSE, and higher RMSD reveal some degree of temporal biases in all models. 

 
Figure 5. A comparison of surface energy balance (SEB) model-estimated ETinst (mm h−1) (a) METRIC, (b) SEBAL, (c) SEBS, 
and (d) S-SEBI with BREBS-measured ETinst at the BREBS flux-tower footprint located in PREC, Powell, Wyoming for three 
vegetative surfaces. 

To further understand the variation in SEB model-derived ETinst, estimated H was 
compared with the BREBS-measured H (Figure 6). Overall, all models are effective in cap-
turing the variation of H with R2 ranged from 0.69 to 0.86 and RMSD from 59 to 88 W m−2. 
The average SEB models estimate of H was 13%, 7%, and 5% higher for METRIC, SEBAL, 
and S-SEBI and 14% lower for the SEBS model as compared to ground observations (mean: 
108 W m−2). However, the biggest difference in modeled and measured H was observed 
for SEBS (RMSD = 88 W m−2, PBE = −14%), where most of the underestimation was ob-
served in the dry bean (35%) in 2018 and barley (10%) in the 2019 growing season after 
harvest. 
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Figure 6. A comparison of surface energy balance (SEB) model-estimated H flux (W m−2) (a) METRIC, (b) SEBAL, (c) SEBS, 
and (d) S-SEBI with BREBS-measured H at the BREBS flux-tower footprint located in PREC, Powell, Wyoming for three 
vegetative surfaces. 
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Table 3. Statistical comparison between model-estimated and BREBS-measured ETinst for 2017, 2018, and 2019 growing 
season period. 

MODEL Year Surface N R2 

Average Average SD SD PBE RMSD NSE 
BREBS 

flux 
MODEL flux BREBS MODEL  (mm h−1)  

(mm h−1) (mm h−1)      

METRIC 

2017 Sugar beet 5 0.21 0.75 0.76 0.1 0.05 1.40% 0.09 0.20 
2018 Dry Bean 9 0.95 0.33 0.38 0.21 0.22 15.80% 0.07 0.90 
2019 Barley 5 0.80 0.54 0.54 0.13 0.16 0.40% 0.08 0.67 
Pooled data points 19 0.91 0.49 0.52 0.24 0.23 5.70% 0.08 0.90 

SEBAL 

2017 Sugar beet 5 0.06 0.75 0.68 0.1 0.05 −8.70% 0.14 −0.90 
2018 Dry Bean 9 0.75 0.33 0.37 0.21 0.25 11.40% 0.13 0.64 
2019 Barley 5 0.61 0.54 0.58 0.13 0.25 7.30% 0.17 −0.75 
Pooled data points 19 0.69 0.49 0.5 0.24 0.25 2.20% 0.14 0.65 

SEBS 

2017 Sugar beet 5 0.71 0.75 0.69 0.1 0.04 −7.50% 0.09 0.19 
2018 Dry Bean 9 0.90 0.33 0.45 0.21 0.18 38.30% 0.14 0.53 
2019 Barley 5 0.80 0.54 0.6 0.13 0.13 11.10% 0.09 0.57 
Pooled data points 19 0.87 0.49 0.55 0.24 0.18 12.30% 0.11 0.76 

S-SEBI 

2017 Sugar beet 5 0.21 0.75 0.72 0.1 0.01 −3.20% 0.11 −0.21 
2018 Dry Bean 9 0.81 0.33 0.37 0.21 0.24 11.50% 0.11 0.71 
2019 Barley 5 0.44 0.54 0.58 0.13 0.2 5.50% 0.15 −0.38 
Pooled data points 19 0.76 0.49 0.51 0.24 0.25 3.90% 0.13 0.73 

3.2. Comparison of Estimated and Measured Monthly Crop Evapotranspiration (ETc) 
In general, monthly ETc is more desirable for hydrological applications (e.g., seasonal 

irrigation requirement, conveyance capacities of irrigation systems, etc.) as compared to 
ETinst and ET24. In this study, the monthly ETc was calculated from ET24 using cubic inter-
polation [25]. Figure 7 depicts the performance of the SEB models on estimating the 
monthly ETc. For that, the model predicted monthly ETc for the 2018 growing season (May 
to September) were plotted against BREBS-measured corresponding flux. For all the mod-
els, moderate to high correlation was observed between measured and estimated ETc with 
R2 ranged from 0.70 to 0.95 and RMSD ranged from 18 mm for METRIC to 34 mm for S-
SEBI. In general, all the models underestimated the seasonal ETc, except SEBS. However, 
METRIC stood out to be best-performing model owing to its lower RMSD (17.6 mm) and 
lower percentage error (−7.9%) followed by SEBS (RMSD = 25.8 mm, %error = +6.6), SEBAL 
(RMSD = 33 mm, %error = −29) and S-SEBI (RMSD = 34.3 mm, %error = −31). METRIC monthly 
ETc ranged between –38% (underestimation) in June to 18% (overestimation) in October. 
The over and underestimation of the estimated monthly ETc was higher when the soil 
surface was devoid of active leaf area cover. The dry bean at the BREBS footprint was 
planted on 5 June and harvested on 10 September. Similarly, overestimation (46%) was 
observed for SEBS-derived ETc in October after the dry bean harvest. Contrary to this, 
consistence underestimation ranging between 18% to 55% was observed for SEBAL and 
S-SEBI. 
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Figure 7. Comparison of the model-estimated and BREBS station measured monthly ETc (mm) during 2018 growing sea-
sons. 

