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Abstract: Miniature hyperspectral and thermal cameras onboard lightweight unmanned aerial
vehicles (UAV) bring new opportunities for monitoring land surface variables at unprecedented
fine spatial resolution with acceptable accuracy. This research applies hyperspectral and thermal
imagery from a drone to quantify upland rice productivity and water use efficiency (WUE) after
biochar application in Costa Rica. The field flights were conducted over two experimental groups
with bamboo biochar (BC1) and sugarcane biochar (BC2) amendments and one control (C) group
without biochar application. Rice canopy biophysical variables were estimated by inverting a canopy
radiative transfer model on hyperspectral reflectance. Variations in gross primary productivity (GPP)
and WUE across treatments were estimated using light-use efficiency and WUE models respectively
from the normalized difference vegetation index (NDVI), canopy chlorophyll content (CCC), and
evapotranspiration rate. We found that GPP was increased by 41.9 ± 3.4% in BC1 and 17.5 ± 3.4%
in BC2 versus C, which may be explained by higher soil moisture after biochar application, and
consequently significantly higher WUEs by 40.8 ± 3.5% in BC1 and 13.4 ± 3.5% in BC2 compared to
C. This study demonstrated the use of hyperspectral and thermal imagery from a drone to quantify
biochar effects on dry cropland by integrating ground measurements and physical models.

Keywords: unmanned aerial vehicle (UAV); hyperspectral and thermal imagery; gross primary
productivity (GPP); water use efficiency (WUE); biochar; upland rice

1. Introduction

Land surface variables are required for modeling of carbon, water, and energy ex-
changes between land and atmosphere. Miniature multispectral and thermal cameras
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onboard lightweight unmanned aerial vehicle (UAV) have been widely used for providing
spatially explicit land surface variables and as an efficient tool supporting precision farm-
ing and crop management e.g., [1–3]. For example, Kandylakis et al. [4] used UAV-borne
multispectral and shortwave infrared cameras to estimate LAI of vineyards, and assess
water stress conditions using individual relations gained from UAV data and in-situ mea-
surements via statistical regression. Chen et al. [5] used data from UAV-borne multispectral
and thermal cameras to evaluate cotton canopy water stress. Infrared thermography has
been used to diagnose crop water deficit and drought conditions [6–8].

Besides multispectral, hyperspectral imaging onboard an aircraft with dozens or
even 100+ continuous narrow bands of high spectral resolution is also attracting research
interests. However, the previously high-cost and heavyweight hyperspectral imager using
motion scanning mechanics limited the hyperspectral technique to few studies on expensive
airborne sensing (e.g., [9,10]). The recent advances in miniature hyperspectral snapshot
imaging technology bring new opportunities for low-cost UAV-borne remote sensing [11].
These snapshot imagers use non-moving parts such as image slicer mirror or filter-on-
chip technologies [12], and minimize moving artifacts during sensing to gain satisfactory
spectral and spatial accuracy. The current miniature hyperspectral snapshot cameras
are promising for monitoring crop growth and retrieving crop biophysical variables for
precision agriculture from UAVs.

Hyper- or multiple spectral data from UAV sensing are usually analyzed in three
approaches to estimate land surface properties. (1) Vegetation indices simply combining
different band reflectance are often used to estimate a certain land surface variable based
on empirical relations. For example, the normalized difference vegetation index (NDVI)
formulated using red and near-infrared (NIR) bands is widely used to indicate land surface
greenness [13]. Other narrow hyperspectral band combinations are used for leaf chlorophyll
estimation [10]. (2) Machine learning (ML) techniques. ML is increasingly used to estimate
land surface variables based on large field measurements, including for example partial
least squared regression [14], artificial neural network [15], and random forest [16]. These
empirical methods need site-specific land surface variables for model training and the
trained model may not be suitable for other sites. (3) Physical model inversion. A radiative
transfer model, such as PRO4SAIL [17], can simulate hyperspectral reflectance close to the
field measured reflectance with optimal inputs. The inverse of the radiative transfer model
based on field hyperspectral measurements can obtain leaf and canopy variables such
as pigment content and leaf area index (LAI) by minimizing the difference between the
modelled and the measured reflectance in all spectral wavelengths in model optimization
process. Such a physically based model does not necessarily require field-measured land
surface variables for parameter calibration, especially for common crops like rice, being
more robust than vegetation index methods and avoiding overfitting issues in ML methods
to retrieve plant and soil parameters.

These techniques can be used to assess crop-atmosphere exchanges when manipu-
lating soil conditions, for example, using biochar for soil amendment. Biochar is an old
technique used for soil amendment in the Amazon region centuries ago [18,19]. The porous
charcoal has a large surface area that can bind and retain soil water and nutrients, and
reduce nutrient leaching and volatilization loss, thereby helping to increase long-term
plant water availability and soil fertility [20,21]. Therefore, biochar is considered a valuable
soil amendment to increase crop productivity and resilience to drought [21]. Because
charcoal itself is decomposition-resistant, it can contribute to soil carbon sequestration and
atmospheric carbon reduction [22], and is thus regarded as a feasible negative-emission
strategy to mitigate climate change [19].

Incorporating biochar into good agricultural practices requires a better understanding
of its effects on crop productivity, soil water usage, and land surface energy balance. Using
a conceptual model, Fischer et al. [21] showed that biochar amendment—as evident by
shifting the soil water retention curve—should increase soil water availability under water-
limited conditions. As a result, the long-term mean evapotranspiration (ET) rate is expected
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to increase after biochar amendment, which in turn should increase the gross primary
productivity (GPP) due to the joint regulation of transpiration and photosynthesis by
stomata. However, the impacts of biochar on plant water use efficiency (WUE = GPP/ET,
the rate of GPP per unit water consumption) are not clear. Moreover, ET is not always
increased in biochar-amended fields, in contrast to model predictions [21].

These divergent effects of biochar on crop growth and soil hydraulic properties
highlight our limited understanding of the effects of biochar on crop growth and soil water
usage [21,23–25]. The apparent gap between the theory and empirical evidence on biochar
effects may be also due to extrapolating documented biochar effects on soil properties from
discrete in situ point measurements to the field or farm scale. Furthermore, as there are
concurrent impacts of biochar on soil and plant properties, synthesizing them by combining
both spatial and point measurements may provide a broader picture of crop responses
after biochar application.

