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Abstract: Cloud and aerosol polarization imaging detector (CAPI) is one of the important payloads
on the China Carbon Dioxide Observation Satellite (TANSAT), which can realize multispectral
polarization detection and accurate on-orbit calibration. The main function of the instrument is to
identify the interference of clouds and aerosols in the atmospheric detection path and to improve the
retrieval accuracy of greenhouse gases. Therefore, it is of great significance to accurately identify the
clouds in remote sensing images. However, in order to meet the requirement of lightweight design,
CAPI is only equipped with channels in the near-ultraviolet to near-infrared bands. It is difficult to
achieve effective cloud recognition using traditional visible light to thermal infrared band spectral
threshold cloud detection algorithms. In order to solve the above problem, this paper innovatively
proposes a cloud detection method based on different threshold tests from near ultraviolet to near
infrared (NNDT). This algorithm first introduces the 0.38 pm band and the ratio of 0.38 pm band to
1.64 um band, to realize the separation of cloud pixels and clear sky pixels, which can take advantage
of the obvious difference in radiation characteristics between clouds and ground objects in the near-
ultraviolet band and the advantages of the band ratio in identifying clouds on the snow surface. The
experimental results show that the cloud recognition hit rate (POD,j,q) reaches 0.94 (ocean), 0.98
(vegetation), 0.99 (desert), and 0.86 (polar), which therefore achieve the application standard of CAPI
data cloud detection The research shows that the NNDT algorithm replaces the demand for thermal
infrared bands for cloud detection, gets rid of the dependence on the minimum surface reflectance
database that is embodied in traditional cloud recognition algorithms, and lays the foundation for
aerosol and CO, parameter inversion.

Keywords: cloud detection; TANSAT-CAPI; NNDT; near ultraviolet band 380 nm; thresholds

1. Introduction

CO; is one of the greenhouse gases on earth, and the increase in its concentration over
the last century seriously affects the environment of human survival [1]. The IPCC report
in 2014 shows that the radiative forcing effect of aerosols is the largest source of uncertainty
in climate change assessment. Monitoring and evaluating the spatial distribution and
parameters of both CO, and aerosols have become a matter of great concern for scientists.
Therefore, research and improvement of aerosol and CO, parameter retrieval schemes have
been carried out all over the world. Large-scale observation of the earth can be achieved
by satellite remote sensing, which has become one of the main ways to detect CO, and
aerosol [2].
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The China Carbon Dioxide Observation Satellite (TANSAT) project is the first global
atmospheric carbon dioxide observation scientific experimental satellite developed entirely
by China. It was successfully launched by the CZ-2D carrier rocket at 3:22 on 22 December
2016. TANSAT is a sun-synchronous polar orbiting satellite with an orbital altitude of
712 km. There are two key instruments on the satellite: carbon dioxide sensor (CDS) and
cloud and aerosol polarization imager (CAPI) [3]. CAPI aims to identify cloud and aerosol
interference in the atmospheric to more accurately retrieve CO, parameters. CAPI has a
spatial resolution of 250 m /1000 m, and a calibration accuracy of better than 5%. There are
two modes of sub-satellite point observation and flare observation on it, between which
the sub-satellite point observation mode is not affected by the solar flare. CAPI is equipped
with five near ultraviolet to near infrared bands (0.38, 0.67, 0.87, 1.375, and 1.64 um), as
shown in Table 1, and realizes the small-scale lightweight design. Similar to the cloud and
aerosol imager (TANSO-CAI) on the greenhouse gas observation satellite (GOSAT) [4],
CAPI has an additional 1.375 pm band for cirrus detection. CAPI adds polarization
channels at 0.67 and 1.64 um, respectively [5]. Its swath width is 400 km, which provides a
large enough area for detecting aerosol spatial distribution and cloud cover.

Table 1. Wavelength and wavelength range of each CAPI channel.

Center Wavelength Wavelength Coverage

Channel
um um
Near-ultraviolet Band1 0.38 0.365-0.408
Visible Band2 0.67 (P) 0.66-0.685
Band3 0.87 0.862-0.877
Near-infrared Band4 1.375 1.36-1.39
Band5 1.64 (P) 1.628-1.654

Note: (P) indicates that the band is polarized.

However, most remote sensing images contain clouds [6]. Cloud is an interference
factor for atmospheric retrieval, especially the thin cirrus, which is difficult to detect,
and its existence will greatly affect the retrieval accuracy of aerosol and carbon dioxide
parameters [7]. Therefore, in order to minimize the impact, accurate cloud detection plays
an important role in image preprocessing.

Since the advent of the satellite era, many cloud recognition algorithms have been
developed. The cloud recognition algorithms are mainly divided into three categories:
machine learning method [8-18], cloud texture and spatial features method [19-23], and
spectral thresholds method [24-30]. The research status of these methods is classified and
summarized in Table 2.

With the increasing application of machine learning in the field of remote sensing, it
provides another effective means for cloud detection. However, because the machine learn-
ing method usually requires a large number of training samples for model construction,
the workload is large, and the universality of the model is often not effectively guaranteed.
The method of cloud texture and spatial features performs cloud detection based on the
spatial information features of the image. The cloud has a unique texture feature that
distinguishes it from the background, which is reflected in the spatial variation of the
spectral brightness value. Due to the complexity of this algorithm and the large amount
of calculation, it is difficult to meet the needs of high-efficiency calculations. The basic
principle of the spectral thresholds method of cloud recognition is to rely on the spectrum
difference between the cloud and the earth’s surface in the remote sensing image. It is
a physical method to distinguish between the cloud and the earth’s surface by setting
the radiance (reflectivity) thresholds. Due to its simple model and fast calculation speed,
this method can meet the needs of batch image processing. Therefore, this research is
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based on the spectral thresholds method to design a cloud detection algorithm suitable for
CAPI data.

Table 2. Summary of three classes of cloud detection methods.

Optical Model Author Key Results

Automatic detection of cloud was realized using a

Yu et al. (2006) clustering method according to texture features.

A K-means clustering algorithm was used to classify
Wang et al. (2010) the clustering feature of the thresholds for
reflectivity data.