3.3. Intercomparison of SEB Model Estimated Daily Evapotranspiration (ET24) 
An intercomparison of the SEB model-derived ET24 was carried out using density 

plots (Figures 8 and 9) and absolute difference maps (Figure 10). Figure 8 reflects a con-
centrated range of estimated ET24 on 2018 image acquisition dates. The shape of the curve 
fluctuated (unimodal, bimodal, and multimodal) throughout the growing season as sur-
face conditions changed. The study area comprises vast swathes of natural vegetation 
(83% of the total study area) whereas the cultivated area (14%) is limited. Bimodal peaks 
(one of the peaks relate to cropland and the other for natural vegetation) is observed in 
SEB models (especially for METRIC) in mid and late season (18 July, 11 August, 4 Septem-
ber, and 12 September) when crops are at full growth and the naturally vegetated area is 
under water stress. As expected, the distribution of density plots for all SEB models in 
mid-season (2 July, 18 July, 26 July, and 11 August) is more skewed toward higher ETc. 
Likewise, to understand the behavior of SEB-modeled fluxes at a spatial scale larger than 
a single tower footprint, the gridded SEB model ET24 output over the study domain was 
compared with each other using the density plots (Figure 9). The R2 and RMSD values 
were calculated from approximately 400,000 pixels randomly selected using ordinary lin-
ear regression. The mid-season density plots involving METRIC, SEBAL, and S-SEBI for 
2 July 2018 showed a good degree of correlation (R2 > 0.81) (Figure 9a,b,d). METRIC and 
SEBAL models were comparatively much closer on their estimates of ET24 with R2 of 0.93 
and RMSD of 0.54 mm d−1 (Figure 10a). The highest difference was between the S-SEBI vs. 
SEBS and SEBAL vs. SEBS models with RMSD of 1.21 mm d−1 and 1.15 mm d−1, respec-
tively (Figure 9e,f). 
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Figure 8. Density plot of SEB model estimated ET24 (mm d−1) on: (a) 15 May 2018; (b) 8 June 2018; (c) 2 July 2018; (d) 18 
July 2018; (e) 26 July 2018; (f) 11 August 2018; (g) 4 September 2018, and (h) 12 September 2018. (Embedded within each 
density plot is the mean and mode of ET24 for the corresponding model). 
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Figure 9. Density plot comparison of ET24 (mm d−1) between (a) METRIC vs. SEBAL; (b) METRIC vs. SSEBI; (c) METRIC 
vs. SEBS; (d) SEBAL vs. SSEBI; (e) SEBAL vs. SEBS; (f) SSEBI vs. SEB for 2 July 2018 at image spatial scale. 

Similarly, to further investigate the difference in ET24 estimated using different SEB 
models over the heterogeneous surface, the image-scale pixel-by-pixel absolute difference 
map on 2 July 2018 was constructed (Figure 10). The absolute difference map provides the 
inter-comparison of SEB models based on the distance from zero on the number line. On 
an image scale, the average difference ranged between 0.47 mm d−1 for METRIC–SEBAL 
to 1.23 mm d−1 for S-SEBI–SEBS. It was found that the METRIC–SEBAL model had a com-
paratively lower absolute difference followed by METRIC–S-SEBI (0.53 mm d−1). On the 
other hand, maps involving SEBS had greater absolute differences (1 to 1.23 mm d−1) 
which is consistent with the greater spread-out distribution of ET24 (Figure 10c, 10e, and 
10f). Similarly, Figure 11 also reflects the absolute difference being lower in the cropped 
region as compared to the naturally vegetated area. The average absolute difference be-
tween the models in the cropped area ranged between 0.33 to 0.78 mm d−1, while for natural 
vegetation it ranged between 0.45 to 1.3 mm d−1. 
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Figure 10. Absolute difference map between ET24 on 2 July 2018 estimated using different energy balance models: (a) 
METRIC-SEBAL; (b) METRIC-S-SEBI; (c) METRIC-SEBS; (d) SEBAL-S-SEBI; (e) SEBAL-SEBS; (f) S-SEBI-SEBS. 
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Figure 11. Spatial distribution of SEB model-estimated ET24 on 11 August 2018 (a) METRIC, (b) SEBAL, (c) SEBS, (d) S-
SEBI. 

