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Abstract: Timely detection of flooding is paramount for saving lives as well as evaluating levels of
damage. Floods generally occur under specific weather conditions, such as excessive precipitation,
which makes the presence of clouds very likely. For this reason, radar-based sensors are most
suitable for near-real-time flood mapping. The public dataset Sen1Floods11 recently released by
the Cloud to Street is one example of ongoing beneficial initiatives to employ deep learning for
flood detection with synthetic aperture radar. The present study used this dataset to improve flood
detection using well-known segmentation architectures, such as SegNet and UNet, as networks. In
addition, this study provided a deeper understanding of which set of polarized band combination
is more suitable for distinguishing permanent water, as well as flooded areas from the SAR image.
The overall performance of the models with various kinds of labels and a combination of bands
to detect all surface water areas were also assessed. Finally, the trained models were tested on a
completely different location at Kerala, India, during the 2018 flood for verifying their performance
in the real-world situation of a flood event outside of the given test set in the dataset. The results
prove that trained models can be used as off-the-shelf models to achieve an intersection over union
(IoU) as high as 0.88 in comparison with optical images. The omission and commission error were
less than 6%. However, the most important result is that the processing time for the whole satellite
image was less than 1 min. This will help significantly for providing analysis and near-real-time
flood mapping services to first responder organizations during flooding disasters.

Keywords: near-real-time flood mapping; disaster response; Sen1Floods11; synthetic aperture radar
(SAR); transfer learning; deep learning

1. Introduction

The importance of surface water mapping can be understood by studying UN Sus-
tainable Development Goals (SDGs), in which as many as four goals directly mention
surface water monitoring, including food security (target 2.4), water-related ecosystem
management (targets 6.5 and 6.6), and the effect on land (target 15.3). However, the most
relevant target in this study is target 11.5 under goal 11 (sustainable cities and communi-
ties), which states “By 2030, significantly reduce the number of deaths and the number
of people affected and substantially decrease the economic losses relative to the gross
domestic product caused by disasters, including water-related disasters, with a focus on
protecting the poor and people in vulnerable situations” [1]. In this context, near-real-time
(NRT) flood mapping becomes very necessary.

Because flooding is a large-scale phenomenon and with the improved spatial, tem-
poral, and radiometric resolution of satellite images, remote sensing becomes the obvious
choice for flood mapping [2]. There are many works related to the extraction of surface
water information, including floods, varying from different sensor types to different meth-
ods [3]. Huang et al., 2018 [3], mentioned that the number of related works with “surface
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water” or “flood inundation” and “remote sensing” has seen three- to seven-fold growth
since the year 2000 in comparison to the previous decade. A similar trend was also ob-
served in the case of the mapping surface water from SAR imagery [4]. Surface water
and flood extent extraction studies using optical images have mainly focused on using
water indices such as the modified normalized difference water index (MNDWI) [5], the
automated water extraction index [6], and other rich spectral information [7]. Though many
of these techniques [7–9] have provided good results, optical images carry an inherent
limitation; namely, dependence on solar radiation. This limits the optical satellites image
acquisition time only in the day, inability to penetrate cloud cover and get affected by the
adverse weather conditions which are often prevalent during high-impact flood events [10].
Some studies have used multimodal information, such as combining optical images and
LiDAR with synthetic aperture radar (SAR) images [11–13] and combining other ancillary
information with SAR [14,15]. Although multi-modal-based models provide improved
results due to the complementary capability, using a variety of data make it difficult to
provide an NRT flood map because of more time in data acquisition and processing. There-
fore, in this study, only SAR images were used. Flood mapping with only SAR images is
generally categorized as two types: change detection using images captured before and
during the flood, and water area detection using a single SAR image captured during the
flood. Though change detection methods have the advantage of handling overprediction
by providing additional information about water-like surfaces [16], an additional limitation
that occurs with this method is finding an adequate reference image for flood detection [17].
When NRT imaging is required, it is necessary to have as few constraints as possible to
speed up processing, which is why this study adopted flood mapping based on a single
SAR image. For flood mapping from a single SAR image, the most well-known technique
is thresholding with some algorithms, such as Otsu thresholding [18] and minimum error
thresholding [19], with a global or tile-based approach [16]. Because global thresholding
has a constraint of bimodality of data, which creates a problem in the case of full image
processing, tile-based thresholding, and the split-based approach [20] have been proposed.
However, with these methods, the choice of tiles plays an important role and the wrong
tile may impact the threshold significantly [16].

Recently, the development of deep learning in the image processing field, especially
deep convolutional neural networks (DCNNs), has enabled the development of new
methods for automated extraction of flood extent from SAR images, as proposed in [21,22].
However, these studies used unpublished datasets, which makes it difficult to compare
different models, and the use of commercial SAR images also makes it challenging to test
methods on custom sites. This brings us to the real problem of NRT flood mapping with
deep learning techniques: the absence of a SAR-based global flood dataset that provides
enough diversity to generalize the model. The release of the Sen1Floods11 dataset [23]
provided the opportunity for us to develop an off-the-shelf model that can be used for
NRT flood mapping. However, to achieve better performance, the following four questions
need to be answered: (1) What combination of band polarization is most suitable for flood
mapping? (2) What is the effect of different kinds of labelling techniques (for training) on
the performance of the models? (3) How do we make a model more flexible and scalable
so that it can be applied to an actual flood situation and on the whole satellite image?
(4) How do we apply the trained model to a different test site to validate the applicability
of the off-the-shelf model?