This study explores the potential of UAV-borne hyperspectral and thermal sensing for
a spatially improved understanding of the functioning of biochar in tropical dryland. We
investigate the effect of biochar in a field experiment with upland rice (Oryza sativa L.) in
the North Pacific of Costa Rica to assess changes associated with energy, productivity, soil
water availability, ET, and WUE. This is a drought-prone region, projected to experience
more prolonged and severe droughts in the near future. A four-day field campaign was
conducted using hyperspectral and thermal imaging cameras onboard a hexacopter at the
end of the rice growing season. Combining the UAV snapshot images of surface variables,
in situ measurements, and physical models, the study aims to (1) assess relative variations
in dryland rice productivity, soil moisture content, and water use efficiency after biochar
application, (2) test the applicability of drone-based hyperspectral and thermal imagery in
cropland monitoring, and (3) develop a methodology combining data from UAV sensing,
ground measurements, and models to support agricultural management.

2. Materials and Methods
2.1. Biochar Experiment Plots

The experiment was conducted on an about 8 × 20 m site parcel, located at the
Enrique Jiménez Núñez Experimental Station in Costa Rica (10.3436◦ N, 85.1353◦ W;
17 m asl, Figure 1). The North Pacific of Costa Rica is a drought-prone region, in which
severe dry events are mostly related to the warm phase of the El Niño-Southern Oscillation
phenomenon [26,27]. The region features increasing aridity and rainfall reduction trends,
which have been projected to exacerbate along with global warming, threatening both
water resources availability and agricultural activities [26,28]. In the long-term, the region is
characterized as a tropical savannah climate with a marked dry season from mid-November
to April. The long-term mean annual rainfall is about 1547 mm/yr and the mean annual
temperature 27.4 ◦C (100-year period). The soil at the experimental site has a clay loam
texture. The experiment consisted of three groups in triplicate separated by 0.8 m wide
corridors. Due to logistic reasons, the experimental plots were set in a fairly small area
without using a randomized block design. Two treatment groups used local Guadua
bamboo (Guadua angustifolia) biochar (BC1) and Taiwan sugarcane (Saccharum officinarum)
filter cake biochar (BC2) respectively, and the control group (C) had no biochar addition.
BC1 and BC2 biochar were incorporated in the top 20 cm of the soil on February 13 and
July 18 of 2018 respectively due to their different arriving times. Upland rice seeds (variety
Palmar 18) were sown on July 18, 2018, and were irrigated and fertilized to encourage
germination and seedling growth following the common local farming practice. Thereafter,
the water resource for rice growth was solely from precipitation (rain-fed). Harvest took
place on 21 November 2018 and indicated the end of the experiment. See [29] for details of
biochar experimental design.
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Figure 1. Location of biochar plots at an upland rice experimental site in Costa Rica. The experiment consisted of three
groups (BC1: bamboo biochar, BC2: sugarcane biochar, and C: control without biochar) in triplicate (Plot 1, 2, and 3). Each
plot was divided into 3 sub-plots used in statistical analysis (indicated as dashed lines). The true-color image (4.5 mm
resolution) is from a Cubert FireflEYE 185 VNIR camera (band 56, 29, and 12) taken on 14 November 2018, orthorectified
and mosaicked using Agisoft Metashape software. The star (I) denotes the location of the weather station, and circles (#)
the locations of soil sensors.

2.2. UAV Field Campaign

The UAV field campaign was carried out using a hexacopter (DJI M600 Pro, Dajiang,
China) on November 14, 16, 19, and 21, 2018 before harvest. These days were selected for
the field campaign for the following reasons: (1) These days were at the start of the dry
season in the region and the biochar effects on soil water retention could be easily tested.
(2) It was the phenology transition period during which the rice leaves changed from green
at the beginning of the campaign to yellow (senescence) at the end of the campaign, likely
creating large spatial and temporal variability in rice water use. (3) The LAI and GPP at the
time of the campaign are expected to reflect the accumulated growth of the whole growing
period and consequently, allowing the integrated effect of biochar to be quantified. (4) A
field campaign spanning a whole rice growing period was logistically unfeasible.

The Dajiang DJI M600 Pro hexacopter has a payload capacity of 6 kg and a flight
time of 35 minutes under minimal payload. In the campaign, the UAV was flying at a
height of about 30 m above the ground. The UAV position was recorded by the three
sets of GNSS and IMU systems inbuilt with the drone. A gimbal (Gremsy T7, Gremsy,
Vietnam) was used to enable the camera to consistently viewing the nadir direction. We
used a hyperspectral camera (FireflEYE 185ST, Cubert, Germany) and a thermal camera
(324×256 Pixels, Tau2 324, FLIR, USA) with the attained ground resolutions of 4.5 mm
and 2.25 cm respectively to investigate the plant productivity, soil, and surface properties.
The Cubert hyperspectral camera has 50 × 50 pixels, with each pixel spanning from 450
to 950 nm in 138 wavebands. The camera has an extra panchromatic band of 1000 × 1000
pixels to facilitate sharpening the hyperspectral bands. It has been shown that the best
spatial and spectral accuracy can be achieved from Cubert panchromatic sharpening at
a flying height of 30 m [11]. In our application, we adopted the default pan-sharpening
function in the Cubert-pilot software. During the flight, a spectrometer (Flame S VIS-NIR,
Ocean Optics, Dunedin, FL, USA) was mounted on the drone to simultaneously collect
spectral irradiance.

It should be noted that the hyperspectral camera images had about 55% of side overlap
and 40% of forward overlaps in the flight. The overlaps were smaller than the suggested
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figures (60% of side overlap and 80% of forward overlap) in [30] due to the small field-
of-view (FOV) of the Cubert hyperspectral camera (13◦ × 13◦). On the one hand, a small
FOV camera with nadir viewing has a great advantage of minimizing the bi-directional
reflectance distribution function (BRDF) effect [31], which otherwise needs to be adjusted
carefully for quantitative remote sensing [32]. On the other hand, the small FOV creates
difficulties in further camera alignment processing when the image overlap is not large
enough as afore-mentioned in [30] and consequently the cloud points are not dense enough
for estimating camera locations using Agisoft Metashape software. Otherwise, much
more hyperspectral images should be collected, heavily increasing the field workload. To
attain accurate camera alignment with small hyperspectral image overlaps and without
increasing field workload, we used an extra RGB camera (Sony DSC-RX100, Sony, Japan)
with a larger FOV (64.8◦ × 45.9◦), and therefore at least 80% overlaps in RGB images
along with hyperspectral capturing. We described the use of an RGB camera to help align
hyperspectral camera images accurately in the following section.