A back propagation was established in a neural
Jin et al. (2016) network for MODIS data, which has efficient
learning ability.

Machine learning method

Analyzed the impact of different support vectors on

Yu Oishi et.al (2017) GOSAT-2 CAI-2 L2 cloud discrimination.

The cloud detection on FY meteorological satellite

Fuetal. (2019) images was carried out using Random Forest Method.

Texture cues were utilized to recognize clouds by their

Lee etal. (1990) high spatial heterogeneity.

The cloud detection on MODIS data was carried out
Liu (2007) using a classification matrix and dynamic clustering

Texture and spatial features method algorithm of shortest distance.

Gauss filtering was used to generate a cloud mask

Sun et al. (2017) for Landsat.

A gray level co-occurrence matrix was used to extract

Liu etal. (2017) the texture features of clouds.

A series of spectral thresholds was used to process the

Saunders et al. (1987) NOAA AVHRR sensor data.

An unbiased cloud detection algorithm, which
referred to as CLAUDIA, was developed for
visible-to-infrared imagers and introduced the clear
confidence level (CCL).

Ishida et al. (2009)

The scheme for CAPI classifies each spectral test as
either clear- or cloud-conservative according to the
Spectral thresholds method Wang et al. (2017) CCL value derived from the individual test, and final
CCL is determined by combining the results from
these two groups.

Developed a cloud detection approach based on
Quan et al. (2020) hybrid multispectral features with dynamic thresholds
for GF-1 remote sensing images.

Proposed a cloud detection approach based on
This study near-ultraviolet to near-infrared band with thresholds
for different underlying surfaces (NNDT).

However, there are a few researches on cloud recognition algorithm for CAPI at
present. Only one scheme based on Chinese FengYun-3A Polar-orbiting Meteorological
Satellite data was proposed by Wang et al. before satellite launch [30]. Although the cloud
and aerosol unbiased decision intellectual algorithm (CLAUDIA) has been proved to be
applicable to all remote sensing instrument data with corresponding visible to thermal
infrared bands [27], it also has limitations. For CAPI, due to design limitation, the channels
that can be applied to the CLAUDIA method only contain four bands from visible to
near-infrared, which is difficult to achieve the accuracy of cloud detection algorithms using
thermal infrared bands. In addition, using 0.67 and 0.87 um bands for cloud detection needs
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the support of minimum surface reflectance database to ensure the inversion accuracy,
while the use of the minimum surface reflectance database has its own limitations such as
causing image interpretation errors.

To solve the above problems, this paper proposes a more effective cloud detection
method for CAPI, which is a thresholds detection method based on different underlying
surface thresholds from near ultraviolet to near infrared (NNDT). For the first time, 0.38
um and the ratio of 0.38 to 1.64 pum bands are used in cloud detection. First, the algorithm
designed unique band test combinations for the four surface types of ocean, vegetation,
desert, and polar regions. Subsequently, CAPI data have been collected over the four
surface types to establish threshold values for the cloud detection spectral tests, and the
corresponding fixed thresholds are determined. Finally, in order to verify and evaluate the
effectiveness of the NNDT algorithm, the cloud recognition results of the algorithm and the
official cloud recognition results of the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Second-generation GLobal Imager (SGLI) are compared visually and
quantitatively, respectively. Experiments prove that the algorithm can overcome the above
limitations and can effectively identify the cloud.

This paper is organized as follows. In Section 2, the NNDT algorithm is introduced,
including the characteristics analysis of wavelength and wavelength combination and
the introduction of algorithm flow (including: preprocessing process, algorithm design
for different underlying surfaces, and the statistics and determination of each threshold).
Section 3 gives the verification results of cloud detection. Finally, the experimental results
are discussed in Section 4, and in Section 5, the conclusions are given and the future work
is prospected.

2. Materials and Methods

The spectral thresholds method is based on the radiation difference between cloud
and underlying surfaces reflectance in satellite images. The spectral characteristics used by
NNDT algorithm include: (a) reflectance of solar radiance, (b) dependence of reflectance
on wavelength, and (c) reflectance of solar radiance at the absorption wavelength. The
algorithm uses one near ultraviolet (0.38 um), one visible (0.67 um), and three near-infrared
(0.87,1.375, and 1.64 pm) CAPI channels. The following section will explain the detailed
radiation characteristics and how to apply them to cloud/clear sky discrimination in
CAPI images.

2.1. Spectral Reflection Characteristics of Cloud and Underlying Surface
2.1.1. Reflectance of Solar Radiance

In the non-absorption visible and near-infrared bands, the clouds have higher re-
flectance value than that of clear sky surfaces [30]. Based on this fact, 0.67 um reflectance is
used for vegetated land and coastal regions, and 0.87 um reflectance is used over water
scenes in many cloud detection algorithms [31,32]. However, in the 0.67 and 0.87 pm bands,
the reflectivity of different land surface types varies greatly in different seasons, so the
reflectivity thresholds of these bands also change [33]. In order to ensure the effectiveness
of cloud recognition in these two bands, it is usually necessary to count the minimum
surface reflectance varying with seasons or even months, while CAPI lacks the minimum
surface reflectance with timeliness and full coverage. If an external database is used, such
as MODIS minimum albedo product MCD43A3 or the minimum albedo map proposed
by Ishida and Nakajima [26], the observation geometry matching and spectral response
function matching of data need to be considered. In addition, if the minimum albedo is
affected by optically thin clouds, the actual optically thin clouds will not be recognized.