Along with getting deeper insight into the four questions above, this study can help
for the better development of future datasets related to flooding with SAR. In addition, the
study has contributed to developing a whole pipeline for off-the-shelf model making. This
similar strategy can potentially be re-used for other SAR satellites and further specialized
flood mapping.

This paper is organized as follows. First, the details of the Sen1Floods11 dataset are
discussed, along with the test site details and the data used for the test site. Then, the
network architecture and training strategy are elaborated. After this, the testing steps, as
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well as validation data generation on the test site and the performance measures used in the
study, are discussed. Finally, the results of the different models’ performance are discussed
using detailed illustrations and explanation. The trained models, validation data used in
this study, and results are uploaded at https://sandbox.zenodo.org/record/764863. The
source code is available from the authors upon reasonable request.

2. Materials and Methods
2.1. Dataset Description and the Test Area
2.1.1. Sen1Floods11 Dataset

This study used the Sen1Floods11 dataset that was released during the 2020 Computer
Vision and Pattern Recognition Workshop [23] and generated by Cloud to Street, a public
benefit corporation. Details of the dataset are given below.

The dataset is divided into two parts, one containing data related to flood events and
another for permanent bodies of surface water. The permanent water data include images
from the Sentinel-1 satellite constellation and corresponding labels from the European
Commission Joint Research Centre (JRC) global surface water dataset. We mainly used
the flood events dataset in this study, which has two types of labels: weakly labeled and
hand labeled. Weakly labeled here means that the labels have not been checked for quality,
as they were generated through semi-automated algorithms that use certain thresholds
to separate water and non-water areas. The weakly labeled data have two kinds of labels
generated from Sentinel-1 and Sentinel-2 images, respectively. These labels are binarized
images containing ones (for water pixels) and zeros (for non-water pixels). Sentinel-1 weak
labels were prepared using the Otsu thresholding method over the focal mean-smoothed
VH band. For creating the weak labels from Sentinel-2 images, expert-derived thresholds
of 0.2 and 0.3 were applied over the normalized difference vegetation index (NDVI) and
MNDWI bands, respectively. These weakly labeled data have not been quality controlled
and over- or under-segmentation is possible. The hand-labeled data were created using
information from overlapping tiles of both Sentinel-1 and Sentinel-2. The manual classifica-
tion was performed using the Sentinel-1 VH band and two false-color images of Sentinel-2
(RGB: B12, B8, B4 and B8, B11, B4) that highlight the water areas in the optical images. The
resultant labels are more accurate and have three values in the output: 1 (water pixels),
0 (non-water pixels), and −1 (clouds or cloud shadows).

Overall, 4830 non-overlapping chips were available to us that belong to flood events
of 11 countries. Of these, 4385 chips are weakly labeled with corresponding S1Weak
(Sentinel-1) and S2Weak (Sentinel-2) labels, while 446 chips are hand labeled and have
corresponding quality-controlled labels. Each chip size is 512 × 512 pixels. All chips
have overlapping Sentinel-1 and Sentinel-2 images. Sentinel-1 chips were created using
dual-polarized Sentinel-1 ground range detected (GRD) images. As these images have
been downloaded from the Google Earth Engine, each image was pre-processed using the
Sentinel-1 Toolbox by the following steps: thermal noise removal, radiometric calibration,
terrain correction using SRTM 30, and finally conversion of both bands’ values into decibels
via log scaling. In contrast, Sentinel-2 chips are from raw Sentinel-2 MSI Level-1C images
having all 13 bands (B1–B12). The 13 spectral bands represent the top of atmosphere
reflectance, scaled by 10,000.

The hand-labeled data were split into three parts with a ratio of 60:20:20 into training,
validation, and test sets. In contrast, all the weakly labeled data were used for training
purposes only. In this way, the test set and validation set remained the same throughout,
while training data could be changed according to our requirements, and we could do
cross-comparison for different kinds of training data.

2.1.2. Test Area

The study area that was chosen for applying the off-the-self model is in the southern
Indian state Kerala, as shown in Figure 1. In 2018, an especially devastating flood occurred
in Kerala; this flood took more than 400 lives and affected millions more.

https://sandbox.zenodo.org/record/764863
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Figure 1. Kerala district map showing the areas worst affected by the 2018 flood.

Figure 1 highlights the worst-affected districts in Kerala; western districts faced much
more severe flooding than eastern districts because western districts are topographically
flat (coastal plains). As mentioned in Table 1, four Sentinel-1 images of the affected area
on the same date of 21 August 2018 were selected for testing. Two images were acquired
during the ascending flight direction and two were acquired during the descending flight
direction. The closest Sentinel-2 image of the same area is available for 22 August 2018.
However, most of the area in this image has clouds. So finally, only the area belonging
mainly to the Alappuzha district was selected because this image has no or very few pixels
affected by clouds in the Sentinel-2 image. This was done to validate the detection from the
Sentinel-1 image. In general, reference flood mask is generated using aerial images [20,24]
or optical images such as Worldview [25], Sentinel-2 [26,27]. Therefore, authors adopted
using Sentinel-2 image, which previously were successfully utilized for flood mapping [28],
on their own and as a flood reference mask to validate the results [26,27]. To make a
reference water mask from the Sentinel-2 image, MNDWI, false color composite using
bands B12, B8, and B4 and the true-color composite using B4, B3, and B2 bands were used,
along with this visual inspection was performed to maintain the accuracy of the mask.