2.3. Ground Measurements

Hyperspectral reflectance signatures of rice canopy and soil background were mea-
sured respectively using a spectroradiometer (FieldSpec HandHeld 2, ASD, Boulder, CO,
USA) and a white Spectralon reference panel (Labsphere, North Sutton, NH, USA). Canopy
reflectance was measured on each plot three times. The average spectral reflectance was
used to verify Cubert hyperspectral camera measurements.

The leaf gravimetric water content was measured using a destructive method. Three
samples of whole rice leave (including leaf blade and sheath, and the stem under the
sheath) were taken in each plot on 19 November 2018. Each sample was weighed fresh,
cut into small pieces, and heated in an oven at 70 ◦C for 24 hours in a laboratory. The
leaf water mass was determined as the difference between the fresh and the dry leaf mass.
The leaf gravimetric water content was defined as the ratio of leaf water mass to fresh
mass (g/g). Leaf nutrient content was also determined in the laboratory using the total
digestion method on leaf samples. The macro-elements of nitrogen (N), phosphorous (P),
and potassium (K) concentration are determined as a percentage (%) of the dry matter. One
soil sample was collected from each plot. The total nitrogen concentration in each sample
was tested using a CN 628 Dumas analyzer (LECO, St. Joseph, MI, USA) in the laboratory
in National Agricultural Technology Institute (INTA), Costa Rica.

An automatic meteorological station (Vaisala WT520, Vaisala, Finland) was installed at
a height of 1.5 m above the ground to continuously monitor precipitation, wind speed and
direction, air temperature, relative humidity, and atmospheric pressure (Figure 1). Each plot
was instrumented with two in situ sensors at 15 cm below the surface (Figure 1), including
one sensor (Decagon GS3, METER Group, Pullman, WA, USA) measuring volumetric
soil water content, soil electrical conductivity, and soil temperature, and another sensor
(Decagon MPS6, METER Group, USA) measuring soil matric potential and soil temperature.
The sensors were connected to a data logger (CR1000, Campbell Scientific, Logan, UT, USA)
to collect the data at 30-minute intervals from 18 July to 21 November 2018.

2.4. Data Processing
2.4.1. Radiometric Correction: Digital Number (DN) to Physical Values

The DN values of pan-sharpened high-resolution hyperspectral image were trans-
formed to absolute radiance (W/m2/nm/sr) values using per-band per-pixel sensitivity
factors that were determined in a photonics laboratory of the Technical University of
Denmark before the campaign. The spectral irradiance (W/m2/nm) measured by the
on-flight spectrometer was converted to per-band per-pixel irradiance value for the Cubert
camera using the spectral response function of each pixel that was determined in the same
laboratory. See [33] for details about the Cubert camera calibration. The reflectance of each
pixel was calculated as:

ρ = π
radiance

irradiance
, (1)
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The brightness temperature was calculated using calibration parameters and the
inverse of Planck’s Law following Köppl [34]:

Tb = log−1
(

k1

DN + k2 + k3Tc
+ 1
)

, (2)

where k1, k2, and k3 are calibration parameters, DN is the digital number of FLIR camera
images, and Tc is the camera detector core temperature.

2.4.2. Image Orthorectification and Mosaicking

After transforming all the images into hyperspectral reflectance and land surface
temperature, the Agisoft Metashape software (Agisoft, St. Petersburg, Russia) was used
to generate orthorectified and mosaicked (orthomosaic) images that covering the whole
experiment rice field. In hyperspectral image processing, we pooled both RGB and hyper-
spectral camera images for camera alignment to guarantee cloud points dense enough for
an accurate reconstruction of Cubert hyperspectral camera locations. To avoid processing
of large volume of hyperspectral data iteratively, only panchromatic gray images were
used in the alignment process. This allowed reducing the computational time on a desktop
computer with a 16-core 3.40 GHz CPU and two GPUs (GTX1080 Ti, Nvidia, Santa Clara,
CA, USA). The DEM and orthomosaic hyperspectral images were generated. The DEM
was used to estimate rice canopy heights by subtracting the average surrounding soil
background elevation from the canopy elevation. The hyperspectral images were used in
the subsequent analysis.

2.4.3. NDVI and Variations in Gross Primary Productivity (GPP)

The orthomosaic hyperspectral reflectance values were corrected using an empirical
line correction method by selecting two pseudo-invariant features in the scene: an unshaded
fixed white instrument box and a patch of dark bare soil that were identified from the
composite true-color hyperspectral images. Then the LAI ([-]) and canopy chlorophyll
content (CCC, [g/m2 ground area]) were retrieved from inversion of PRO4SAIL model
(available at http://teledetection.ipgp.jussieu.fr/prosail/, accessed on 8 April 2021) with
the corrected hyperspectral reflectance, pixel by pixel at 2.25 cm resolution (resampled from
4.5 mm to match thermal images). The NDVI was calculated using the NIR band (843 nm)
and the red band (664 nm): NDVI = (NIR − red)/(NIR + red). The NDVI has been shown to
have a linear relationship with the fraction of photosynthetically active radiation (fAPAR)
absorbed by plant canopy [35,36]. The rice plant variables GPP, LAI, NDVI, and CCC were
used as rice growth indicators in this study. The GPP can be simulated using a light use
efficiency model [37] with the photosynthetically active radiation (PAR) absorbed by canopy
chlorophyll [38]. Based on these relations and assuming other factors constant across
biochar treatments, we inferred the relative GPP variation (∆GPP/GPP) after biochar
application from the variation in NDVI and CCC using a propagation approach [39] (see
Supplementary Material for further details):

∆GPP
GPP

=
∆NDVI
NDVI

+
∆CCC
CCC

. (3)

2.4.4. Estimation of Shortwave Surface Albedo and Directional Emissivity

The shortwave surface albedo was estimated from the PRO4SAIL model results
following the method in [40]:

α =
αmodel

Rmodel
R, (4)

where R and Rmodel are the Cubert-measured and PRO4SAIL-modelled mean blue-sky
directional reflectance from wavelength 450 nm to 950 nm respectively; αmodel is PRO4SAIL-
modelled shortwave surface albedo.

http://teledetection.ipgp.jussieu.fr/prosail/
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The directional land surface emissivity was calculated from the canopy gap fraction
following François [41]:

εs(θV) = 1 − b(θV)(1 − σf )
(
1 − εg

)
− c
[
1 − b(θV)(1 − σf )

]
(1 − εv), (5)

where θV is the thermal camera viewing direction, with θV = 0 for nadir-viewing; εv and εg
are leaf emissivity and bare ground emissivity respectively, and in this work εv = 0.98 and
εg = 0.94 were used; c is a cavity factor, accounting for the volumetric multiple scattering
inside rice canopy, and c = 0.3 was used for nadir viewing; b(θV) is the directional gap
fraction at viewing direction θV ; σf is called shading factor and 1 − σf is the hemispherical
transmittance. Both b(θV) and σf were estimated from LAI. See Supplementary material
for further details. The estimation of hemispherical-directional emissivity in Equation (7)
has been shown to have high computation efficiency and high accuracy [41].