Based on the above situation, this article uses 0.38 um near-UV band of CAPI as an
alternative. Before this, there was no research using 0.38 um band for cloud recognition. Yu
Oishi et al. analyzed the annual variation of reflectivity of each band of CAl load for several
typical land surface types [13], indicating that the reflectivity of 0.38 um band remains at a
low value and basically unchanged throughout the year except that it increases due to the
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influence of ice and snow. From the spectral reflectance of cloud and underlying surface in
Figure 1, it can be seen that the surface of soil, desert, and vegetation has lower reflectance
in the 0.38 um band than in the 0.67 and 0.87 um band, the reflectance of water is still at
a low level, and the reflectance of cloud is still at a high level. Moreover, the reflectivity
of aerosol is very low in the 0.38 um band [34]. In terms of cloud characteristics, the edge
details of low and middle clouds in the 0.38 pum satellite image are very obvious. Figure 2
shows the CAPI grayscale images of the 0.38, 0.67, and 0.87 um bands in the Australian
semi-vegetated and desert. Therefore, the reflectance of 0.38 pm band is more beneficial to

distinguish between cloud and clear sky surface on soil, desert, and vegetation underlying

surface. In general, the reflectance of water and vegetation in the 0.38 um band is at

extremely low level of less than 0.05, while for the dry soil (i.e., bare soil) and desert surface,
the reflectance is higher, between 0.1 and 0.3, there is a possibility of misidentification as a
cloud. Because ice and snow have the same high reflectivity as cloud at 0.38 um, simply
using 0.38 pm cannot distinguish the cloud from the snow and ice surface.
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Figure 1. Reflectance curve of cloud and underlying surface. The underlying surface spectrum

comes from ENVI spectral library [35], and the cloud spectrum comes from Airborne Visible Infrared
Imaging Spectrometer.

2.1.2. Dependence of Reflectance on Wavelength

From visible to near-infrared in the solar radiation region, without considering the
absorption valley region, cloud reflectivity does not change much with wavelength. On
the contrary, the reflectance of several kinds of ground surface changes with the change of
wavelength. Therefore, the difference (or ratio) of the reflectance at different wavelengths
can well indicate whether the pixel is cloud or not [26]. In deserts or areas with sparse veg-
etation, the reflectivity in visible light region changes very little. In the near-infrared region,
the reflectivity of deserts tends to increase with increasing wavelength [36]. Therefore, the

reflectance ratio of 0.87 and 1.64 pm can better solve the problem of cloud identification
over desert areas, and the ratio is expressed as:

R¢(0.87 um) /R¢(1.64 um) 1)
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(d)

Figure 2. CAPI images over Australia on 29 March 2017. (a—c): Images of semi-vegetated areas in southern Australia; (d—f):

Images of desert areas in central Australia. (a,d): Images of 0.38 pm band; (b,e): Images of 0.67 um band; (c,f): Images of

0.87 um band.

But for bright surfaces, such as snow, it is not that effective.

Normalized difference snow index (NDSI) is used to distinguish snow cover areas [37-39].
The NDSI, which has a larger value on snow surface than for cloud, is determined by the
reflectance in 0.67 bands and 1.64 um bands of CAPI [30]:

R¢(0.67 um) — R¢(1.64 um)
R¢(0.67 um) + R¢(1.64 um)

NDSI = )

In the visible and infrared regions, cloud shadow has very low reflectivity, while in
the visible region, cloud reflective bright edge has very high reflectivity. As a result, the
NDSI values in the cloud shadow area are very close to those in the cloud area. In addition,
in the cloud reflective bright edge, the NDSI values are very close to those in the snow
surface area. In this way; it is easy to mistakenly identify the cloud shadow as cloud, and
mistakenly identify the cloud reflective bright edge as clear sky. For this reason, this paper
proposes a new method of using the reflectance ratio of 0.38 um band to 1.64 um band to
make up for this fault, as shown in Equation (3).

R¢(0.38 um) /R¢(1.64 um) 3)

The values of cloud shadow and cloud reflective bright edge in 0.38 um band are not
too low or too high. Therefore, the ratio of 0.38 um band to 1.64 um band in cloud shadow
is higher than that of snow surface, and in cloud reflective bright edge, it is equivalent to
that of cloud pixel. The ratio of 0.38 pm band to 1.64 um band is lower at cloud pixel than
in snow pixel. By setting threshold, cloud on snow surface can be effectively identified.



Remote Sens. 2021, 13, 1906

7 of 26

2.1.3. Reflectance of Solar Radiance at The Absorption Wavelength

High clouds, such as cirrus, can be detected by solar radiation at absorption wave-
lengths [40]. The 1.375 um channel is in the water vapor absorption zone, and the radiation
reflected by the surface or low altitude clouds is almost completely absorbed by the abun-
dant water vapor beneath the cloud. When high altitude clouds and cirrus clouds mainly
composed of ice crystals exist, the reflected radiation intensity at 1.375 pm band will in-
crease. However, 1.375 um band detection is not applicable at high altitude areas and polar
regions, where the atmosphere is thin, absorbing less and reflecting more radiation from
the underlying surface. This band is therefore only designated to detect clouds at surface
altitudes of less than 2000 meters.

2.2. CAPI Spectral Image Cloud Detection Process

Figure 3 shows the flow chart of NNDT algorithm using CAPI data. There are
four steps, including solar altitude angle and sun-earth distance correction, snow surface
predetection, determination of land cover type, and cloud detection for four underlying
surfaces. The first three of them are pre-processing work. The fourth step is the key part of
the NNDT algorithm.

CAPI L1B 1KM data

| NDSI>Tnosi |
| Rog7um>0.11 |

|
L Rosrum>0.1 11y

MCD12Q1 —»

v v

Ocean Vegetation
Data Data

Yes|“““I““‘\’|“““l“““

Yés Yes
]

A

Yes

(||IIIIIIII|')

Figure 3. Flow chart of NNDT algorithm using CAPI data.

2.2.1. Preprocessing

(1) Solar altitude and sun-earth distance correction

The data used in this paper are obtained from CAPI L1B (1000 M) V2.0 sub-satellite
point observation mode (tracking the main plane) scientific observation products and geo-
metric positioning products. The L1B data of CAPI is reflectance data, which is generated
from the radiometric calibrated DN (digital number) value. Before the data can be used
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for cloud identification, the sun to earth distance correction and the solar altitude angle
correction are also needed.
R* = (7 x L)/Esun 4)

R = (R* X d2> /cosA. (5)

R*is L1B data, R is reflectivity data, L is the radiance data after radiometric calibration,
Esun is the solar constant, d is the distance between the sun and the earth, cosA is the
cosine of the solar zenith angle (unit: radians). The sun-earth distance d and the solar
zenith angle A are stored in the geometric data of L1B.