3.4. Mapping Spatial Variation of SEB Model-Estimated Seasonal Evapotranspiration (ETc)  
To investigate the difference in SEB models for different land use, spatial-intercom-

parison of the SEB models were also carried out using spatial variation of daily and sea-
sonal ETc during the 2018 growing season. For daily ETc, one image on 11 August 2018 
from the middle of the growing season was selected. Spatio-temporal variability through-
out the growing season were also analyzed and added as Supplementary Materials (Fig-
ures S1–S4). For seasonal maps, images from May to September were considered (Figures 
11 and 12). On average, METRIC (4.7 mm d−1) estimated a higher ET24 for cropland fol-
lowed by SEBS (4.1 mm d−1), S-SEBI (3.8 mm d−1), and SEBAL (3.6 mm d−1) (Figure 8). For 
natural vegetation (forest, shrubland, grassland, and wetlands), the average ET24 for all 
the models was less than 1 mm d−1,except for S-SEBI, which had an average ET24 of 1.6 mm 
d−1. A comparison between and within SEB model(s) throughout the growing season (spa-
tio-temporal variability) was also performed using the ET24 maps (refer to Supplementary 
Materials, Figures S1–S4). At the seasonal scale, as expected, cropland observed higher ETc 
as compared to the naturally vegetated area. The study area received an inconsistent rain-
fall distribution during the 2018 growing season, where the majority of the rainfall was 

(a) 

METRIC 

(b) 

SEBAL 

(c) 

SEBS 
(d) 

S-SEBI 
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observed during May (49 mm) and June (49 mm) with a total rainfall of 158 mm between 
March to September. Likewise, coniferous forests (top right and bottom left of the image) 
accounted for a higher seasonal ETc as compared to other land cover types. Intermittent 
cloud masses (brown patches in the image) were captured above naturally vegetated ar-
eas, resulting in a higher ETc estimation as compared to surrounding vegetation. How-
ever, to extract the ETc rate (Table 4) cloud masking was performed. Comparison among 
SEB models revealed that SEBS had a higher estimation of seasonal ETc for all the major 
crops. SEBS seasonal ETc estimates were 4, 21, and 22% higher compared to METRIC, S-
SEBI, and SEBAL, respectively. However, for natural vegetation, S-SEBI (291 mm) pre-
dicted higher average seasonal ETc, followed by METRIC (250 mm), SEBAL (186 mm), and 
SEBS (284 mm). 

 

Figure 12. Spatio-temporal distribution of SEB model-estimated seasonal ETc (mm) across the study area during 2018 
growing season (May-September) (a) METRIC, (b) S-SEBI, (c) SEBAL, and (d) SEBS. 
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Table 4. SEB model-estimated mean monthly and seasonal ETc (mm) across the study area along with percentage land 
cover during the 2018 growing season for 16 different land cover types. 

Land 
Cover 

(% Area) 
Model May Jun. Jul. Aug. Sep. Total 

Land 
Cover (% 

Area) 
Model May Jun. Jul. Aug. Sep. Total 

Open 
Water 
(0.2%) 

METRIC 92 160 186 125 125 688 
Sod/grass 

seed 
(0.3%) 

METRIC 101 132 137 105 88 563 
S-SEBI 128 176 170 115 97 685 S-SEBI 87 129 132 88 60 496 
SEBAL 117 162 163 100 84 627 SEBAL 80 126 125 75 61 466 
SEBS 89 122 136 101 153 601 SEBS 70 135 163 96 118 582 

Alfalfa 
(4.1%) 

METRIC 104 146 145 112 102 609 Other 
hay/non 
alfalfa 
(1.4%) 

METRIC 98 136 126 89 83 533 
S-SEBI 83 122 122 87 68 481 S-SEBI 79 119 112 72 60 443 
SEBAL 85 131 129 80 70 494 SEBAL 75 125 109 59 57 426 
SEBS 68 136 164 98 131 597 SEBS 59 128 147 76 114 525 

Sugar 
Beet 

(0.9%) 

METRIC 86 103 174 141 110 614 Woody 
wetlands 

(1.3%) 

METRIC 93 146 157 107 91 594 
S-SEBI 68 100 145 117 79 510 S-SEBI 90 140 139 87 70 526 
SEBAL 70 103 155 107 77 511 SEBAL 79 141 145 75 71 511 
SEBS 75 109 184 128 145 641 SEBS 72 147 178 96 126 619 