2.4.5. Estimation of Land Surface Temperature

The land surface temperature (Ts) was estimated from the brightness temperature
with a correction for the reflected longwave radiation by land surface:

Ts =

[
Tb

4 − (1 − εs)εaTa
4

εs

]1/4

, (6)

where Ta is the air temperature from the weather station, [K]; εs is the land surface emissivity
estimated from Equation (5) for θV = 0; εa is the atmosphere emissivity, estimated from air
temperature and relative humidity following Prata [42]. For details see [43].

2.4.6. Energy Components and Variations in Water Use Efficiency (WUE)

Net radiation Rn (W/m2), the difference between incident and outgoing radiation
energy, was calculated as:

Rn = (1 − α)Rs + σεsεaT4
a − σεsT4

s , (7)

where Rs is the incoming solar radiation measured by the weather station at the site,
W/m2; α is the land surface albedo derived from Equation (4); σ = 5.67 × 10−8 W/m2/K4,
Stefan–Boltzmann constant. Ts, Ta, εs, and εa have the same definitions as in Equation (6).

Latent heat flux (λET, (W/m2), the ET in energy form) was estimated as the residual
component of the surface energy balance:

λET = Rn − H − G, (8)

where Rn is the net radiation from Equation (7), H [W/m2] is sensible heat flux, and
G [W/m2] is the heat storage flux in soil and plants. G is estimated from net radiation Rn
and fractional vegetation cover fc using an empirical equation in [44]:

G = Rn[0.315(1 − fc) + 0.05 fc], (9)

where fc is calculated from the aforementioned directional gap fraction at the nadir-viewing
direction (see Supplementary material): fc = 1 − b(0) = 1 − e−0.245LAI .

The sensible heat flux H was estimated from the temperature difference between the
land surface and the air using the bulk transfer equation:

H = ρCp
Ts − Ta

ra + rex
, (10)

where ρ is the air density, Cp is the specific heat of air at constant pressure, and ra is
aerodynamic resistance to heat transfer, estimated from wind speed and the average height
of rice canopy following [45]; rex is an extra resistance added to ra for correcting the differ-
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ence between radiometric temperature and aerodynamic temperature in sensible heat flux
calculation. rex is approximated by 5.75/u∗ [46,47], where u∗ is friction velocity. Note that
Equation (10) uses the surface temperature as a proxy of aerodynamic temperature, even
though rex is introduced to account for this, underestimates on rex may result in an over-
estimation of the sensible heat flux for bare soil area from an overestimated aerodynamic
temperature, and subsequently result in negative evapotranspiration in Equation (10).
When this happened, we assigned a zero value for evapotranspiration (reasonable for
dry bare soil) and recalculated sensible heat flux H using Equation (8). The available
energy (AE, (W/m2)) was estimated as the difference between net radiation Rn and the
ground heat flux G, i.e., AE = Rn − G. Evaporative fraction (EF, [-]) is the latent heat flux
normalized by the available energy: EF = λET/AE.

The variations in WUE after biochar application were inferred from differences be-
tween the GPP variation and the ET variation using the variation propagation method
again (see Supplementary Material for further details):

∆WUE
WUE

=
∆GPP
GPP

− ∆ET
ET

. (11)

2.4.7. Soil Moisture Content and Soil Matric Potential Estimation

We estimated volumetric soil water content from UAV data using a temperature-
vegetation dryness index (TVDI [48], a triangle method by identifying the pixel dry-
ness from the space of temperature variations between surface and bulk atmosphere
(∆T = Ts − Ta) and fractional vegetation cover fc, and then related TVDI to soil moisture
content in the root zone as shown in [43]:

TVDI =
∆T − ∆Tmin

∆Tmax − ∆Tmin
= 1 − θ − θWP

θFC − θWP
, (12)

where ∆Tmax and ∆Tmin are the dry and wet edges of the ∆T-fc triangle, estimated follow-
ing [49]; and θ (% in m3/m3) is the soil moisture content to be estimated. θFC and θWP are
soil moisture content at field capacity and wilting point respectively, estimated from soil
water retention curve at soil matric potential of −0.05 and −1.5 MPa respectively (see [29]
for details of water retention curve estimation using in situ measurements). The spatially
explicit soil matric potential (ψ, (MPa)) was then estimated from the UAV-derived soil
moisture content using the Van Genuchten model [50]:

ψ =
1
αv

(
1

Θ1/m − 1
)1/n

, (13)

where Θ = θ−θr
θs−θr

, m = 1 − 1
n , and θr, θs, αv, and n are the water retention curve parameters

reported in [29].

2.4.8. Statistical Analysis

The biophysical and land surface variables derived from UAV hyperspectral and
thermal sensing were summarized for each plot to assess their relative changes in biochar
amendment vs. control plots. The sunlit soil, shaded soil, and rice canopy pixels were
identified using an unsupervised classification [51]. A k-means clustering method was
used in the classification. After testing with different numbers of classes and bands, we
found that using 5 clusters and 3 bands (Band 12, 29, and 104, for the false composite image
in Figure 2) can effectively separate the aforementioned three types of pixels. Sunlit and
shaded leaves were not separable probably due to their mixed spectral signatures and the
foliage transparency (Supplementary Figure S1).



Remote Sens. 2021, 13, 1866 9 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 22 
 

 

and shaded leaves were not separable probably due to their mixed spectral signatures and 

the foliage transparency (Supplementary Figure S1). 

 

Figure 2. (a) False-color composite image from Cubert hyperspectral camera band 104, 29, and 12. Red color denotes veg-

etation and blue color bare soil. (b) Comparison of rice canopy reflectance measured by ASD spectroradiometer and Cub-

ert camera after the empirical line correction using (c) reflectance of dark soil object, and (d) reflectance of bright metal 

box object (black line) in four days measurement (colored lines). 

Sunlit soil pixels at plot corridors were extracted for determining bare soil albedo and 

surface temperature and comparing their differences between the biochar groups the con-

trol group. Rice canopy pixels were extracted for analyzing the biochar effects on root 

zone soil moisture, canopy biophysical variables, and canopy surface energy components. 