(2) Snow surface pre-detection

Scattered snow cover may be misidentified as cloud, therefore identifying snow cover
in advance is required before cloud detection. Identifying the snow surface in advance
can simplify the subsequent cloud detection procedure and reduce the probability of
misjudging the snow as a cloud. The following tests are used:

NDSI > Tnpst (6)
R¢(0.87 um) > 0.11 (7)
R(0.67 um) > 0.1. 8)

Tnpst is the detection threshold. Based on [41,42], we mark a pixel as snow when the
NDSI is higher than 0.48 (0.6) during the Northern Hemisphere warm (cold) season, i.e.,
April to September (October to March); notice that warm and cold months are switched for
the Southern Hemisphere (SH), with the reflectivity of 0.87 and 0.67 um higher than 0.11
and 0.10, respectively.

(3) Determination of land cover type

Another important step is to determine the land cover type. The land classification
data were derived from the MODIS global land cover data (MCD12Q1) with a resolution
of 500 m, which is matched to CAPI geometric data according to the longitude and latitude
coordinates. In this paper, all underlying surface types are divided into four types: ocean,
vegetation, desert, and polar, so as to implement the subsequent targeted cloud detection
for different underlying surface types. Different from the traditional classification method,
the inland water is classified as ocean in this paper, and the desert and bare surface are
taken out as an independent category from the land category, and the rest types in the land
category are collectively referred to as vegetation.

2.2.2. Cloud Recognition Algorithms for Different Surface Types

Cloud/clear discrimination is done by comparing the reflectance from the CAPI to
the thresholds, which defines the boundary between cloud and clear pixels. NNDT algo-
rithm consists of different threshold tests to ensure detection accuracy, in consideration
that a threshold test that is effective for a certain surface type may not be appropriate
for another type. Different cloud detection schemes 1-4 are designed for different un-
derlying surface types, as shown in Formulas (9)—(16). T is the threshold of correspond-
ing detection. For ocean and vegetation surface cloud recognition, we use the union of
R¢(0.38 um) and R¢(1.375 pm) threshold detection results. On the desert surface, we use
the union of R¢(1.375 pm) threshold detection results with the intersection of R¢(0.38 um)
and R¢(0.87 um)/R¢(1.64 pm) threshold detection results. In polar regions, we only use
R¢(0.38 um) /R¢(1.64 um) threshold detection for cloud recognition. As shown in Table 3,
different thresholds are used for 0.38 and 1.375 um band detection on different underly-
ing surfaces.
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Table 3. Thresholds for cloud screening with CAPL

Threshold Test Thresholds
Ocean Vegetation Desert Polar
R¢(0.38 1tm) 0.08 0.15 0.25 -
R¢(1.38 pm) 0.011 0.019 0.030 -
R¢(0.87 pm)/R¢(1.64 pm) - - 0.95 -
R¢(0.38 um)/R;(1.64 pm) - - - 425
1.  Ocean
Rf(0'38 Hm) > Tocean-0.38 (9)
or
R¢(1.375 um) > Tocean-1.375- (10)
2. Vegetation
R¢(0.38 pm) > Tyeg-038 (11)
or
Rf(1.375 pm) > Tyeg-1575- (12)
3. Desert
R¢(0.38 um) > Tyesert-0.38 (13)
and
R¢(0.87 pm)/R¢(1.64 pm) > Tesert-0.87-1.64 (14)
or
R¢(1.375 pm) > Tesert-1.375 (15)
4. Polar
Rf(0.38 pm) /Re(1.64 pm) > Tpolar-0.38-1.64 (16)

When the above conditions are met, the pixel is identified as a cloud.

The thresholds used in all cloud tests in this study are obtained by CAPI data statis-
tics, rather than the thresholds set by other cloud recognition algorithms for the band
characteristics of their sensors [43]. The reflectance data of the Indian Ocean (35°—40° S,
120°-130° E), southern Africa (7°-10° S, 23°-26° E), Sahara Desert (15°-18° N, 12°-17° E),
and Antarctica (68°-72° S, 148°-158° E) in 2017, which as representative areas of the four
surface types, were collected for threshold statistics. All the data are corrected by solar
altitude angle and sun earth distance. Considering whether the thresholds change with the
season, we select all the images in the same area and at the same time with an 18-day revisit
cycle from March 3 in a year to carry out visual cloud recognition by setting the detection
thresholds. Because clouds with different heights, types, and optical thicknesses have
different apparent reflectance [44,45]. For the purpose of identifying all possible clouds, a
threshold is selected between the surface reflectance of clear sky and the reflectance of the
cloud with the lowest optical thickness, which is close to the surface reflectance of clear sky.
All threshold results are shown in Table 4.
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Table 4. The statistical results of cloud detection thresholds every 18 days from March to December
2017 for the representative regions of four land surface types.

Thresholds
Data Ocean Vegetation Desert Polar
0.38 1.375 0.38 1.375 0.38 1.375 0.87/1.64 0.38/1.64

3 March 0.09 0.012 0.15 0.019 0.26 0.032 0.94 4.25
21 March 0.09 0.011 0.15 0.020 0.26 0.031 0.94 4.24
8 April 0.08 0.011 0.16 0.019 0.25 0.031 0.93 4.23
26 April 0.09 0.013 0.16 0.020 0.25 0.031 0.94 4.24
14 May 0.09 0.012 0.20 0.025 0.29 0.036 0.92 414
7 July 0.08 0.012 0.16 0.021 0.26 0.032 0.95 419
25 July 0.08 0.013 0.16 0.021 0.26 0.032 0.95 4.20
12 August 0.08 0.013 0.16 0.021 0.26 0.031 0.95 4.22
30 August 0.09 0.012 0.20 0.024 0.26 0.031 0.94 422
5 October 0.08 0.011 0.15 0.020 0.22 0.030 0.92 4.24
23 October 0.08 0.012 0.1 0.021 0.25 0.026 0.95 4.50
10 November 0.08 0.011 0.15 0.020 0.26 0.030 0.95 4.23
28 November 0.09 0.011 0.12 0.019 0.25 0.031 0.94 4.25
16 December 0.07 0.008 0.15 0.017 0.24 0.028 0.93 419

Note: CAPI did not have satellite imagery in June and September.