Dry 
Bean 

(0.8%) 

METRIC 73 89 124 123 62 471 Herba-
ceous 

wetlands 
(0.3%) 

METRIC 87 123 127 88 84 508 
S-SEBI 58 69 101 104 45 377 S-SEBI 77 117 117 73 65 450 
SEBAL 57 69 105 91 44 366 SEBAL 64 120 119 60 68 430 
SEBS 64 96 157 116 105 539 SEBS 45 112 143 69 110 479 

Maize 
(0.6%) 

METRIC 72 99 163 139 118 592 Fallow/ 
Idle crop 

land 
(0.1%) 

METRIC 82 94 80 61 59 376 
S-SEBI 56 85 129 109 80 459 S-SEBI 68 91 87 59 44 350 
SEBAL 56 89 140 102 80 467 SEBAL 59 92 70 40 43 305 
SEBS 61 103 181 125 149 619 SEBS 51 97 117 65 98 428 

Spring 
wheat 
(0.2%) 

METRIC 87 167 188 103 63 609 
Shrub 
land 

(49%) 

METRIC 71 76 45 16 27 235 
S-SEBI 70 145 159 85 48 506 S-SEBI 72 88 75 37 39 311 
SEBAL 68 148 162 75 46 499 SEBAL 40 68 43 17 49 217 
SEBS 68 159 205 101 106 639 SEBS 28 62 74 19 69 252 

Barley 
(1.3%) 

METRIC 91 166 171 90 64 581 
Grass 
Land 

(11.4%) 

METRIC 76 70 33 16 22 217 
S-SEBI 72 151 154 78 45 500 S-SEBI 64 70 56 34 31 255 
SEBAL 72 152 158 65 46 494 SEBAL 38 46 18 13 38 153 
SEBS 71 165 191 90 109 626 SEBS 33 55 64 20 64 236 

Oats 
(0.1%) 

METRIC 77 127 151 103 87 544 
Barren 
(0.8%) 

METRIC 71 55 17 12 18 172 
S-SEBI 60 109 128 83 61 441 S-SEBI 68 64 51 35 29 246 
SEBAL 59 116 131 75 63 443 SEBAL 49 49 12 37 59 206 
SEBS 59 127 175 96 122 578 SEBS 37 48 54 20 60 219 

4. Discussion 
4.1. SEB Models and Their Strengths and Limitations 

This study analyzed 19 Landsat images captured during the 2017, 2018, and 2019 
growing season to assess and compare the performance of the METRIC, SEBAL, SEBS, 
and S-SEBI algorithms in the semi-arid to arid intermountain region of Wyoming using 
four SEB models. The study anticipates putting forward a best suited SEB model for the 
region. Without a proper model comparison study, it would be unwise to choose a model 
and apply it for real-world application by policy and decision-makers. It is a matter of fact 
that SEB models can respond differently in different climatic and geographic settings. A 
model performing better in a humid condition might not be able to produce the same 
result in rather arid conditions [26,30]. 
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Our result indicates that the SEB model-estimated fluxes (instantaneous and peri-
odic) have a substantial differences between each other. The fact that the SEB models dif-
fer in the model structure, input data requirements, and assumptions made in the algo-
rithm has contributed to the variability in model output. For example, METRIC and SE-
BAL models use CIMEC (calibration using inverse modeling of extreme conditions) cali-
bration approach during H calculation to remove the systematic biases in the estimation 
of surface temperature and surface reflectance [13]. In METRIC and SEBAL, two extreme 
conditions (dry and wet pixels) are chosen to internally calibrate the SEB using hourly ETr. 
Therefore, the final ETc estimates in these models can be accurate even if other SEB com-
ponents face uncertainties. However, models such as SEBS and S-SEBI do not undergo 
such rigorous calibration, and delineation using anchor pixels and ground-based hourly 
ETr. The SEBS algorithm theoretically determines the wet and dry limit for H and Λ. Like-
wise, S-SEBI utilizes a Ts vs. α relationship to determine the wet edge and dry edge. 