To reduce edge effects [52], the pixels within 15 cm to borders of each plot, roughly corre-

sponding to the edge rows of rice plants, were discarded. The valid pixels extracted from 

each plot were aggregated to three sub-plots (Figure 1) for further statistical analysis, to 

avoid spatial autocorrelation from fine resolution. 

We analyzed four days’ repeated UAV results over three treatment groups with trip-

licate using repeated measures analysis of variance (ANOVA) [53] by the free statistic 

software JASP (available at https://jasp-stats.org/, accessd on 8 April 2021). The Green-

house-Geisser correction was used if sphericity had been violated in the repeated 

measures. The marginal mean and standard error of each variable were calculated for each 

group of three plots and four days considering the degrees of freedom within- and be-

tween-subjects. The mean variable differences between the treatment groups and the con-

trol group were analyzed using Tukey’s honest significant difference test [54]. For the one-

time measurement of leaf and soil samples, one-way ANOVA was used to analyze if their 

mean values were different. The four days’ repeated UAV results were compared with 

the in-situ measured soil water content and soil matric potential using violin plots and 

descriptive plots with mean and 95% confidence interval. A simple Pearson correlation 

was used to test the relationships between key rice growth variables and soil water avail-

ability. 

 

Figure 2. (a) False-color composite image from Cubert hyperspectral camera band 104, 29, and 12. Red color denotes
vegetation and blue color bare soil. (b) Comparison of rice canopy reflectance measured by ASD spectroradiometer and
Cubert camera after the empirical line correction using (c) reflectance of dark soil object, and (d) reflectance of bright metal
box object (black line) in four days measurement (colored lines).

Sunlit soil pixels at plot corridors were extracted for determining bare soil albedo
and surface temperature and comparing their differences between the biochar groups
the control group. Rice canopy pixels were extracted for analyzing the biochar effects
on root zone soil moisture, canopy biophysical variables, and canopy surface energy
components. To reduce edge effects [52], the pixels within 15 cm to borders of each plot,
roughly corresponding to the edge rows of rice plants, were discarded. The valid pixels
extracted from each plot were aggregated to three sub-plots (Figure 1) for further statistical
analysis, to avoid spatial autocorrelation from fine resolution.

We analyzed four days’ repeated UAV results over three treatment groups with
triplicate using repeated measures analysis of variance (ANOVA) [53] by the free statis-
tic software JASP (available at https://jasp-stats.org/, accessd on 8 April 2021). The
Greenhouse-Geisser correction was used if sphericity had been violated in the repeated
measures. The marginal mean and standard error of each variable were calculated for
each group of three plots and four days considering the degrees of freedom within- and
between-subjects. The mean variable differences between the treatment groups and the
control group were analyzed using Tukey’s honest significant difference test [54]. For the
one-time measurement of leaf and soil samples, one-way ANOVA was used to analyze
if their mean values were different. The four days’ repeated UAV results were compared
with the in-situ measured soil water content and soil matric potential using violin plots and
descriptive plots with mean and 95% confidence interval. A simple Pearson correlation was
used to test the relationships between key rice growth variables and soil water availability.

3. Results
3.1. Hyperspectral and Thermal Imagery

We obtained orthomosaic Cubert hyperspectral images of 4.5 mm resolution in this
field campaign. Figure 2a shows an example of a false-color composite image taken on

https://jasp-stats.org/
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14 November 2018. Individual rice leaf blades are visible. Figure 2b shows the comparison
of hyperspectral reflectance curves measured by Cubert camera (after the empirical line
correction) and ASD spectroradiometer on rice canopy. The two curves share a similar spec-
tra pattern and show the reliability of UAV-based hyperspectral sensing in the campaign.
Note that the last few bands of Cubert camera have large variations and were discarded
from further analysis following the manufacturer’s recommendation. In four days of
measurements, the assumed static dark soil and white metal box objects had up to 30% de-
viations from day to day (Figure 2c,d), indicating the necessity for correcting the systematic
day-to-day reflectance drift to obtain comparable results from the hyperspectral camera.
The PRO4SAIL model using normalized hyperspectral reflectance resulted in an average
high R2 of 0.96 and a low root-mean-squared-difference of 0.02 between the UAV-measured
and the Pro4SAIL-modeled hyperspectral reflectance (Supplementary Figure S2).

The land surface radiometric temperature (LST) map (Figure 3) shows warmer bare
soil and cooler green rice canopy during the local noontime flight on 16 November 2018,
matching well with the land covers in Figure 2 false-color image. The air temperature was
26.7 ◦C at the flight time and 99% of the LST in the area was within 29.1 to 42.4 ◦C. The LST
histogram of the whole area was bimodal, with two peak temperatures at 31.6 and 36.5 ◦C,
corresponding to vegetation and bare soil respectively. The LST histogram of rice plots
showed only one peak at 30.9 ◦C. Since all the parameters in the PRO4SAIL model were set
for the rice canopy, the output LAI and subsequently estimations of albedo and emissivity
may not fit other vegetation types in the research area. Therefore, to avoid possible large
errors, we only analyzed and presented the results of rice plots in the following sections.

Combining the temperature and hyperspectral reflectance from UAV, and the auxiliary
data from ground measurements, including weather station data, leaf water content,
concentrations of leaf nutrients and soil total nitrogen, and soil water retention curve, we
mmapped soil moisture content, soil matric potential, leaf and canopy properties, and
energy components over the three experimental groups. The average changes of key
variables after biochar application are summarized in Table 1. Detailed information is
given in Supplementary Table S1.
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Table 1. Average changes (%) in key variables of biochar groups compared with the control (marginal mean ± SE) derived
from UAV-derived data. Bold fonts indicate the variations significant at p < 0.05.

Variables Bamboo Biochar
BC1 (%)

Sugarcane Biochar
BC2 (%)

Soil variables

Soil moisture content from UAV 17.7 ± 0.1 10.8 ± 0.1

Soil matric potential from UAV 1 44.8 ± 0.7 −66.9 ± 0.7

Soil albedo 0.5 ± 0.1 1.4 ± 0.1

Soil surface temperature −0.7 ± 0.2 −1.4 ± 0.2

Leaf and canopy variables

Gross primary productivity 41.9 ± 3.4 17.5 ± 3.4

Normalized difference vegetation index 10.0 ± 1.4 7.4 ± 1.4

Canopy chlorophyll content 32.0 ± 3.0 10.1 ± 3.0

Water use efficiency 40.8 ± 3.5 13.4 ± 3.5

Leaf area index 6.0 ± 1.3 −4.9 ± 1.3

Land surface energy components

Net radiation −0.2 ± 0.3 2.3 ± 0.3

Latent heat flux (evapotranspiration) 1.1 ± 1.0 4.0 ± 1.0

Evaporative fraction 3.7 ± 1.0 − 0.2 ± 1.0

Ground heat flux −1.8 ± 0.6 3.5 ± 0.6

Sensible heat flux −0.4 ± 0.7 −0.4 ± 0.7
1 From the UAV-derived soil moisture content and the in situ sensor-derived soil water retention curve