It can be seen from the thresholds listed in the table that there is no significant change
in the reflectance thresholds of the same land surface type in a year; but for different land
surface types, the thresholds are quite different. Therefore, after excluding the obvious
deviation value (irregular maximum or minimum) in the thresholds of the same land
surface type, the smallest (large) value in the remaining data is used as the final cloud
detection threshold of the corresponding land surface type, as shown in Table 3.

3. Results

Verifying the effectiveness of cloud recognition algorithms is difficult. Two important
steps in validation are visual comparison and quantitative analysis [46—48]. In visual
comparison, an analyst conducts a validation through visual inspection of the spectral,
spatial, and temporal features in a set of images. Visual inspection is an important first step
in validating any cloud mask algorithm. The analyst uses knowledge and experience of
cloud and land surface spectral properties to identify obvious problems. However, visual
comparison provides poor quantitative evaluation [25]. More quantitative validation can
be attained through directly comparing the two results pixel by pixel. This section provides
two schemes for verifying NNDT algorithm, which are visual comparison with MODIS
cloud identification products and quantitative comparison with SGLI cloud identification
products. Some validation examples will be given at the same time.

3.1. Visual Comparison with MODIS Cloud Detection Production

NNDT algorithm was evaluated by visually comparing cloud/clear discrimination
results (referred to as the CAPI cloud flag) with the CAPI composited RGB image and
the MODIS cloud-mask product (MYD35). MYD?35 is a cloud-mask product for solar
synchronous orbit data from MODIS (onboard Aqua) at 13:30 local solar time, close to
TANSAT local solar time, making it possible to find images of CAPI and MODIS in the
same place on certain dates with small transit intervals. However, their swath and revisit
cycles are different: the CAPI has a swath of 400 km and a revisit cycle of 18 days. The
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Aqua/MODIS has a swath of 2330 km and a revisit cycle of 16 days. The orbit of Aqua
overlaps with that of CAPI only intermittently.

MYD35 uses clear confidence level (CCL) to evaluate cloud detection results, including
four confidence levels, which are: cloudy, probably cloudy, probably clear, and confidently
clear [49,50]. In order to correspond with the output cloud flag “either cloud or clear” of
the NNDT algorithm, the “confidently clear” and “probably clear” of MYD35 are classified
as clear, and the other confidence levels are classified as cloud. CAPI and MODIS data, as
well as cloud flag, are projected onto grids with a spatial resolution of 1 km x 1 km.

To clarify the characteristics of CAPI Cloud Flag, five scenes were selected (Figures 4-8)
with different cloud properties and ground surface characteristics. The locations are the
northwest coast of Australia and Indian ocean (15°-17.5° S, 118°-123° E, ocean), the
southwest part of Australia (27°-32° S, 122°-127° E, bare area), the islands of Indonesia
(2.5°-7° N, 114.5°-119° E, vegetation), the Sahara Desert (21°-24.5° N, 12°-15° E, desert),
and the Antarctic continent (76°-81° S, 112°-123° W, polar). The Antarctic continental
scene experiment used CAPI image at 00:30 and MODIS image at 01:15 on 1 March 2017.
Other scenarios used data from 26 April 2017, when the track of two instruments crossed
within 5 min of each other. In order to facilitate comparative observation, ENVI software is
used to clip MODIS and CAPI images after geometric correction to obtain the overlapping
area images. In polar regions, the geometrically corrected satellite images have a very
small width, which is not conducive to observation. Therefore, images without geometric
correction are used, and the approximate geographic range is marked.

Each scene has four panels: (a) the CAPI false color image synthesized by the re-
flectance data of the 0.87 um (Red), 0.67 um (Green), 0.38 um (Blue) channels for the
scene; (b) the cloud flag image of CAPI derived by applying NNDT algorithm to the CAPI
reflectance data; (c) the MODIS true-color image combining bands 1, 3, and 4 of multiple
MODIS level-1b products overlapping with the CAPI scene; and (d) the cloud flag of
MYD35 with only “cloud” and “clear” results.

As can be seen from the cloud identification of the northwest coast of Australia and
Indian ocean area in Figure 4, the cloud area contours of CAPI cloud flag and MYD35 are
very similar. Small clouds around the cloud cluster in the CAPI RGB image are also well
recognized. Compared with MYD235, the cloud regions identified by NNDT algorithm are
more coherent at the edge of the clouds and the hole in the center of the cloud cluster, and
these regions are identified as clear in MYD35.

Figure 5 shows images taken on Indonesian islands, including clouds at different
heights and optical thicknesses over both surfaces of the ocean and vegetation. NNDT
algorithm can recognize all kinds of cloud as cloud pixels, such as small scattered clouds,
thick clouds, and optically thin clouds. The cloud area of CAPI cloud flag and MYD35 is
basically the same.

Figure 6 illustrates the results of cloud detection over bare surface. Like MYD35,
the NNDT algorithm does not determine the locally highlighted sandbanks, which are
easily identified as clouds. MYD35 sometimes recognizes inland intermittent waters as
clouds, and the NNDT algorithm avoids this situation well. By comparing the CAPI
cloud flag with the CAPI pseudo color image, it can be seen that NNDT algorithm can
determine the distribution position of small scattered clouds. For the recognition of small
scattered clouds, the cloud shape of CAPI cloud flag is more discrete, while that of MYD35
is more continuous.

Figure 7 shows a typical desert scene, Sahara Desert scene. Its clear sky surface pixels
have high reflectance, which can be easily identified as clouds. Nevertheless, the CAPI
cloud flag is reasonable compared with the CAPI RGB image and MYD35.
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Scene: Ocean

(a) CAPI RGB (b) CAPI cloud flag
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15°S 15°S
15.5°S 15.5°S |—

16°S 1605
16.5°S 16.5°S

17°s 17°S |— !
17'5;§8°E 119°E 120°E 121°E 122°E 123°E 17'5;§8°E 119°E 120°E 121°E 122°E 123°E

Observation date / time (UTC):
2017-4-26 05:40 clear coud

Figure 4. Case over the northwest coast of Australia and Indian ocean at 05:36 UTC 26 April 2017 for CAPI and at 05:40
UTC 26 April 2017 for MODIS. The “time” is the start time when the imager took the image of this scene. (a) The CAPI
false color image, (b) the cloud flag image of CAPI derived by applying NNDT algorithm, (c) the MODIS true-color image
overlapping with the CAPI scene, and (d) the cloud flag of MYD35 with only “cloud” and “clear” results.

