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Abstract: Convolutional neural network (CNN)-based deep learning (DL) is a powerful, recently
developed image classification approach. With origins in the computer vision and image processing
communities, the accuracy assessment methods developed for CNN-based DL use a wide range of
metrics that may be unfamiliar to the remote sensing (RS) community. To explore the differences
between traditional RS and DL RS methods, we surveyed a random selection of 100 papers from
the RS DL literature. The results show that RS DL studies have largely abandoned traditional RS
accuracy assessment terminology, though some of the accuracy measures typically used in DL papers,
most notably precision and recall, have direct equivalents in traditional RS terminology. Some of the
DL accuracy terms have multiple names, or are equivalent to another measure. In our sample, DL
studies only rarely reported a complete confusion matrix, and when they did so, it was even more
rare that the confusion matrix estimated population properties. On the other hand, some DL studies
are increasingly paying attention to the role of class prevalence in designing accuracy assessment
approaches. DL studies that evaluate the decision boundary threshold over a range of values tend to
use the precision-recall (P-R) curve, the associated area under the curve (AUC) measures of average
precision (AP) and mean average precision (mAP), rather than the traditional receiver operating
characteristic (ROC) curve and its AUC. DL studies are also notable for testing the generalization of
their models on entirely new datasets, including data from new areas, new acquisition times, or even
new sensors.

Keywords: accuracy assessment; thematic mapping; feature extraction; object detection; semantic
segmentation; instance segmentation; deep learning

1. Introduction

The importance of assessment of the accuracy of remote sensing (RS) thematic classifi-
cation has been recognized since the early days of remote sensing [1–11]. Congalton [1,2]
and Congalton and Green [3] summarized the evolution of traditional RS accuracy as-
sessment best practices. Today, there is a general consensus regarding the importance of
unbiased, randomized sampling to support the generation of summary accuracy data,
normally presented in the form of a table called the confusion matrix, or error matrix. This
table forms the basis for calculating summary metrics, most commonly the overall accuracy
(OA), the Kappa statistic (though the use of this statistic has been challenged [12,13]), and
the class-specific statistics of user’s (UA) and producer’s accuracy (PA). Although there are
many additional metrics that are sometimes used (e.g., see Pontius and Millones [13]) and
the implementations of these methods can vary depending on whether the classification is
pixel-based or part of a geographic object-based image analysis (GEOBIA) [8,14–19], the
focus on OA, UA, PA, and sometimes Kappa, is very common in traditional RS methods.

Over the last decade, deep learning (DL) methods that rely on convolutional neural
networks (CNNs) have increasingly become a central focus in RS classification. CNNs
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are a type of artificial neural network (ANN), which are nonparametric, machine learning
(ML) methods that use interconnected neurons or nodes organized into layers to predict
an output, such as a classification label, from input data, such as image bands [20–27]. DL
expands the basic ANN framework by incorporating many hidden layers to allow the
modeling of more complex patterns than what would be possible with a small number of
hidden layers [20–25]. In CNN classification, the input nodes for the classifier include not
just a single pixel, but local groups of adjacent pixels. The CNN learning process incorpo-
rates the determination of appropriate convolutional operations and weights associated
with multiple kernels or moving windows, allowing the network to model useful spatial
context information at multiple spatial scales [20–25]. This process is conceptualized in
Figure 1, which represents a subset of feature maps produced when learned kernels were
applied to an image chip from the LandCover.ai dataset [28]. Note that spatial context,
spectral information, edge, and textural information is highlighted by different filters and
different convolutional layers, allowing a high degree of data abstraction. This modeling of
spatial context is especially applicable for extracting features from high spatial resolution
imagery that often have reduced spectral resolution [29,30].
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Figure 1. Example feature maps generated by convolutional operations. Example data are from the LandCover.ai dataset [28].
The subset of feature maps shown for each convolutional layer are from a ResNet-18 backbone [31] with ImageNet [32]
pre-trained weights. Many feature maps are generated by each convolutional layer, so only a subset of four feature maps
from four layers are shown here.