3.2. Variations in Soil Variables after Biochar Application

Figure 4a shows the map of soil moisture content in the three groups BC1, BC2, and
C. The UAV-derived average soil moisture content was significantly higher in biochar
amended soils BC1 by 17.7 ± 0.1% and BC2 by 10.8 ± 0.1% compared with the control
(Table 1). The soil moisture content measured by in-situ sensors also showed overall higher
values in biochar groups than in the control, but the spatial variations within the group
were large (Figure 4b,c, Supplementary Figure S3) and those changes were not statistically
significant (Supplementary Table S1). UAV-derived soil matric potential was significantly
higher in BC1 biochar by 44.8 ± 0.7% and lower in BC2 biochar by −66.9 ± 0.7% than the
control (Table 1, Figure 5, Supplementary Figure S4). The soil matric potential measured
by in-situ sensors did not vary across treatments (Supplementary Table S1) and the range
of spatial variation was also large, from −1.4 to −0.2 MPa (Supplementary Figure S4),
contrasting to the UAV-derived soil matric potential of about −0.45 to −0.06 MPa. The
fitted soil water retention curves of biochar groups shifted towards higher soil water
content at a given water potential compared to the control (Supplementary Figure S5).
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Figure 4. (a) Map of volumetric soil water content (θ) of three experimental groups from UAV on 14 November 2018. The
circle (#) denote sensor locations. (b) Violin plots of the θ from UAV in each plot and each treatment. The shaded areas
of the violin plot denote the distribution of the day’s measurement, the white dots denote the median values, and the
bottom and top edges of the black bars denote the 25th and 75th percentiles respectively. The circles (#) denote sensor
measurements during flight. (c) The comparison of plot-averaged θ in three groups BC1, BC2, and C from in situ sensors
during the four-day campaign. Whiskers denote the 95% confidence interval of each group on each day.

The average soil surface albedo values were significantly higher in the two biochar
groups, and the soil surface temperature decreased by −0.7 ± 0.2% in BC1 and −1.4 ± 0.2%
in BC2. Measurements of soil samples revealed non-significant changes in soil total nitrogen
concentration (Supplementary Table S1).
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Figure 5. (a) Map of soil matric potential (ψ) of three experimental groups from UAV on 14 November 2018. The circle
(#) denote sensor locations. (b) Violin plots of the ψ from UAV in each plot and each treatment. The shaded areas of the
violin plot denote the distribution of the day’s measurement, the white dots denote the median values, and the bottom and
top edges of the black bars denote the 25th and 75th percentiles respectively. The circles (#) denote sensor measurements
during flight. (c) The comparison of plot-averaged ψ in three groups BC1, BC2, and C from in situ sensors during the
four-day campaign. Whiskers denote the 95% confidence interval of each group on each day.

3.3. Variations in Rice Leaf and Canopy Variables after Biochar Application

There were significant increases in canopy GPP, NDVI, chlorophyll content, and
WUE in the biochar groups compared to the control (Table 1 and Table S1; Figure 6).
Opposite changes were observed in LAI, fractional vegetation cover (fc), and canopy LST
in two biochar groups. The LAI and fc were significantly higher in BC1 but lower in BC2
than in the control. The canopy LST significantly decreased by −0.6 ± 0.2% in BC1 and
increased by 0.6 ± 0.2% in BC2, along with a significant decrease in canopy albedo only in
BC2 (−3.1 ± 0.5%). Leaf sample analyses on November 19, 2018 revealed non-significant
changes in leaf water and leaf P concentration, whereas the leaf K concentration was
significantly higher in both biochar groups, and the leaf N concentration was significantly
higher only in the BC1 group (Supplementary Table S1) compared with the control.

3.4. Variations in Evapotranspiration and Land Surface Energy Components

The net radiation, latent heat flux (or evapotranspiration), and ground flux were
significantly higher in BC2 by 2.3 ± 0.3%, 4.0 ± 1.0%, and 3.5 ± 0.6% respectively than in
the control. The ground heat flux significantly decreased by −1.8 ± 0.6% in BC1, and the
evaporative fraction was 3.7 ± 1.0% higher in this group than in the control. There were no
significant differences in sensible heat flux among treatments (Table 1, Figure 7).
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Figure 6. (a) Map of canopy chlorophyll content (CCC) over three experimental groups. The comparison of three groups
BC1, BC2, and C is shown in (b) CCC from Cubert, and (c) normalized difference vegetation index (NDVI). Whiskers denote
the 95% confidence interval of each group on each day.
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group on each day.
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3.5. Comparison of Key Rice Biophysical Variables with Soil Matric Potential.

Over the experimental plots, the canopy chlorophyll content, NDVI, and LAI were cor-
related with the soil matric potential with R2 of 0.16, 0.12, and 0.32, respectively (Figure 8).
However, within-group variations in these parameters were larger than variations across
treatments and could not be explained by soil matric potential. The canopy chlorophyll
content, NDVI, and LAI had correlations with soil moisture content with relatively lower
R2 of 0.12, 0.09, and 0.12 respectively (Supplementary Figure S6).
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Figure 8. Overall relationships between soil matric potential (ψ) and (a) canopy chlorophyll content (CCC), (b) normalized
difference vegetation index (NDVI), and (c) leaf area index (LAI) in the three groups BC1, BC2, and C.