The cloud detection results for a scene over the Antarctic continent are shown in
Figure 8. For pixels covered with snow and/or sea ice, it is generally difficult to distinguish
clear sky and clouds because they have a visual feature and spectrum similar to clouds,
namely, white with high reflectance. Comparison with the CAPI RGB image suggests
that our algorithm can accurately distinguish between clear sky and cloudy areas over the
bright snow and ice surface. The NNDT algorithm identifies the cloud anti bright edge as
cloud and the cloud shadow as clear sky. It shows the sensitivity and accuracy of NNDT
algorithm in distinguishing cloud anti bright edge from surface and cloud shadow from
cloud. In addition, for pixels with high and thin cloud distribution, MYD35 is identified as
clear sky, while NNDT algorithm can accurately identify them as clouds.
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Scene: Vegetation

(a) CAPI RGB (b) CAPI cloud flag
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(c) MODIS RGB (d) MYD35
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Figure 5. Same as Figure 4, but over the islands of Indonesia at 05:42 UTC 26 April 2017 for CAPI and at 05:45 UTC 26 April

2017 for MODIS.



Remote Sens.

2021, 13, 1906

14 of 26

MCD120Q1

(a) CAPIRGB

27°s

28°Ss

29°S

30°s

31°S
32°S
122°E 123°E 124°E 125°E 126°E 127°E
Observation date / time (UTC):
2017-4-26 05:36
(c) MODIS RGB
275
28°S
29°s
30°s
31°s
32°s —_— — —— -
122°E 123°E 124°E 125°E 126°E 127°E
Observation date / time (UTC):
2017-4-26 05:35

Scene: Bare

(b) CAPI cloud flag
27°S
29°s
30°s |
31°s |
32°S
122°E 123°E 124°E 125°E 126°E 127°E
clear cloud
(d) MYD35

27°S

28°S

29°s

30°s

31°s

3

2°S
122°E

123°E 124°E 125°E 126°E 127°E
clear cloud

Figure 6. Same as Figure 4, but over the southwest part of Australia at 05:36 UTC 26 April 2017 for CAPI and at 05:35 UTC
26 April 2017 for MODIS.
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Scene: Desert
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Figure 7. Same as Figure 4, but over the Sahara Desert at 12:24 UTC 26 April 2017 for CAPI and at 12:25 UTC 26 April 2017
for MODIS.
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Figure 8. Same as Figure 4, but over the Antarctic continent at 00:30 UTC 1 March 2017 for CAPI and at 01:15 UTC 1 March

2017 for MODIS.
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Table 5 lists the cloud cover (the percentage of cloud pixels in the total pixels) identified
from MODIS and CAPI images in these five scenes. It can be seen from the cloud cover
of the two results that the two values are close, with only 1-5% difference. Therefore, it
intuitively proves the rationality of the NNDT algorithm in this paper.

Table 5. The cloud cover identified from MODIS and CAPI images.

Scenes Ocean Vegetation Bare Desert Polar
MODIS 51.88% 43.70% 32.32% 71.65% 55.95%
CAPI 56.54% 41.72% 27.46% 70.19% 59.89%
Difference 4.66% —1.98% —4.86% —1.46% 3.94%

3.2. Quantitative Comparison with SGLI Cloud Detection Production

The verification experiment in Section 3.1 cannot provide quantitative comparison
verification, so for the NNDT algorithm, this paper designs a pixel-by-pixel verification
scheme based on SGLI radiance data at the top of atmosphere (LTOA) and SGLI official
cloud recognition products (SGLI-CLFG). SGLI (the Second-generation GLobal Imager
aboard the GCOM-C satellite, launched in December 2017) has 19 channels covering
ultraviolet to thermal infrared spectra and two polarization and bidirectional channels,
and contains all the channels used in the NNDT algorithm which are listed in Table 6. The
thresholds of the tests are taken directly from the NNDT algorithm, considering the similar
corresponding spectral bands between CAPI and SGLI.

Table 6. Wavelength and wavelength range of SGLI channel, which are used in NNDT algorithm
and true color composite image.

Channel Center Wavelength Band Width
VNR, SWI: nm
VN1 380 10
VN3 443 10
VN5 530 20
VN8 673.5 20
VN11 868.5 20
SW2 1380 20
SW3 1630 200

SGLI official cloud recognition product (SGLI-CLFG) is similar to MYD35, using
the cloudy/clear discrimination algorithm (CLAUDIA) [31], which includes abundant
cloud tests from visible to thermal infrared band. CCL is represented by a 3-bit binary
number and is divided into 8 levels. In order to facilitate the comparison, this article
simplifies the CLFG levels and merges them into two categories—cloud and clear. Specific
applications are shown in Table 7. Please refer to the user’s Manual for the specific
application process [51,52].

In this paper, the algorithm verification experiments based on four scenes with differ-
ent cloud attributes and surface features are selected as examples. The scene locations are
shown in Table 8. The cloud screening cases over the four scenes are shown in Figures 9
and 10. Each scene has two panels: (a) The SGLI true color image of this scene synthesized
from the VN8 (red), VN5 (green), and VN3 (blue) channel reflectance data and (b) The
pixel-by-pixel comparison results of NNDT cloud recognition results (NNDT CLFG) based
on SGLI observation data and SGLI official cloud recognition products (SGLI CLFG).
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Table 7. Overall CCLs (Overall clear confidence levels) in SGLI-CLFG and simplified application
results in this article.

CCLs Bit Application Results
0.00 000 Cloud
0.00-0.17 001 Cloud
0.17-0.33 010 Cloud
0.33-0.50 011 Cloud
0.50-0.67 100 Cloud
0.67-0.83 101 Cloud
0.83-1.00 110 Clear
1.00 111 Clear

Table 8. The sites and locations of the four scenes for this verification experiment.