DL methods have yielded impressive performance for a wide variety of thematic
mapping and feature extraction tasks [24,25,30,33–42], and have proved their effectiveness
in operational mapping. For example, Microsoft used DL to generate a building footprint
dataset for the United States (US) containing nearly 125 million features [43]. Commercial
software environments, such as ArcGIS Pro [34,35], eCognition [36], ENVI [44,45], and
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Erdas Imagine [46,47], now offer DL toolsets and modules. DL can also be implemented
in open-source environments using a variety of platforms and application programming
interfaces (APIs), such as Tensorflow/Keras [48,49] and Torch/PyTorch/fast.ai [50–52]. DL
with CNNs may quickly replace the current operational standards for supervised classi-
fication, such as random forests (RF) and support vector machines (SVM) [53]; however,
the computational intensity and training data requirements of DL methods may slow
their adoption.

DL fits in well with the long-held interest in the RS community in incorporating spatial
pattern and context in classification, as shown by the many studies that incorporate texture
or that employ a GEOBIA approach. Furthermore, key DL applications, such as identifying
the class an image belongs to and delineating instances of an object, pre-date DL technology.
For example, Aksoy et al. [54] used a Bayesian framework and a visual grammar to classify
images. In addition, there is an important subfield of RS involving the delineation and
counting of individual trees (e.g., see Warner et al. [55] and Brandtberg et al. [56]). Despite
the fact that therefore RS DL is not an inherently new RS application (although the methods
are of course new and distinctively different), DL papers do not appear to follow the
terminology and metrics of the traditional remote sensing classification literature. Instead,
the remote sensing DL community appears to have embraced the terminology and metrics
of the artificial intelligence (AI) as well as computer vision communities, from where DL
methods generally evolved.

Given the long history of the development of RS accuracy terminology and methods,
this switch to an alternative approach is remarkable. This paper, Part 1 of a two-paper
sequence, therefore, uses a systematic review of a random sample of the literature from
2020 to summarize RS DL current accuracy assessment approaches. We also explore how
RS DL measures relate to traditional RS accuracy measures and investigate whether the
RS DL approach and accuracy metrics are fundamentally different, or based on similar
approaches with simply new names for measures that traditional RS scientists are familiar
with. In our second paper (Part 2; Maxwell et al., in review) we explore the implications of
our findings presented here and recommend best practices for assessment of CNN-based
products and model generalization.

The rest of this paper is organized as follows. In Section 2, we start with background
on the purpose of accuracy assessment and a brief overview of traditional RS accuracy
assessment methods. This is followed in Section 3 by an explanation of the literature review
methods employed. The results of the literature are summarized in Section 4, focusing on
the major accuracy metrics used in RS DL papers. We discuss a range of general issues
arising from our review in Section 5, exploring broader themes such as how RS DL studies
address class prevalence (the proportion of each class in the landscape) and to what extent
DL studies use the population confusion matrix in deriving accuracy metrics. In Section 6,
we present our overall conclusions.

2. Background
2.1. Traditional Remote Sensing Accuracy Evaluation

Traditional RS accuracy evaluation has been extensively described in previous litera-
ture. Therefore, we provide only a brief overview of the topic here. Readers interested in
more detail on this topic should consult other sources such as Congalton and Green [3],
Stehman and Foody [11], and Foody [5].

Stehman and Czaplewski [10] identify three components of RS accuracy assessment:
(1) The response design is the choice of sampling unit, for example, point, pixel, or polygon.
(2) The sampling design specifies how the samples are selected, for example, using a
random or systematic approach. In general, only probability-based sampling allows
inference of statistically rigorous map accuracies [5–11,57–67]. (3) The analysis is the
protocol that specifies the accuracy measures and how population-based estimates of those
metrics are calculated from the sampling results [10,67].
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2.2. The Purpose of Accuracy Assessment