2.2. Networks and Hyperparameters

DCNNs are composed of cascades of layers, executing mainly three important oper-
ations, convolution, downsampling and upsampling. The convolution layer uses a local
kernel with a certain size, such as 3 × 3, over the image. This kernel traverses to the
height and breadth of the input image and generates the convolved output [29]. The
kernel elements can be understood as the weights which are learned in the neural network
using backpropagation.
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Table 1. Characteristics of the Sentinel-1 and Sentinel-2 images used for the test area.

Satellite Image Name Acquisition Date
(yyyy/mm/dd)

Flight
Direction Processing Level

S1A_IW_GRDH_1SDV_20180821T004109_20180821T004134_023337_0289D5_B2B2 2018/08/21 Descending L1-GRD (IW)
S1A_IW_GRDH_1SDV_20180821T130602_20180821T130631_023345_028A0A_C728 2018/08/21 Ascending L1-GRD (IW)
S1A_IW_GRDH_1SDV_20180821T004044_20180821T004109_023337_0289D5_D07A 2018/08/21 Descending L1-GRD (IW)
S1A_IW_GRDH_1SDV_20180821T130631_20180821T130656_023345_028A0A_E124 2018/08/21 Ascending L1-GRD (IW)

S2B_MSIL1C_20180822T050649_N0206_R019_T43PFL_20180822T085140 2018/08/22 Descending Level 1C

Max pooling layer, subsamples the input and give only maximum value as an output.
This way the spatial dimension shrinks (downsampling) if the neighborhood size is chosen
as 2 × 2 then the output value will be only the max of all the four values, producing the
output quarter of its input size. Upsampling can be considered as reverse of the maxpool
function as after upsampling the spatial dimension of the output increases.

Activation functions used in the DCNNs introduces non-linearity in the network
which helps to map complex functions. One example of activation function is ReLU
(rectified linear unit) is defined as f (x) = max(0, x) this means ReLU just let pass the
positive values as it is while converting all the negative values to zero [30].

2.2.1. Networks Used

Variants of auto-encoders, namely, SegNet-like [31] and UNet-like [32] architectures,
were selected for segmenting the water areas from Sentinel-1 chips. These networks, as
shown in Figure 2, were selected because they are simple compared with other existing
networks for segmentation such as HRNet [33], DANet [34], etc., and they also have shown
great performance when the dataset is limited in size [32,35]. Both networks can be divided
into two parts, the contraction phase (encoder path), and the expansion phase (decoder
path). Each block in the encoder path contains two convolution layers that have a kernel
size of 3× 3 and the ‘same’ padding along with the batch normalization [30] and rectilinear
unit (relu) activation layer. This is followed by a max-pooling layer with a size of 2 × 2
and a stride of 2. In this way, the convolution layer increases the number of features in the
channel space (depth) while the max-pooling layer contracts the dimensions of the spatial
feature space. Between both networks, the number of blocks in the encoder and decoder
path remained the same, but the method for increasing the spatial size (upsampling) in the
decoder section was the main difference. Here, UNet uses up-convolution along with the
skip connections to use the features from previous layers, while in SegNet, up-sampling in
the decoder section uses pooling indices that are computed in the max-pooling step of the
corresponding encoder blocks. Thus, in the case of the SegNet, only spatial information is
transferred from the lower-level layers, while in the UNet, the low-level feature space is also
transferred to the high-level feature space and concatenated with it at the corresponding
levels. This passing of the low-level features to high-level becomes possible due to skip
connection which can bypass the intermediate layers [30]. The networks remain fixed across
the training cases and in various band-combination inputs. This means only the shape of
the input layer is modified while all intermediate and output layers remain constant.

2.2.2. Hyperparameters

For the entire study, the mini-batch size was selected as 16 and iterated over the whole
dataset 200 times (epoch). The loss function used here was a custom loss function that used
both Dice loss and binary cross-entropy (BCE) [29,36] in a weighted manner. While the
Dice score mainly looks for the similarity of segmentation blob, BCE calculates pixel-wise
variance. This means the dice score do capture the spatial information better than the
BCE, which is why Dice loss was given a higher weight of 0.85, and BCE received a lower
weight of 0.15. The Adam optimizer [37] was used for training optimization, with an initial
learning rate of 0.01. The learning rate is decayed for faster convergence and to avoid over-
fitting [29]. If there is no improvement (tolerance is set to 0.001) for continuously 10 epochs
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on a validation set, the learning rate reduced by the factor of 0.8. The minimum value for
learning has been fixed to 0.0001. The training was performed on a single NVIDIA Titan-V
GPU. The whole model development and training were performed using the Tensorflow
platform along with the Keras library in Python.
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2.3. Training Strategy

In total, three training cases were selected: (1) training using Sentinel-1 weak labels,
(2) training using Sentinel-2 weak labels, and (3) training using more accurate hand labels.
In each case, four SegNet-like and UNet-like networks were trained for the different band
combinations: using both polarizations (VV, VH), using only cross-polarization (VH), using
only co-polarization (VV), and using a ratio as the third band, making the input as VV,
VH, and VH/VV. Here it should be noted that the VV and VH bands are already log scale,
so the values of each pixel ranged between −50 and 1 dB. These inputs were normalized
using min-max values so that the resultant values were between 0 and 1 before they were
passed on for training. Additionally, for the calculation of the VH/VV ratio, we simply
subtracted the log-scaled VH and VV bands due to the log properties:

log
(

VH
VV

)
= log(VH)− log(VV).