3.6. Comparison of Evaporative Fraction (EF) with Soil Moisture Content and Matric Potential

EF had strong correlations with soil moisture content (θ) in individual groups (R2 = 0.87,
0.78, and 0.82 for group C, BC1, and BC2 respectively, Figure 9). The ET-θ fitting lines
of two biochar groups BC1 and BC2 shifted toward higher θ compared with the control
group C. The slopes of the fitting lines were 0.29, 0.15, and 0.30 for group C, BC1, and BC2
respectively. The evaporative fraction had strong exponential relationships with soil matric
potential (ψ) in individual groups (Figure 9b), with the EF-ψ fitting line shifting toward
higher ψ after BC1 biochar application and toward lower ψ after BC2 biochar application.
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the extrapolation of the linear fitting lines (solid lines) to maximum EF (EFmax ≤ 1). Dash lines
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4. Discussion

This study combined UAV-based hyperspectral and thermal imagery with ground
measurements and physical models to provide a comprehensive assessment of relative
changes in upland rice growth, soil water availability, and WUE after biochar application.
While our campaign was relatively short, it allowed monitoring the integrated effects
of biochar during most of the rice growing season, from sowing to early senescence.
During the four-day campaign, we found that in the two biochar groups, rice GPP, NDVI,
chlorophyll content, soil moisture content, and WUE were significantly higher than the
control group. The increments were larger in the BC1 group that also had higher leaf
nitrogen concentration. In contrast, we found opposite behaviors between the two biochar
treatments for soil matric potential, leaf area index, and fractional vegetation cover, which
were higher in BC1, but lower in BC2, compared to the control (Table 1). Looking at surface
energy fluxes, the net radiation, latent heat flux (evapotranspiration), and ground heat flux
significantly increased in BC2, but not in BC1, which translated to a significant increase in
the evaporative fraction in BC1, but no change in BC2 compared to the control plots.

4.1. Biochar Effects on Bare Soil Albedo

From the exposed soil surfaces between plots, we did not observe lower soil surface
albedo after the biochar application at a rate of 0.4% (weight/weight) within 20 cm topsoil
in our experiment. The biochar had been added to the soil for eleven months in BC1 and
five months in BC2, so the charcoal particles were likely already incorporated into the soil
by the time the measurement campaign was conducted, thereby limiting any direct soil
albedo effect from biochar. Our albedo results from the field biochar experiment contrast
sharply with other studies that claimed that biochar addition could decrease soil surface
albedo and increase radiative forcing feedback to climate based on dark surface albedo
either from satellite measurements at largescale or laboratory experiments (e.g., [55,56]).

4.2. Biochar Effects on Soil Water Availability

Biochar addition has been shown to alter soil moisture content, and soil physical and
hydraulic properties [20,21]. We found from in situ sensor measurements (one soil moisture
probe in each plot), that the soil moisture content (θ) was higher in both biochar plots but
differences across treatments were not significant due to the large within-group variability.
Using the UAV-derived θ that covered the whole area of each plot to better account for the
variability within each plot, we found significant increases in θ in biochar-amended plots
(Figure 4). This demonstrated the advantage of high-resolution drone-based remote sensing
approach over ground point measurements in cropland and agricultural assessment.

The significantly higher θ in biochar groups than the control was probably due to
the increase in water holding capacity in biochar amended soil. The higher water holding
capacity is likely linked to the porous biochar structure that increases the particle surface
area, so that more water can be retained by the soil. The increased water retention with
biochar addition can also reduce nutrient leaching [57] and result in more efficient plant
nutrient uptake [24]. This might partly explain the higher leaf nitrogen concentration
observed in BC1.

It should be noted that the θ derived from temperature-vegetation relationships reflects
the water availability in the whole root zone [43], and the rice rooting depth can reach
0.5–1.0 m [45], far deeper than the depth of 15 cm at which the in-situ sensors were placed
in this study. The shallower the measurement location, the stronger the influence from
atmospheric forcing and consequently the larger the fluctuations of the measurements,
explaining the higher variability of the in-situ measurements compared to the remote
sensing estimates. Besides, the groundwater level was reported 0.8 m below the surface
during the dry period [29] and the capillary rise in clay loam soil of the site might dampen
the fluctuations of root zone soil moisture. The mismatch of in-situ sensor-measured and
UAV-derived θmakes the two sets of data not readily comparable.
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The soil matric potential presented a different picture for the two biochar applications,
increasing in BC1 and decreasing in BC2, contrary to the θ that increased in both biochar
applications. The lower soil matric potential found in BC2 despite higher soil moisture is
due to the different water retention properties in BC1 and BC2. In fact, at given soil moisture,
the matric potential in BC1 is lower than in BC2 (Supplementary Figure S5). Along with
the decreased soil matric potential in BC2, the BC2 plots also exhibited lower leaf nitrogen
concentration, LAI, GPP, and WUE. Apart from the biochar feedstock difference between
BC1 and BC2, [29] attributed the lower plant performance to the shorter time of BC2
settlement in soil. The BC1 had been applied six months earlier and might be better
established in soil.

4.3. Biochar Effects on Rice Growth Indicators

We found that rice GPP, NDVI, and CCC were higher in both biochar applications
than in the control group (Figure 6). A similar positive effect of biochar addition on
maize was reported by Agegnehu, et al. [58] under Australian tropical dry conditions.
We indirectly inferred the changes in plant growth from the changes in NDVI, a proxy of
the fraction of photosynthetic energy absorbed by the canopy [35,36], and the changes in
canopy chlorophyll content that determines the plant photosynthetic capacity and therefore
maximum potential light use efficiency. The soil background biases on NDVI values were
likely minimal due to the dark-colored soil and relatively dense rice canopy [59] in our study.
Ultimately, all these positive changes in canopy properties might be traced back to the
aforementioned improvement in soil water availability and subsequently the resilience of
plant to dry spells after biochar application in the arid cropland, which was also supported
by the results of isotopic composition of plant water [29].

A further correlation analysis showed that soil matric potential was a slightly better
predictor of variations in CCC, NDVI, and LAI than the θ (Figure 8 and Figure S5). Vascular
plants absorb soil water and transport it through the xylem to the leaf surface thanks to
the gradients of water potential along the soil-plant-atmosphere continuum SPAC [60,61].
Assuming a steady-state flow along the SPAC, higher water availability as indicated by
higher soil water potential will result in more water transported to the leaves, which
guarantees higher leaf water potential and gas exchanges [60]. In turn, this improved
water status is expected to allow for larger leaf area and photosynthetic capacity, thereby
explaining the observed correlations.

4.4. Biochar Effects on Evaporative Fraction and Plant WUE

We found that the rate of change of the evaporative fraction (EF; i.e., the fraction of net
radiation energy converted to latent heat) with soil moisture content in BC1 was about half
of that in the other groups, indicating that the rice in BC1 was less sensitive to soil moisture
changes at a relatively higher moisture level. Extrapolating the EF-θ fitting curve to the line
of EF = EFmax defines hypothetical soil moisture contents at which the available energy is
maximally converted to latent heat, indicating the maximum transpiration and minimum
sensible heat of the net radiation energy partition. These soil moisture values are higher
in the two biochar amendment groups compared to the control (Figure 9), suggesting
that the stomata of rice growing in biochar amended soil started closing (thus reducing
the evaporative fraction) at higher soil water content than in the control. Moreover, the
evaporative fraction remained lower in biochar amended soil at any given soil water level
compared to the control, all the way to the wilting point. This finding provides empirical
support to the model results in ([21] Figure 4B). This pattern can also be interpreted in a
different way—that biochar-amended soils hold more water, but trigger stomatal closure
and reduced evapotranspiration at relatively higher soil moisture compared to control
plots. As a consequence, despite holding more water, the amount of plant-available water
in biochar-amended soils was comparable to control plots.