In this study, the METRIC estimate of ETc was found to have a better correlation with 
the corresponding BREBS flux. This performance can be directly linked with the internal 
calibration procedure (CIMEC) performed in METRIC. SEBAL ETc estimates were lower 
compared to METRIC. This may be due to the difference: (i) in the selection of cold pixel 
between METRIC and SEBAL; (ii) use of ETrF compared to Λ to upscale ETinst to ET24 [26]. 
Likewise, all the SEB models overestimated ETinst, with percent biases ranging between 
2.2% for SEBAL to 12.3% for SEBS. Similar overestimation in SEB-estimated ETc ranging 
between 8 to 32% was observed by Wagle et al. [30], who compared the performance of 
five SEB models viz METRIC, SEBAL, SEBS, S-SEBI, and SSEBop. They further ranked the 
SEBS models based on four statistical measures and concluded that S-SEBI and SEBAL 
performed better, followed by SEBS and METRIC. They reported that the poor perfor-
mance of METRIC is due to overestimation of METRIC-estimated ETc because of drier and 
rainfed conditions, which is contrary to the irrigated setting used in this study. Similar to 
this study, the higher performance of METRIC and SEBS were observed by Singh and 
Senay [26] who compared METRIC, SEBAL, SEBS, and SSEBop-estimated ETc using Land-
sat 5 and 7 images over center-pivot irrigated continue corn and center-pivot irrigated 
maize–soybean rotation in mid-western U.S. The performance of METRIC was also found 
to be better compared to SEBS by Liaqat and Choi [33] in Northeast Asia over four differ-
ent vegetative surfaces. They reported that internal calibration in METRIC helped reduce 
the biases in atmospheric correction and other input parameters. On the other hand, the 
inconsistent estimation of G and H in SEBS resulted in high ETc. 

A consistent overestimation with PBE ranged from 11.4% for SEBAL to 38.3% for 
SEBS in 2018 is due to the fact that three images out of nine were captured when the soil 
surface was devoid of active leaf area (only crop residue was available at the surface). The 
three images resulted in a combined overestimation of 41%, 15%, 71%, and 10% for MET-
RIC, SEBAL, SEBS, and S-SEBI compared to less than 10% overestimation when all the 
images within the growing season were analyzed. It has been reported [17,60] that the 
presence or absence of crop residue at the surface can impact the Ts, α, and emissivity, 
which can ultimately impact ETc. Allen et al. [10] compared METRIC-estimated ETc with 
lysimeter-measured ETc using eight Landsat images acquired from April to September. 
They reported 14% averaged absolute differences for sugar beet crop when one image 
date with dry bare soil was omitted. However, the difference increased to 30% when all 
the image dates were considered. Sharma et al. [17] reported higher overestimation in 
SEBS-estimated ET24 (21% in 2009–2010 in winter wheat crop season and 21% in 2011 in 
maize crop growing season) after harvest when only crop residue was available at the 
surface. Other studies [30,61] have also reported that SEB models overestimate ETc over 
crop residue and vegetation under dry conditions. Wagle et al. [30] found that all SEB 
models, i.e., METRIC, SEBAL, SEBS, S-SEBI, and SSEBop overestimate ETc when soil mois-
ture is less than 10 percentiles and their performance improved with increasing soil mois-
ture. It is worth pointing out that the SEB model outputs (ETinst) in this study exhibited 
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considerable temporal biases, particularly when the model estimates from different times 
of the growing season were considered. For example, the BREBS tower considered in this 
study was installed in June 2017, which resulted in only a handful of images (five) in the 
mid to late growing season for analysis in 2017 (sugar beet growing season), compared to 
nine images in 2018 (dry bean growing season). This resulted in the skewness of data and 
errors in one direction, causing lower NSE and R2 values in 2017 [25]. 

As compared to the BREBS-measured H, a slight overestimation from METRIC and 
SEBAL (Figure 6) can be accounted to the internal calibration process (CIMEC), which 
accumulates all the biases from other variables into H estimation [13]. Similarly, slight 
overestimation in S-SEBI-derived H suggests that the assumption of zero evaporation 
over the dry edge (Figure 4) may not be valid. The fact that SEBS-derived H had a higher 
difference with measured H can be linked to the sensitivity of SEBS models toward tem-
perature gradient and vegetation properties [33]. In general, SEBS does not require ex-
treme anchor pixels in the H calculation and uses a pixel-by-pixel calculation of H, using 
the iterative procedure by solving the relationships for the profiles of the friction velocity 
(roughness parameterization) and the difference between the near-surface potential air 
temperature and potential surface temperature, which also questions its reliability be-
cause of inaccuracies in the temperature gradient and aerodynamics resistance length 
[33,62]. This also tends to under and overestimate ETinst for dense and sparsely vegetative 
conditions, respectively, which is also observed in this study, where SEBS under and over-
estimate ETinst and H, respectively, over a dense sugar beet surface in 2017, and over and 
underestimate ETinst and H, respectively, when only crop residue is available in 2018 [63]. 
These results were also supported by Liaqat and Choi [33]: they observed that a −5K dif-
ference between the absolute surface and radiometric temperature can result in 107% 
overestimation in ETinst by SEBS compared to 3% overestimation in ETinst using METRIC. 
Gokme et al. [64] associate this over and underestimation of H with the fact that most SEB 
models do not consider the soil moisture dependency and assume the variation of Ts and 
NDVI as a surrogate for soil moisture, which causes uncertainty in the estimated H. Figure 
6 indicates negative values of H (observed in 2017) for both SEB models and BREBS sta-
tion, indicating the movement of energy from the air to the plant canopy. The already 
harvested barley field, as well as vast swathes of natural vegetation surrounding the 
BREBS station, can be a potential source of advective heat, causing negative H values and 
in turn fulfilling the high ETc demand. However, in case of 2018 and 2019 image dates, a 
higher P and lower Tair might have reduced the effect of advective heat from surrounding 
areas to the BREBS station. In 2018 and 2019, the average P was 19 mm and 81 mm higher 
than 2017 and the average Tair was 0.50 °C and 0.74 °C lower than 2017, respectively. The 
ratio of LE/(Rn-G) was also observed to be less than 1 on most 2018 and 2019 image dates 
[25]. A similar variation in modeled H was observed by Wagle et al. [30]: they suggested 
the importance of adjustment in SEB model for accurate energy partitioning. 