Scenes Site Location
Ocean East China Sea (25~27° N, 121~123° E)
Vegetation Shandong China (34~36° N, 114~116° E)
Desert Taklimakan desert (37~39° N, 79~82° E)
Snow Antarctic region (66~69° S, 72~75° E)

As shown in Figures 9 and 10, the comparison results between NNDT-CLFG and
SGLI-CLFG record pixels in four cases: A. NNDT-CLFG and SGLI-CLFG are both cloudy,
B. both are clear, C. NNDT-CLFG are cloudy and SGLI-CLFG are clear, and D. NNDT-
CLFG are clear and SGLI-CLFG are cloudy. It is apparent that the NNDT-CLFG provides
relatively good agreement with both the SGLI-CLFG and the composite true-color images
over the vegetation, desert, and ocean scenes. The cloud areas marked by the two results
are basically the same, and only the determination of a very few pixels at the edge of
the cloud has a deviation, which is within a reasonable range in the thresholds cloud
recognition. However, for some optically thin clouds with extremely thin visual effects in
the desert scene, both algorithms have the phenomenon of missing detection. The larger
deviation between NNDT-CLFG and SGLI-CLFG appears in the polar scene, where a large
number of cloud pixels at the edge of the cloud cluster marked by NNDT-CLFG are marked
as clear sky by SGLI-CLFG. But by visually comparing NNDT-CLFG and true color images,
it can be found that the two are highly consistent. These prove the effectiveness of the
NNDT algorithm.

Four validation scores are used here for the quantitative analysis: the probability of
detection (POD), the false-alarm ratio (FAR), the hit rate (HR), and Kuiper’s skill score
(KSS) [53]. The definitions are:

PODjear = d/(C + d) 17)

POD¢joud = a/(a+b) (18)

FARjear = b/ (b + d) (19)

FARoud = ¢/(a+c) (20)
HR=(a+d)/(a+b+c+d), where0 <HR <1 (21)
KSS =ad —cb/(a+Db)(c+d), where—1 <HR < 1 (22)

where a and d, respectively, represent the number of pixels where NNDT-CLFG and
SGLI-CLFG are both “cloud” and “clear sky”, b represents the number of pixels where
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NNDT-CLFG are “clear” but SGLI-CLFG are “cloud”, and c represents the number of
pixels where NNDT-CLFG are “cloud” but SGLI-CLFG are “clear”. These six scores all
take SGLI-CLFG as standard, which means that SGLI-CLFG is correct.

The POD and FAR scores are the measure of the efficiency of the cloud identification
algorithm in determining either cloud or clear events [54]. The POD values are supposed
to be as close to 1 as possible. Conversely, the FAR values are supposed to be as close
to 0 as possible. The HR values estimate the overall efficacy of the cloud detection algo-
rithm. In addition, the KSS index is a complementary measurement method, reflecting
the misclassifications to some extent [54]. It is used to evaluate the performance of the
algorithm in separating cloud events from clear events. A value of 1.0 represents a perfect
discrimination, while a value of —1.0 describes a complete discrimination failure.

Vegetation

Desert

Figure 9. Per-pixel comparison of NNDT cloud identification results (NNDT-CLFG) based on SGLI observation data and
SGLI-CLFG. The pixels represent (A). NNDT-CLFG and SGLI-CLFG are both cloudy (white), (B). both are clear (gray), (C).
NNDT-CLFG are cloudy and SGLI-CLFG are clear (orange), and (D). NNDT-CLFG are clear and SGLI-CLFG are cloudy
(blue). Column 1: Composite true-color images of SGLI. Column 2: Per-pixel comparison image for cloud-screening results
obtained by NNDT algorithm and SGLI-CLFG. Line 1: Case over vegetation at T0527 26 April 2018 for SGLI. Line 2: Case
over desert at T0524 10 March 2018 for SGLIL
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Ocean

Polar

Figure 10. Same as Figure 9, but Line 1: Case over ocean at T0629 10 March 2018 for SGLI. Line 2: Case over snow at T1520

25 December 2018 for SGLI.

The scores of POD, FAR, HR, and KSS for NNDT algorithm, based on the cloud flag
dataset of all seasons, are illustrated in Figure 11. Using the NNDT algorithm proposed in
this paper, except for the polar region (the PODje,,, HR, and KSS values of this region are
about 0.82, 0.86, and 0.82, respectively), the POD and HR scores of cloud pixels and clear
pixels reach a relatively high value of more than 0.90 or close to 1. Except for the region
above the polar (the FAR 4,4 in this region is about 0.44), the FARs of other regions remain
low or even close to zero. Overall, the results are encouraging.
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Figure 11. POD, FAR, HR, and KSS scores of NNDT algorithm in four scenes: (a) vegetation (b) desert (c) ocean, and

(d) polar.

4. Discussion

From the visual comparison results in Section 3.1, it can be seen that the NNDT algo-
rithm cloud recognition results and MYD35 have a relatively consistent cloud distribution
range in the five scenes, but there are differences in local details. Moreover, there is a value
difference between 1% and 5% of the cloud amount between the two results. The common
reasons that caused the cloud cover difference are that the cloud displacement caused
during the transit time difference between CAPI and MODIS as well as the cloud distortion
caused by the observation geometric difference and geometric correction error [55]. Other
reasons will be discussed separately for different scenarios.

In the Pacific Ocean scene, compared with MYD35, the cloud area identified by the
NNDT algorithm is more consistent with the distribution of clouds. In most cases, the
spatial distribution of cloud optical thickness is gradual. The distribution areas of optically
thin clouds include the edge of the cloud, the hole in the center of the cloud cluster, and
the middle of two close cloud clusters, which are difficult to be seen subjectively in RGB
images. Due to the sensitivity of 0.38 um band to the edge details of middle and low
clouds and 1.375 um band to optically thin clouds, the existence of these thin clouds can be
objectively determined by the reflectivity thresholds of these two bands. Therefore, for the
phenomenon that the pixels of optically thin clouds or edge clouds are recognized as clouds
by NNDT algorithm, but not in MYD35, it shows the advantages of NNDT algorithm in the
recognition of optically thin clouds and cloud edge pixels on the ocean surface, excluding
the cloud displacement during this time difference and the cloud distortion caused by the
geometric difference between the two instruments.