The calculation of accuracy metrics provides three main practical benefits, which,
though overlapping, are sometimes in tension with one another. First, accuracy metrics
allow the benchmarking and comparison of methods. By using the terminology of AI
studies, RS DL studies facilitate the comparison of their results with the broader computer
science community, though, of course, at the potential expense of communication with the
RS community. For studies that wish to contribute to AI open challenges, or use standard
AI benchmark datasets, use of specified AI accuracy protocols and terms may be useful or
even required. For example, a number of RS DL studies draw upon the Microsoft Common
Objects in Context (COCO) project (cocodataset.org), which provides its own evaluation
code and associated terminology [43]. In comparing methods, there is often an implicit
desire to identify a “best” method, or, at least, to rank the methods. It is clearly simpler to
do so with a single metric, rather than with multiple metrics, which might give conflicting
results. The challenge is that accuracy has multiple components, and generally it is possible
to generate the same summary value from different combinations of values of the accuracy
components. This suggests that if summary metrics are presented, the underlying data
(i.e., the confusion matrix) should also be available to the reader. However, not all studies
seek a single metric for comparing algorithms; the COCO project notably specifies the use
of a wide range of metrics when using their accuracy assessment approach [43].

A second major benefit offered by accuracy metrics is insight into an algorithm’s
performance, and, in particular, its strengths and weaknesses. This may require multiple
accuracy metrics. Although, for this purpose, the relationship of these metrics to those in
the literature may not be important, the use of metrics with an intuitive or well-known
meaning will facilitate interpretation and communication of the results [68]. A final major
benefit of accuracy assessment is to give insight into the real-world application of the
method studied. For predicting real-world performance, the testing sample needs to reflect
the population characteristics of the data which the algorithm will likely use [69,70].

2.2.1. Deep Learning Accuracy Assessment Example Use Cases

Other than practically assessing derived thematic products, appropriate, consistent,
rigorous, and well-documented accuracy assessment methods are key for benchmarking
and quantifying improvements resulting from augmentation of existing and development
of new DL methods, as mentioned above. For example, Zhou et al. [71] introduced Unet++
and quantified improved classification performance in comparison to UNet and Wide-
UNet. More recently, Sun et al. [72] compared their proposed Circle-UNet architecture with
a variety of existing UNet architectures to document improved semantic segmentation
performance. Assessment methods are also necessary for quantifying model sensitivity to
hyperparameter settings (e.g., Li and Hsu [73]), such as architecture augmentations; loss
metric, optimization algorithm, or learning rate used, and learning rate scheduling applied.
Accuracy assessment is also important when studying the impact of training data quantity
(i.e., ablation studies), quality, and/or augmentation (e.g., [38,68,74,75]).

Further, accuracy assessment is central to a wide variety of DL RS studies, not just
algorithm comparison and development. Assessment is necessary for exploring the impact
of feature space, feature reduction or selection, sensor calibration, and input image selection
(e.g., [76–78]). As specific examples, Yang et al. [78] compared their proposed hyperspectral
band selection method with existing techniques to document improved classification
performance while Abdalla et al. [77] assessed their combined DL and k-means method
for color calibration. Witharana et al. [79] explored the impact of different data fusion and
pansharpening methods on subsequent DL classification performance.

DL techniques have been shown to be especially applicable for extracting information
from high spatial or spectral resolution datasets [76–78,80–84]; however, key issues must
be investigated, which require appropriate accuracy assessment protocols. Zang et al. [80]
noted the complexity of land use mapping from high spatial resolution datasets resulting
from variability and inconsistency between images and illuminating conditions, and high
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levels of detail and variability in class representations. Additionally, the use of trans-
fer learning (e.g., Li et al. [29]) and/or the management of network size and number
of trainable model parameters often require a subset of multispectral or hyperspectral
bands be selected, as simply using visible spectrum bands may not be optimal due to
loss of information content [78,83,84]. For example, Bhuiyan et al. [83] documented that
the selected three band subset of WorldView-2 multispectral imagery used significantly
impacted the DL classification accuracy for permafrost tundra landform mapping. Simi-
larly, Cai et al. [84] quantified the importance of different input variable combinations for
semantic segmentation of point cloud data. Highlighting the importance of such issues,
methods have been developed to select appropriate bands from hyperspectral imagery to
support DL-based classification (e.g., Yang et al. [78]), calibrate imagery for consistency
(e.g., Abdalla et al. [77]), and select images with minimal cloud cover (e.g., Park et al. [76]).