For all the SEB models, a higher discrepancy between models was observed on their 
monthly estimates (Figure 7) as compared to instantaneous estimates (Table 3). This dif-
ference can directly be correlated to the difference between using ETrF and Λ for interpo-
lating instantaneous estimates to monthly values. The METRIC model uses ETrF while the 
rest of the SEB models use Λ. The ETrF is tied down with ground-based ETr and the use 
of it is expected to result in better monthly estimates when compared with corresponding 
BREBS values (METRICRMSD = 18 mm; Figure 7). A comparison of ETrF vs. ΛSEBAL at the 
BREBS footprint showed an RMSE of 0.18 and percentage bias ranging from −37% (under-
estimation) to 72%. A similar comparison between ETrF vs. ΛS-SEBI had RMSE of 0.2 and 
percentage bias between −12% to 67%. Likewise, ETrF vs. ΛSEBS had RMSE of 0.13 and per-
centage bias between −57% to 9% (data not shown). 

It is important to note that various model assumptions, systematic, and unsystematic 
measured flux bias, scaling issues, user technical skills, and management practices can 
lead to many uncertainties and inaccuracies in the SEB model comparison. For example, 
the manual selection of anchor pixels for METRIC and SEBAL can use variation in Ts of 
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hot and cold pixels which can result in significant bias in ETinst and H outcomes [65]. Sim-
ilarly, the sensitivity of the SEBS model to aerodynamic and surface roughness estimation 
[62] and the assumption of a linear relationship between Ts and albedo to define the hot 
and cold edge in S-SEBI can cause significant bias in the final estimation of H and ETinst. 
However, the bias in SEB-derived ETinst and H is not only resulted from the uncertainties 
in SEB model parameters but also by errors in flux measurements [25]. For example, 
BREBS assumes the eddy diffusivities of heat and water vapor to be equal. Studies [66,67] 
have revealed that these diffusivities may not be equal in some cases, resulting in a force 
closure of the surface energy budget. Likewise, Barr et al. [66] reported that BREBS fa-
vored the prediction of LE as compared to H. 

In general, the spatio-temporal patterns of ETc can be highly variable due to the het-
erogeneity of land surface and environmental factors that control the SEB of the land-
atmosphere system [17]. Since there is no way to validate the models on a pixel-by-pixel 
basis over a heterogeneous land cover, in this study, model performance was evaluated 
based on the spatio-temporal maps (Figures 8 and 12; Figures S1–S4), density plots (Figures 
9 and 10), and absolute difference maps (Figure 11). The diverse cropping systems and 
agronomic practices across the study area are responsible for a significant fluctuation in 
ETc. However, the early-season ETc rate from the cropland can be comparable to or in 
some cases less than that of natural vegetation, as evidenced by the unimodal curves (Fig-
ure 9) during the early season (15 May and 8 June). The rainfall events early in the growing 
season induce new growth in natural vegetation and thus help transpire more. However, 
as the growing season advances, the naturally vegetated area normally suffers from water 
stress due to scant rainfall, resulting in a lower ETc rate as compared to that of cropland, 
where scarce rainfall is replenished by irrigation. On the other hand, the higher air tem-
perature and ample amount of solar radiation during mid-season led to the greater avail-
ability of energy for crop evapotranspiration in a well-watered crop surface, resulting in 
higher ETc. Likewise, the image on 26 July (Figure 9) coincided with the harvesting of 
barley and alfalfa from cropland, resulting in a multimodal density plot (METRIC) due to 
heterogeneous surface characteristics. As compared to other models, the METRIC-esti-
mated ET24 curve showed consistent and anticipated fluctuation over the growing season 
(Figure 9). Figure 10 indicates some degree of linearity between METRIC, SEBAL, and S-
SEBI models. In SEBS, because of the heterogeneity of land surface and the rather arid 
climatic condition in the intermountain terrain of Wyoming, the boundary delimitation 
can undergo some error, resulting in a bit wayward estimation of ETc [17]. Strong linearity 
between METRIC, SEBAL, and SEBS-derived ET24 was observed by Singh and Senay [26] 
over cropland and grassland in the mid-western United States. They reported that high 
linearity between models is because of the use of thermal data as the main driving factor 
in estimating ET using the energy balance approach. A higher estimation of seasonal ETc 
for natural vegetation by S-SEBI (Figure 12) implies that the Ts vs. α relationship utilized 
in the S-SEBI model to determine the wet edge and dry edge may not be representative of 
naturally vegetated areas. A similar overestimation of S-SEBI-estimated (16%) ETc was 
observed by Wagle et al. [30] in the dry 2012 growing season in Oklahoma. 