In the cloud detection results of bare ground in Figure 6, for the recognition of small
scattered clouds, the cloud shape of CAPI cloud flag is more discrete, while the cloud
shape of MYD35 is more continuous. The reason is that while the NNDT algorithm
uses the threshold test of the band combination R¢(0.87 pm) /R¢(1.64 pm) to suppress the
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recognition of the highlighted sandbank as a cloud, it also causes a part of the cloud pixels
with a gray value similar to that of the sandbank to be recognized as clear. Therefore, the
edges of some small scattered clouds are missed. The MODIS cloud recognition algorithm
includes cloud detection in the thermal infrared band [32], which can make up for the
omission of point cloud detection. Point clouds are thick clouds. However, for high and
thin clouds, where the 1.375 pum test is not limited by the R¢(0.87 pm)/R¢(1.64 um) band
combination, there will be no similar missed detection.

From the six verification scores of the four scenarios in Section 3.2, it can be seen that
the POD values are all greater than 0.8, most of which are close to 1, indicating that the
NNDT algorithm cloud recognition result basically conforms to the official SGLI algorithm
result. The FARe,y Values are all below 0.1, even close to 0, except in the ocean scene,
indicating that the NNDT algorithm rarely distinguishes the pixels marked as cloud by
SGLI CLEFG as clear. In the ocean scene, the FAR ¢, Value is slightly larger than in other
scenes, which is 0.14. The reason is that the tests use the thresholds based on CAPI data
statistics, which cannot be fully applicable to SGLI data, so the NNDT algorithm misses
some cloud pixels, which is most obvious on the underlying surface of the ocean. The
FARjouq has good values close to 0 in other scenes, but it is 0.44 in the polar scene. However,
the high consistency of NNDT-CLFG with true color images proves the effectiveness of the
NNDT algorithm. The HR values of all scenes are between 0.86 and 0.99, which indicates
that the NNDT algorithm has a high cloud recognition hit rate and further proves that the
NNDT algorithm has a high cloud recognition accuracy.

Through the verification examples and verification scores in Sections 3.1 and 3.2, it
can be seen that, in general, the NNDT algorithm cloud recognition results have a more
consistent range and cloud amount on the four underlying surfaces compared with MYD35
and SGLI CLFG. The NNDT algorithm has excellent performance in the ocean, vegetation,
and snow underlying surface, especially in the detection of thin clouds and cloud edges,
which are difficult to detect. In scenes affected by sand with high reflectivity, the NNDT
algorithm can identify most of the clouds, although the recognition of pixels at the edge
of the cloud and thin cloud pixels is insufficient. Moreover, the algorithm can effectively
avoid identifying inland waters as clouds. These verifications can prove that the 0.38 pm
band test can be used as an effective alternative to the 0.67 and 0.87 um band tests in the
cloud recognition algorithm and does not require the support of the minimum surface
reflectance database of the corresponding band. The band test of R¢(0.38 pm) /R¢(1.64 um)
can be effectively used to identify cloud pixels on the polar surface. Based on the principle
of identifying all cloud pixels in the image as much as possible, the NNDT algorithm
proposed in this paper is more concise than the CLAUDIA algorithm and other algorithms
that need to calculate the confidence level. It shows that the NNDT algorithm is reasonable,
efficient, and suitable for cloud recognition of CAPI data.

5. Conclusions

Based on the requirements of TANSAT satellite sensor aerosol and CO, inversion for
cloud detection, an innovative cloud recognition algorithm—NNDT (near-ultraviolet to
near-infrared band with threshold tests for different underlying surfaces), suitable for CAPI
data, is proposed. The algorithm uses unique band test combinations for four types of un-
derlying surface, which are ocean, vegetation, desert, and polar regions, respectively. From
the CAPI 2017 data, the four underlying surfaces are counted to obtain the thresholds used
in all cloud recognition tests of this algorithm. Subsequently, two comparison methods are
used, namely, a visual comparison method based on CAPI data and MODIS official cloud
recognition results, and a quantitative comparison method based on SGLI data and SGLI
official cloud recognition results, to verify and evaluate the effectiveness of the NNDT algo-
rithm. Both verification methods randomly selected typical target areas representing four
surface types (ocean, vegetation, desert, polar) and performed experimental verification. It
can obtain good cloud recognition effects in all scenarios, with a hit rate between 0.86 and
0.99. Combined with the analysis of the spectral characteristics, it preliminarily shows that
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the 0.38 um band can well distinguish water, vegetation, and desert surface from clouds,
and the ratio of 0.38 to 1.64 um band has an excellent distinction ability between clouds
and polar snow in the CAPI data.

This algorithm uses the combined threshold detections of near-ultraviolet to near-
infrared bands to get rid of the drawbacks introduced using the 0.67 and 0.87 um minimum
reflectance database in traditional cloud detection algorithm. Moreover, the introduction of
near-ultraviolet band to cloud detection algorithm enables it to obtain an effect comparable
to that with thermal infrared band support, even without using the thermal infrared band.
Based on the principle of identifying cloud pixels as much as possible, classifying all image
pixels into cloud and clear categories can greatly improve the efficiency and accuracy of
data utilization in aerosol and CO; inversion. This algorithm applies the 0.38 um and the
ratio of 0.38 to 1.64 um to cloud recognition unprecedentedly, providing a theoretical basis
and new ideas for future research.

In this paper, the underlying surface types are divided into four categories. The
experimental regions selected for algorithm validation are different from those selected
for threshold statistics. However, the application scenarios of this article cannot cover all
the more detailed and special surface types in the world. In the future, we will focus on
exploring and studying the differences of thresholds in different regions. According to
the spectral characteristics in different regions, the underlying surfaces can be grouped
in more detail, and the corresponding band detection schemes and thresholds can be set.
Furthermore, cloud shadow is also a challenge in cloud detection. The surface data covered
by cloud shadows will also affect the use of data by researchers [56-58]. In this paper, this
method cannot solve this problem. This algorithm recognizes all cloud shadow areas as
clear, which may affect the application effect of data in aerosol inversion. In future work,
we will consider some bands and combinations that can detect cloud shadows, as well as
corresponding threshold statistics.
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