Later, transfer learning was also used to explore the option of making our model more
adaptable and scalable. For this step, three cases were selected. In the first case, the whole
network was retrained and pre-trained weights were used as starting weights rather than
random weights, which are typically used during training from scratch. In the other two
cases, we conducted training only during the contraction phase (encoders) while freezing
the expansion phase (decoders) and vice versa. Transfer learning has various benefits,
such as the ability to include more training data in the future to further tune the network,
faster convergence due to pre-trained weights [38], and the possibility of extending the
trained model to be used with a new set of satellite images, such as from a different SAR
satellite [39].

2.4. Testing
2.4.1. Testing on the Test Dataset

Three test cases were selected: all surface water detection, only permanent water
detection (using corresponding JRC labels), and flooded water detection (difference be-
tween all water and permanent water). Because some of the image chips did not have any
permanent water, they were removed from the test set of permanent water. In total, we
had 90 test image chips for all water and flood water detection, and 54 chips for permanent
water detection. All the trained networks, totaling 24 networks (SegNet and UNet), were
tested over the given three test cases.
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2.4.2. Testing as an off-the-Shelf Model on the Whole Image during the 2018 Kerala Floods

To verify the generalizability of the trained model for use as an off-the-shelf model
during an emergency, a completely different flood event, the 2018 Kerala floods was se-
lected. The first validation flood mask was prepared using the Sentinel-2 image. Although
most of the Sentinel-2 image was covered by clouds, fortunately, the area most affected by
the flooding had minimal cloud cover, so that area was selected, amounting to 794 km2

(Figure 3). After obtaining the desired area, the semi-automatic classification in QGIS was
used over the Sentinel-2 bands B2, B3, B4, B8, B11, and B12 along with the MNDWI. In
this step, certain regions of interests for water pixels were manually chosen across the
selected area, after which classification was performed. However, this classification still
had numerous errors and cloud obstructions. Thus, after the classification was complete,
manual inspection was performed to further improve the classified results. In the end, these
accurate classified results were exported as a binary flood mask, and this mask performed
the role of ground truth in the validation phase.
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Figure 3. Details of the selected area from the test site. (a) Sentinel-2 composite image in false color (B12-B8-B4). (b) Created
validation flood mask (blue and white color represents water and non-water areas correspondingly), (c,d) descending and
ascending SAR images of the area of interest, respectively.

The Sentinel-1 images were first pre-processed using the European Space Agency’s
snappy package in Python to sequentially perform thermal noise removal, radiometric
calibration, speckle filtering, and terrain correction. As the selected area lies where two satel-
lites images from the same flight direction meet, so both images were merged and gap-filled
using QGIS. The same method was applied to the two images from other flight direction as
well. After this, two separate methods were employed for water area classification. The
first is a thresholding method where a threshold was selected based on a combination
of minimum distance and the Otsu method, which was implemented using scikit-image
learning libraries. For another method, our best-performing trained model (after transfer
learning), generated in the previous step, was used on the pre-processed image to obtain a
flood map as binarized output. The whole image with a size of 13,797 × 7352 pixels was
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processed within 1 min and transformed into a binarized output. After this, the same area
as that selected for the Sentinel-2 was clipped from the output for evaluation purposes.

2.5. Accuracy Evaluation

Four indicators were adopted to measure the performance of the proposed approach
over the ground truth, as well as for the comparison with the thresholding method:
Equation (1)—intersection over union (IoU), Equation (2)—F1 score, Equation (3)—omission
error, and Equation (4)—commission error. These are defined as:

IoU =
Ground Truth∩ Predicted
Ground Truth∪ Predicted

, (1)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

=
TP

TP + 1
2 (FP + FN)

, (2)

Omission error =
FN

FN + TP
, (3)

Commission error =
FP

FP + TP
, (4)

where TP, FP, and FN denote the true positive, false positive, and false negative pixels,
respectively.

3. Results
3.1. Results on the Test Dataset

Figures 4 and 5 show the different models’ mean IoU (mIoU) over the whole test set
for SegNet and UNet, respectively. The x-axis shows the training cases, while the y-axis
represents the mIoU. The detailed quantitative results from each network along with the
respective errors are presented in Tables 2 and 3. Columns in the table represent the three
detection test cases, namely, permanent water, flooded water, and all surface water. For
each test case, the three evaluation criteria, mIoU, omission error (Om.), and commission
error (Comm.), as used in [23], are presented. In the rows of the tables, the three training
cases, namely, training using Sentinel-1 weakly labeled, Sentinel-2 weakly labeled, and
hand-labeled data and their corresponding results are given. Each training case further
has four variations consisting of different combinations of SAR bands. Along with our
results, the baseline results from [23] are also shown for each training case, as well as Otsu
thresholding results for better comparison.