4.2. SEB Models Implication 
The model selection primarily depends upon its performance on a particular geo-

graphical area, data availability, and the expertise of the user [26]. Although we found 
several discrepancies between models and their comparison with ground-based flux 
measurements, this study demonstrated the usefulness of SEB models to estimate and 
map surface energy balance fluxes over heterogeneous surfaces in the semi-arid to arid 
intermountain region of Wyoming. To further understand the variation on monthly ETc 
over the intermountain region of Wyoming, Table 4 provides the mean monthly, as well 
as seasonal ETc, from all the SEB models for sixteen different land cover types during the 
2018 growing season (May–September). These monthly and seasonal data can directly 
contribute to predict and regulate irrigation diversions from a river and aquifer system 
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[68], water allocation in a river and aquifer system [68], groundwater consumption [3,68], 
determine irrigation reservoir, storage, and conveyance system capacities [3,68], and es-
tablishing and regulating water rights [68,69]. Our companion paper [25] utilized the 
METRIC model (chosen based upon better performance in this study) in quantifying av-
erage seasonal water consumption for different cropping systems and each irrigation dis-
trict within the study area. The paper also quantified the percent of irrigation contributing 
to seasonal ETc for each cropping system and irrigation district in semi-arid to arid regions 
of the intermountain region of Wyoming. 

The daily, monthly, and seasonal ETc estimates over the cropland, natural vegetation 
from different models can also be useful in validating the performance of various physi-
cally based hydrological models. In general, to achieve the improved performance, hy-
drological models are often calibrated against the ground measurements, e.g., streamflow 
measurements. However, in most cases, ground observations are insufficient and of poor-
quality. Under such circumstances, satellite-based estimations of water fluxes such as ETc 
provide valuable information over large geographical areas and diverse land-use types 
(as presented in Table 4) at regular intervals and with sufficient record length. The selec-
tion of an appropriate remote sensing model becomes critical under such scenarios, con-
sidering the availability of different remote sensing models differ in model performance, 
input data requirement, and suitability in a particular geographical area. Over the years, 
many studies used remote sensing-based modeled ETc; for example, Uniyal et al., [70] 
evaluated the Soil and Water Assessment Tool (SWAT) for the upper 300 mm of a soil 
profile with the indirect measurement of soil moisture estimates from Landsat images in 
2016. They used the NDVI, the thermal vegetation difference index (TDVI) and brightness 
temperature from Landsat images to evaluate the spatio-temporal variation of soil mois-
ture and compared with SWAT output. Similar analysis was performed by Parajuli et al. 
[71] in northwestern Mississippi, where they used monthly ETc estimates derived from 
the SEBAL model to evaluate the performance of the SWAT model. Jiang et al. [72] pro-
vided the detailed review of studies that integrate physically based process models with 
remote sensing models (METRIC, SEBAL, MOD16, etc.). 