We found that EF increased nonlinearly with soil matric potential (ψ) in each group
(Figure 9b) and may be fitted using sigmoidal curves [62]. The EF-ψ fitting curve of BC2
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group shifted toward lower ψ compared to the control, suggesting a higher evaporative
fraction at a given ψ in BC2. Indeed, BC2 had the highest evapotranspiration among all
three experimental groups (Supplementary Table S1). This curvilinear relation between EF
and ψ is a direct consequence of the nonlinear shape of the soil water retention curves [50].

However, the average EF in BC2 was slightly lower than the other two groups during
the UAV campaign period, indicating that the rice in this group was relatively water-
stressed. Correspondingly, the rice canopy surface temperature, an indicator for instan-
taneous plant water stress [63], was slightly higher in BC2 than the other two groups
(Supplementary Table S1). Moreover, the leaf water content, an indicator for sustained
water stress [14], was the lowest in BC2 among the three groups. Although these differences
between the biochar groups and the control were generally small in magnitude during
the campaign days, if the mild plant stress had been accumulated over time, it could lead
to significantly inferior rice growth, explaining the lower LAI and canopy cover in BC2
compared with the control.

How could the biochar amendment affect plant WUE? The answer to the question is
very critical to crops in water-limited areas where the experiment locates. In the review
by Fischer et al. [21], few studies reported a positive effect of biochar on crop WUE based
on yield. Plant WUE is expected to increase if the biochar promotes plant productivity
without a significant increase in evapotranspiration. This is the case for BC1, where the
gross primary productivity (GPP) increased significantly and the evapotranspiration did
not change. If the GPP increases at a significant cost of evaporative water loss, the plant
WUE will change depending on which (GPP or evapotranspiration) increases more. This
is the case for BC2, where the GPP increased along with the significant increase in evapo-
transpiration. The GPP increment largely surpassed the increment of evapotranspiration
and the consequent WUE was increased in BC2 as well. This result is key as it provides
observational evidence on the influence of biochar for WUE, suggesting the amendment
would potentially benefit climate-smart agriculture by adding resilience to crops in regions
with limited water resources [21,22].

5. Conclusions

This study demonstrated that the joint use of hyperspectral and thermal imagery from
a UAV is promising to provide a wide range of indicators for quantifying upland rice pro-
ductivity and water usage after biochar application. We showed that the indicators derived
from the imagery using physical models were useful in exploring biophysical informa-
tion behind indirect measurements, and in explaining the mechanisms from the observed
changes after biochar application. The integration of direct and indirect measurements
allows for the identification of relative changes in plant biophysical variables, soil water
availability, and surface energy fluxes. Drone-based remote sensing provided spatially
explicit information without disturbing the measurement target, densifying ground point
measurements from sensors or laboratory samples, enabling a wide range of applications
that can benefit precision agriculture and crop management in general.

The results show relatively large increases in GPP, chlorophyll content, and soil
moisture content after the biochar amendments. In addition, non-significant or significant
but small changes in energy fluxes and evapotranspiration were revealed, suggesting
increases in WUE after biochar application. However, the biochar feedstock and application
management might have influenced the outcomes as in our case the increment in bamboo
biochar amended soil was larger than in sugarcane biochar amended soil.

This study motivates a larger scale experiment so that other aspects related to the
impact of the amendment for WUE, GPP, and soil fertility can be tested at a full crop scale.
The results demonstrate the potential of biochar for agricultural water management to
withstand dry spells by allowing rice plants to efficiently use water and nutrients use.
A noteworthy result is that potential climate feedbacks derived from high temperatures
and dark soils might not be as significant as previously thought, based on the detected
changes in the surface energy balance components affecting radiative forcing such as the
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land surface temperature, albedos, or sensible heat fluxes after limited biochar application
in our experiment. Biochar amendment is therefore promising as part of the strategies
to improve the resilience of crops under rainfall reduction scenarios associated with the
impacts of climate variability and change. The implementation of biochar to improve
WUE, soil quality, and likely carbon uptake can also represent an innovative solution to
the treatment of agricultural residues and foster good agricultural practices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13101866/s1, Figure S1. Unsupervised classification using k-means clustering method. Sunlit
soil pixels are separated from others for albedo analysis. Figure S2. (a) R2 and (b) root mean squared
difference (RMSD) between the UAV-measured and the Pro4SAIL-modeled hyperspectral reflectance
using the parameters from the model inversion outputs. Histograms show the frequencies of these
values over three groups of rice canopy. Figure S3. (a) The comparison of plot-averaged soil moisture
content (θ) in three groups BC1, BC2, and C from UAV over the period Nov 14 to 21, 2018 and during
the four UAV campaigns. Whiskers denote the 95% confidence interval of each group on each day.
Violin plots of θ from UAV in each plot and each treatment on (b) Nov16, (c) Nov 19, and (d) Nov-21.
The shaded areas of the violin plot denote distribution of the day’s measurement, the white dots
denote the median values, and the bottom and top edges of the black bars denote the 25th and 75th
percentiles respectively. The red circle ‘#’ denotes sensor measurements during flight. Figure S4.
(a) The comparison of plot-averaged soil matric potential (ψ) in three groups BC1, BC2, and C from
UAV over the period 14 to 21 November 2018 and during the four UAV campaigns. Whiskers denote
the 95% confidence interval of each group on each day. Violin plots of ψ from UAV in each plot
and each treatment on (b) Nov16, (c) Nov 19, and (d) Nov-21. The shaded areas of the violin plot
denote the distribution of the day’s measurement, the white dots denote the median values, and the
bottom and top edges of the black bars denote the 25th and 75th percentiles respectively. The red
circle ‘#’ denotes sensor measurements during flight. Figure S5. Water retention curves estimated
from field-measured soil matric potential (ψ) and soil moisture content using Van Genuchten model.
Dot-dash line denotes field capacity (FC) at −0.05 MPa. The wilting point (−1.5 MPa) is out of the
x-axis range. Figure S6. Overall relationships of (a) canopy chlorophyll content (CCC), (b) NDVI, and
(c) LAI to soil moisture content in three groups BC1, BC2 and C. Table S1. Statistics for variables of
the biochar experiment.
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