In both types of networks, a common pattern can be seen. For the permanent water,
the band combination of VV, VH and VH/VV ratio performed best in most of the cases,
while in cases of flooded water and all surface water, the input with both polarizations VV
and VH gave the best results. Note that when we used only the co-polarized band (VV), the
network trained on weak labels performed worst, especially in the case of flooded water
detection and all surface water detection, with a very high omission error. The cause can be
understood by the property of SAR backscattering, which in the case of flooded vegetation
or agriculture field may show very high backscattering in the co-polarized band due to
double bounce (caused by the small wavelength of C-band SAR) [40]. A more detailed
explanation is provided in Section 4.

In contrast with the results in Bonafilia et al. [23], where the best results came from
Otsu thresholding for permanent water, our results clearly show that both SegNet and UNet
convincingly surpass the benchmark data by Otsu thresholding, as well as the baseline
results, in all training cases. However, other results for the flooded water and all-surface
water are in sync with [23], as the best detection in the case of SegNet, as well as UNet,
comes from the models trained using Sentinel-2 weak labeled dataset. Moreover, in the
case of flooded water, our models show as much as 50% enhancement over the baseline
and for all surface water also our model shows an improvement of around 40% with the
UNet model trained with the hand labeling dataset.
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Table 2. Performance of different SegNet models over all the test cases (bold text represents the best result).

SegNet/Dataset and Band Used
Permanent Water Flooded Water All Surface Water

mIoU Om. Comm. mIoU Om. Comm. mIoU Om. Comm.

Sentinel-1 weak labels

VV, VH 0.492 0.008 0.046 0.286 0.378 0.044 0.364 0.249 0.044

Only VV band 0.519 0.255 0.032 0.238 0.474 0.037 0.313 0.397 0.037

Only VH band 0.482 0.009 0.048 0.282 0.382 0.049 0.359 0.251 0.049

VV, VH, VH/VV 0.515 0.011 0.043 0.281 0.41 0.042 0.360 0.269 0.043
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Table 2. Cont.

SegNet/Dataset and Band Used
Permanent Water Flooded Water All Surface Water

mIoU Om. Comm. mIoU Om. Comm. mIoU Om. Comm.

Sentinel-2 weak labels

VV, VH 0.469 0.008 0.024 0.342 0.365 0.021 0.417 0.239 0.020

Only VV band 0.484 0.315 0.021 0.292 0.434 0.016 0.357 0.393 0.016

Only VH band 0.483 0.006 0.025 0.318 0.382 0.021 0.396 0.252 0.020

VV, VH, VH/VV 0.534 0.014 0.018 0.315 0.438 0.014 0.392 0.290 0.014

Hand labelling

VV, VH 0.447 0.005 0.029 0.347 0.341 0.024 0.421 0.223 0.024

Only VV band 0.463 0.285 0.031 0.342 0.355 0.023 0.412 0.331 0.023

Only VH band 0.463 0.011 0.032 0.296 0.429 0.021 0.374 0.283 0.021

VV, VH, VH/VV 0.484 0.007 0.024 0.336 0.404 0.019 0.411 0.265 0.019

Benchmark from [23]

Otsu thresholding 0.457 0.054 0.085 0.285 0.151 0.085 0.359 0.143 0.085

Baselines from [23]

Sentinel-1 weak labels (VV, VH) 0.287 0.066 0.135 0.242 0.119 0.100 0.309 0.112 0.997

Sentinel-2 weak labels (VV, VH) 0.382 0.121 0.053 0.339 0.268 0.078 0.408 0.248 0.078

Hand labeling (VV, VH) 0.257 0.095 0.152 0.242 0.135 0.106 0.313 0.130 0.106

Table 3. Performance of different UNet models over all the test cases.

UNet/Dataset and Band Used
Permanent Water Flooded Water All Surface Water

mIoU Om. Comm. mIoU Om. Comm. mIoU Om. Comm.

Sentinel-1 weak labels

VV, VH 0.406 0.006 0.052 0.288 0.352 0.050 0.349 0.231 0.050

Only VV band 0.485 0.285 0.035 0.257 0.445 0.038 0.332 0.389 0.038

Only VH band 0.457 0.008 0.021 0.285 0.390 0.043 0.362 0.256 0.043

VV, VH, VH/VV 0.446 0.006 0.039 0.275 0.396 0.037 0.353 0.259 0.037

Sentinel-2 weak labels

VV, VH 0.529 0.009 0.017 0.366 0.358 0.014 0.439 0.236 0.014

Only VV band 0.427 0.293 0.021 0.303 0.402 0.019 0.367 0.364 0.019

Only VH band 0.469 0.004 0.025 0.332 0.362 0.021 0.407 0.236 0.021

VV, VH, VH/VV 0.458 0.004 0.029 0.362 0.313 0.024 0.434 0.205 0.024

Hand labelling

VV, VH 0.386 0.005 0.042 0.361 0.274 0.035 0.432 0.181 0.035

Only VV band 0.386 0.289 0.038 0.339 0.315 0.029 0.404 0.306 0.029

Only VH band 0.436 0.005 0.035 0.309 0.363 0.029 0.386 0.236 0.029

VV, VH, VH/VV 0.462 0.003 0.027 0.359 0.309 0.024 0.436 0.202 0.024

Benchmark from [23]