5. Summary and Conclusions 
The SEB model selection is primarily carried out keeping in mind the difference in 

input data requirements, level of complexity, various assumptions made in the models, 
and time required to set up a model and produce the final output. This study was con-
ducted to secure a suitable SEB model that is a better fit for the agro-climatic and elevated 
landscape setting of Wyoming. For that, a total of 19 cloud-free Landsat 7-ETM+ and 
Landsat 8–OLI and TIRS images were analyzed for the 2017, 2018, and 2019 growing sea-
son using four satellite-based energy balance models–METRIC, SEBAL, SEBS, and S-SEBI. 
The correlation observed between METRIC-estimated and BREBS-measured ETinst had R2 
between 0.21–0.95 and RMSD between 0.07–0.09 mm h−1 for the three growing seasons 
considered. METRIC vs. BREBS statistics for pooled data points were R2 = 0.91, RMSD = 
0.08 mm h−1, PBE = 5.7%, and NSE = 0.9. SEBAL had a comparatively lower correlation 
with BREBS with R2 falling in between 0.06–0.75 and RMSD between 0.13–0.17 mm h−1 for 
the three growing seasons. Similarly, SEBAL pooled data points had R2 of 0.69, RMSD of 
0.14 mm h−1, PBE of 2.2%, and NSE = 0.7. S-SEBI had R2 ranging between 0.21–0.81 and 
RMSD between 0.11–0.15 mm h−1. S-SEBI pooled data had R2 of 0.76, RMSD of 0.13 mm 
h−1, PBE of 3.9%, and NSE of 0.70. Likewise, SEBS, when compared with BREBS flux, pro-
duced good correlation (R2 = 0.72 −0.9, RMSD = 0.09–0.14 mm h−1). Pooled data points sta-
tistics for SEBS was R2 = 0.87, RMSD = 0.11 mm h−1, PBE = 12.3%, and NSE = 0.80. No 
significant difference was observed between R2 values of METRIC and SEBS-estimated vs. 
BREBS ETinst (0.91 vs. 0.87), the RMSD, NSE, and PBE of the SEBS model were 27% larger, 
18% lower, and 53% higher compared to the METRIC model. These findings can explain 
the role of the internal calibration procedure (CIMEC) in METRIC to estimate ETinst more 
accurately. All the SEB models overestimate ETinst with percent biases ranged from 2.2% 
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for SEBAL to 12.3% for SEBS. Overall, METRIC proved to be a better model for estimating 
ETc as its RMSD values were lower and consistent for three consecutive growing seasons 
considered in the research. Comparison over individual vegetative surfaces indicated that 
the largest discrepancies were observed under drier conditions when only crop residue 
was available at the surface. On comparing the seasonal outputs, METRIC again was a 
standout model with relatively low RMSD of 17.6 mm and percentage error of 7.9, fol-
lowed by SEBS (RMSD = 25.8 mm, %error = 6.6), SEBAL (RMSD = 33 mm, %error = 29) and S-
SEBI (RMSD = 34.3 mm, %error = 31). Likewise, a mid-season density plot and absolute dif-
ference map showing the model intercomparison revealed the METRIC and SEBAL model 
were close on their estimates of ET24 with pixel-wise RMSD of 0.54 mm d−1 and overall 
absolute difference across the study area of 0.47 mm d−1. The highest difference was ob-
served between S-SEBI and SEBS with density plot RMSD of 1.21 mm d−1 and absolute 
difference of 1.23 mm d−1. Likewise, quantification and mapping of the model-estimated 
ET24 and seasonal ETc reflected an anticipated variation across the study area as the grow-
ing season progressed, with overall estimates of METRIC being relatively higher as com-
pared to other models. This study was carried out to identify a best-fit model for the in-
tramountainous terrain of Wyoming as well as outline some of the limitations and uncer-
tainties associated with the SEB models on estimating ETc. The results indicated that the 
METRIC model performed comparatively better in this geographical and agroclimatic set-
ting when model estimates were compared with corresponding BREBS fluxes. However, 
a pixel-wise density plot and an absolute difference map depicted closeness between the 
models involving METRIC, SEBAL, and S-SEBI estimates of ET24. 
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4292/13/9/1822/s1, Figure S1: spatio-temporal distribution of METRIC-estimated ET24: (a) 15 May 
2018; (b) 8 June 2018; (c) 2 July 2018; (d) 18 July 2018; (e) 26 July 2018; (f) 11 August 2018; (g) 4 
September 2018, and (h) 12 September 2018, Figure S2: spatio-temporal distribution of SEBAL-esti-
mated ET24: (a) 15 May 2018; (b) 8 June 2018; (c) 2 July 2018; (d) 18 July 2018; (e) 26 July 2018; (f) 11 
August 2018; (g) 4 September 2018, and (h) 12 September 2018, Figure S3: spatio-temporal distribu-
tion of SEBS-estimated ET24: (a) 15 May 2018; (b) 8 June 2018; (c) 2 July 2018; (d) 18 July 2018; (e) 26 
July 2018; (f) 11 August 2018; (g) 4 September 2018, and (h) 12 September 2018, Figure S4: spatio-
temporal distribution of S-SEBI-estimated ET24: (a) 15 May 2018; (b) 8 June 2018; (c) 2 July 2018; (d) 
18 July 2018; (e) 26 July 2018; (f) 11 August 2018; (g) 4 September 2018, and (h) 12 September 12 2018. 
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