Otsu thresholding 0.457 0.054 0.085 0.285 0.151 0.085 0.359 0.142 0.085

Baseline from [23]

Sentinel-1 weak labels (VV, VH) 0.287 0.066 0.135 0.242 0.119 0.100 0.309 0.1124 0.997

Sentinel-2 weak labels (VV, VH) 0.382 0.120 0.053 0.339 0.268 0.078 0.408 0.2482 0.078

Hand labeling (VV, VH) 0.257 0.094 0.152 0.242 0.135 0.105 0.312 0.1297 0.105
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Overall, the UNet-like networks outperformed the SegNet-like networks in detecting
the flooded water and all surface water, which is the target in the study. One of the reasons
may be the use of skip connections, which propagate the shallow layer features to the
deeper layers, helping to create a better feature set for pixel-level classification. For this
reason, subsequent processing was done using UNet only. This means that features from
the encoder layers played a more important role in processing the SAR images, and this
was further proved when transfer learning was used. In other words, encoder retraining
gives better results than does decoder retraining.

Weak labelling technique has the advantage of creating a larger set of training samples
in an automated way in a shorter time and less manpower than the hand labeling. A
larger number of training samples helps in finding greater insight. However, hand-labeled
data have consistency and include cases that could not be captured by weak labelling
techniques. Therefore, transfer learning was employed to take advantage of both situations,
namely, more samples for generalization and accurate labels for tuning. As our focus
in the study is flood mapping, the model that was trained using Sentinel-2 weak labels
with both polarization bands (VV and VH) was selected for transfer learning because it
performed best among all other band combination, for “flooded water” and “all surface
water” detection. Then, transfer learning was employed on it using hand-labeled data and
retraining it for the three cases, namely, retraining the whole model, retraining only the
expansion phase, and retraining only the contraction phase, with the pre-trained weights.
The results are presented in Table 4. Overall, the model retrained on the encoder part
showed the best result and that was used for real-time flood area detection at the chosen
test site.

Table 4. Results of the transfer learning performed using hand-labeled data on the UNet model trained on Sentinel-2 weakly
labeled data with both polarizations (bold text represents the best result).

Transfer Learning/Dataset
Permanent Water Flooded Water All Surface Water

mIoU Om. Comm. mIoU Om. Comm. mIoU Om. Comm.

Hand labelling

Whole model 0.530 0.0051 0.0264 0.409 0.3494 0.0207 0.483 0.2287 0.0207

Whole decoder 0.531 0.0054 0.0324 0.366 0.3745 0.0238 0.443 0.2451 0.0238

Whole encoder 0.532 0.0041 0.0243 0.420 0.3086 0.0204 0.494 0.2042 0.0204

Otsu thresholding (OT) 0.457 0.054 0.0849 0.285 0.151 0.0849 0.3591 0.1427 0.0849

% improvement over OT +16.4 −92.4 −71.37 +47.3 +104.3 −75.9 +37.6 +43.1 −75.9

To estimate the overall performance of the model for all test cases when models are
trained using a hand-labeled dataset, a k-fold cross-validation procedure was carried out.
The result of which is included in Appendix A.

3.2. Results on Test Site

The model resulting from the transfer learning performed notably well, and it was
used on the test site in both ascending and descending flight directions. As shown in
Table 5, it gave a better result than did the thresholding method. Moreover, the omission
error was reduced significantly from around 16% to 6%, which is a very important criterion
in emergency mapping, where omission error should be as low as possible. This means
that false negatives should be fewer, even when some false positives may creep in. False
negatives are a problem because leaving a flood-affected area off the map may lead to bad
decision making—such as failing to evacuate or people travelling into the flooded regions.
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Table 5. Evaluation of the different methods on the test site (bold text represents the best result).

Method Images IoU F1 Score Om. Error Comm. Error

Minimum and Otsu
thresholding

Merged images of ascending
flight direction 0.8394 0.9127 0.1328 0.0367

Our model (after transfer
learning)

Merged images of ascending
flight direction 0.8849 0.9389 0.0587 0.0635

Minimum and Otsu
thresholding

Merged images of descending
flight direction 0.8214 0.9019 0.1535 0.0347

Our model (after transfer
learning)

Merged images of descending
flight direction 0.8776 0.9348 0.0661 0.0642

Figure 6 shows the merged SAR images of the ascending flight direction and corre-
sponding combined result of the surface water detection by Deep learning (our method)
and Otsu thresholding. In the detection result, the white and black pixels are representing
that both methods have classified the same either water or non-water, respectively. Contrar-
ily to the red and cyan pixels which illustrate that both methods have classified differently.
Cyan pixels imply that our method has classified the pixels as water whereas the thresh-
olding method classified it as non-water and just the opposite in the case of Red pixels. In
general, thresholding suffers from the noise in the output, as is visible in the combined
results in terms of salt and pepper noise, as well as in the yellow and green insets. Owing
to such kind of noise, a post-processing step, such as morphological erosion-dilation or
minimal mapping unit application [16], is required after thresholding. The yellow rectangle
displays a partially flooded agricultural area that was detected successfully by the deep
learning model (in cyan color). In addition, the area shown by the green rectangle, which
contains a few oxbow lakes on its far-right side, was successfully segmented by our model.
In contrast, the blue rectangle shows the area around Kochi Port, which is one of the largest
ports in India and docks multiple large vessels. This area produced some of the brightest
pixels, and our method was not able to detect water in that area, while the thresholding
method was able to achieve better results (red pixels). One of the reasons that the water was
not detected by our method is that deep learning models learn the contextual information
through spatial feature mapping, and it is a rare phenomenon to have water pixels covered
by brighter pixels (in this case from ships). One way to detect such kind of rare events is by
including few of the similar pattern in the training set or using some other ancillary data.
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faces, for example, due to wind, as described by Manjushree et al. [41] and Clement 
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for flooded areas. Figure 7 shows the results from the models trained on different 
band combinations. Because the training set here was hand-labeled, VV performed 
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comes was that the three bands combined (VV, VH, and their ratio) gave the best 
results, except for the first row in Figure 7. This combination provided very good 
improvement in some of the difficult test cases, as in rows 5–7. This was particularly 
interesting as no new information is provided in the third band, it is just the ratio of 
already present input bands. 

(2) Models trained on Sentinel-2 weakly labeled data gave better results in comparison 
to Sentinel-1 weakly labeled data, which is consistent with the results of Bonafilia et 
al. [23]. Moreover, the models trained on hand-labeled data approximately matches 
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case of red pixels.

4. Discussion

The results presented in Section 3 allow us to make the following observations:

(1) When the labels are weak, models trained on the co-polarization VV band performed
poorly in comparison to models trained on the cross-polarization VH band. One of the
reasons can be the high sensitivity of co-polarization towards rough water surfaces, for
example, due to wind, as described by Manjushree et al. [41] and Clement et al. [26].
However, for hand-labeled data, VV performs better than VH, especially for flooded
areas. Figure 7 shows the results from the models trained on different band combina-
tions. Because the training set here was hand-labeled, VV performed mostly better
than VH bands except in the rows 6 and 7. One of the interesting outcomes was
that the three bands combined (VV, VH, and their ratio) gave the best results, except
for the first row in Figure 7. This combination provided very good improvement in
some of the difficult test cases, as in rows 5–7. This was particularly interesting as no
new information is provided in the third band, it is just the ratio of already present
input bands.

(2) Models trained on Sentinel-2 weakly labeled data gave better results in comparison to
Sentinel-1 weakly labeled data, which is consistent with the results of Bonafilia et al. [23].
Moreover, the models trained on hand-labeled data approximately matches the ac-
curacy of the models trained with Sentinel-2 data and sometimes even beat them
despite limited samples, which goes against the results of Bonafilia et al. [23], who
concluded that hand-labeled data are not necessary for training fully convolutional
neural networks to detect flooding. We have demonstrated that models trained with
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hand-labeled data perform better throughout, as shown in Tables 2 and 3. Figure 8
shows a few examples of the improvement achieved by hand-labeled data. However,
sometimes models trained with hand-labeled data give over-detection, as can be seen
in the red circled areas in the first and last rows of the figure.

(3) Successful implementation of transfer learning proves two things: first, there is
no substitute for more accurate labels (hand-labeled data) as can be seen by the
improved results. Second, that it is a good approach to generate many training
samples automatically and a model trained on it gives better generalization. This
is because more samples help in covering diverse cases and varieties of landcover.
Further, we can use transfer learning to tune the model for our given test set. However,
another interesting result is that, for finding surface water in SAR images, general
features play a larger role than do specific features. As explained by Yosinski et al. [42],
layers close to the input, encoder blocks in our case, are responsible for general
feature extraction, and deep layers are responsible for obtaining specific features.
In our experiments, freezing the expansion phase and retraining the contraction
phase gave the most favorable result. This can be further explored with different
architectures; if the same behavior persists, then we may use many shallow layer
networks, making an ensemble to detect water areas from SAR images without
wasting too many resources. The enhancement in water area detection using transfer
learning is presented in Figure 9. Some of the examples, such as rows 1, 2, and 5,
show significant improvement.

(4) If we look only at mIoU in the test dataset, then its value, which was less than 0.5, does
not present a good picture of the surface water detection. However, if we see some
examples of the test set true labels along with the detected mask, such as in Figure 8,
where we can see that the detection is quite accurate, especially by the model trained
on hand-labeled data. Similar accuracy is seen in Figure 9, which shows the results
of transfer learning models. Some of the reasons for low mIoU can be understood
in Figure 10. In rows 1 and 2 of Figure 10, where a very narrow stream has been
labeled, this stream is either not visible in SAR image due to mountainous terrain
(row 1) or trees growing along with it (row 2), and it becomes difficult to identify
any significant water pixels in the SAR image. Here we also need to take care of the
SAR imagery geometric effects due to the side looking imaging principle, this may
miss the water bodies such as river or small lakes behind the shadow or under the
layover effect in the mountainous region [43]. Another issue is having very small
water bodies containing very few pixels scattered over the whole image (row 3). We
need to consider that spatial resolution of Sentinel-1 IW-GRD images is 5 m × 22 m in
range and azimuth respectively, so smaller water bodies cannot be detected [43]. In
this case, even though very few numbers of pixels were miss detected but the IoU will
be near zero, affecting the mIoU of the whole test dataset. A few incorrect labels are
present in the test dataset. Some examples of this are shown in rows 5 and 6, where
the red ellipses show the locations of incorrect labels. In these situations, even though
our model is performing quite well, the IoU becomes very low or in some case goes to
zero, such as in the last row. Whereas, according to the given label, there are no water
bodies, so the intersection will be zero and the union will be the detected water body
pixels, which will result in an IoU of zero. Moreover, there are also many possible
scenarios where, due to the special properties of the SAR, the detection is not accurate,
such as in the case of row 4 in Figure 10. This area was flooded in a field with sparse
vegetation, as can be seen in the true-color image in the last row of Figure 11. This
creates a double bounce from the specular surface of the water and vegetation in
the co-polarized band (VV). This anomaly is the reason that the model is not able to
identify it as a flooded field. A similar example is shown in the first row of Figure 11,
where sand deposits in the river have high backscatter in the VV band. One possible
reason for the high backscatter is the presence of moisture in the sand which increase
the dielectric constant, so the reflectivity. In addition, the VV band is in general more
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susceptible to surface roughness, so higher reflectivity along with roughness may be
the reason for high backscatter [40]. These special cases can be detected by the model
if there are enough training samples that also have similar properties.
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Figure 7. Results from the models trained using different band combinations with the hand-labeled dataset. The colors in
true labels (hand labeled) and other results represent water (blue), non-water (gray), and white (clouds).
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Figure 8. Results of the models trained with bands VV and VH combined over all three training sets. Areas inside the
green ellipses show significant changes. The colors in true labels (hand labeled) and other results represent water (blue),
non-water (gray), and white (clouds).
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Figure 9. The improved result, achieved by using transfer learning. Results are from the model trained using the VV and 
VH bands combined and the Sentinel-2 weakly labeled dataset and retrained using the hand-labeled dataset. The colors 
in true labels (hand labeled) and other results represent water (blue), non-water (gray), and white (clouds). 
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Figure 9. The improved result, achieved by using transfer learning. Results are from the model trained using the VV and
VH bands combined and the Sentinel-2 weakly labeled dataset and retrained using the hand-labeled dataset. The colors in
true labels (hand labeled) and other results represent water (blue), non-water (gray), and white (clouds).
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Figure 11. Some unique cases, where the classification behavior is quite different with different polarizations (areas circled
by red dotted ellipses). Row 1 is the case of river sand, and row 2 represents shallow flooding in agriculture fields with
sparse vegetation.

Some recommendations for future flood mapping related datasets are:

• Further classification of the flooded areas as the type of floods, such as open flood,
flooded vegetation, and urban flood.

• Ensuring that the test set is error-free and that enough samples are provided for a
variety of flooded area types.

• Removing the training sets that have less than a certain number of water pixels, as our
main target is to learn to identify water pixels. In their absence, models do not learn
anything significant, no matter how many samples are processed.

5. Conclusions

In this paper, we explored different SAR band combinations and their utility for
surface water detection and flood mapping. We have found that using both polarizations
is necessary for improved detection of flooded areas. Additionally, adding a third band as
a ratio of two polarizations can add information in certain scenarios. We also proved that
there is no way to avoid hand labelling completely, but it can be used in combination with
weak labels for developing a more accurate model. This way we can take advantage of
both situations: more samples from weak labelling for better generalization and accurate
samples from hand labelling for fine-tuning during transfer learning. In addition, transfer
learning showed that the same models can be enhanced with access to more training data
in the future to further improve the same model. In this way, existing datasets can be used
for NRT flood mapping. As this technique is using only a single image i.e., only during
flooding image, it is much easier to implement a generalized model in any affected area
without having the constraint of searching archived data and appropriate reference images.
This way we have presented a whole pipeline to create the off-the-shelf model for NRT flood
mapping using Sentinel-1 and demonstrated a notable improvement over thresholding
techniques. We have shown that by this way we can process a whole satellite image in less
than 1 min with a very low omission error. Thus, our models can be implemented as a
prompt emergency response and information disburser for first responder organizations.
This similar methodology can also be explored to utilize with other satellites in future.
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Further improvements to the models can be made with access to better datasets in
the future, such as more specific classes for floods (open floods, flooded vegetation, and
urban floods) rather than only one general class. Moreover, some easily accessible ancillary
data, such as height above the nearest drainage (HAND), can also be added for more
refined detection.
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Appendix A. K-Fold Cross-Validation Result

To investigate the generalization capability of the model as well as to ensure that
model is not overfitting on the given data, K-fold cross-validation was used. For the
implementation we have used hand-labeled data. First dataset has been divided into five
equal parts or folds, and then four model for each band combination has been trained by
leaving one part for testing and using four parts for training. This way we have trained five
sets of models by leaving different part as a test set in every time, to cover the whole dataset.
The result of the models against the permanent water, flooded water and all-surface water
is shown in Figures A1–A3. The average of all five models with each band combination
is mentioned in Figure A1 along with the standard deviation. Results suggest that our
models are consistent throughout different folds with standard deviation ranging between
2–4%.
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