Accuracy assessment is also important for exploring model generalization and trans-
ferability to new data and/or geographic extents. For example, Maggiori et al. [85] assessed
building detection models when extrapolated to new cities while Maxwell et al. [38] as-
sessed the extraction of historic surface mining extents when applied to new topographic
maps in new regions. Robinson et al. [86] explored the extrapolation of general land cover
models trained in the eastern United States to new regions of the country.

As this section highlights, accuracy assessment is a required component of a wide
variety of RS DL studies, which highlights the need for and adherence to appropriate and
rigorous accuracy assessment methods to advance the field and minimize misleading or
incorrect findings. Given the ubiquitous use and requirement for accuracy assessment in RS
studies and the further complexity of rapid advancement in methods, such as those relying
on DL, we argue that it is of great importance to evaluate current assessment protocols and
make recommendations for best practices moving forward.

2.2.2. The Confusion Matrix

An RS map accuracy assessment normally involves the spatial overlay of the reference
samples on the classified map. The number of samples in each combination of reference
class and predicted class is then summarized in the sample confusion matrix. Generally, the
columns represent the reference classification label and the rows represent the classification
label, though this convention is not always followed.

A key distinction that is sometimes lost is that this sample confusion matrix does
not necessarily estimate the properties of the map, unless the samples were collected
with a purely random sampling design [7,8,10,11,58,59,62–66,87,88]. Only a pure random
sample (or in some cases, a complete census) provides a direct estimate of the population
proportions in the landscape for the confusion matrix. For all other sampling designs,
such as stratified random sampling, the values in the sample confusion matrix do not
reflect landscape proportions [10,11,62–64,66,88]. Thus, an important step in designing the
accuracy analysis protocol is to specify how the population confusion matrix is estimated
from the sample matrix. For example, Stehman and Foody [11] describe the procedure if the
classification itself is used to stratify the sampling. Stehman [66] describes the procedure
when samples derived from a stratification of one classified map are applied to another
map, a situation that may occur in studies comparing multiple classifications.

An appropriately configured population confusion matrix has entries that reflect
the proportion of each tabulated category in the landscape (Table 1). Sometimes, studies
report a confusion matrix that has been “normalized”, in which the class proportions
have been iteratively reconfigured such that all row and column totals are equal [3,11,87].
However, such a normalized matrix and the derived accuracy measures will not represent
the actual map properties, but instead, a hypothetical situation where the classes have equal
prevalence. Since classes that comprise a small proportion of the landscape have low prior
probabilities, they are generally more difficult to map than classes that are more common,
if all else is equal. Therefore, retaining the class prevalence is important for calculating
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the appropriate accuracy measures. For this reason, normalization of the confusion matrix
should be avoided [8,87].

Table 1. The population confusion matrix. A, B, and C represent the class labels. Pij represents the
proportion of the map area that is classified as class i and is class j in the reference data. The + symbol
is used to represent summation, with the summation over a column for the + symbol in the first
subscript position, and across the row in the second subscript position. UA = user’s accuracy and
PA = producer’s accuracy.

Reference

A B C Row
Total UA

Classification
A PAA PAB PAC PA+ PAA/PA+
B PBA PBB PBC PB+ PBB/PB+
C PCA PCB PCC PC+ PCC/PC+

Column total P+A P+B P+C

PA PAA/P+A PBB/P+B PCC/P+C

2.2.3. Summary Metrics Derived from Confusion Matrix

Once the population confusion matrix has been estimated, a variety of summary
metrics can be derived (Table 2). The overall accuracy is the proportion of the map correctly
classified, divided by the area of the entire map. Many RS studies also report the Kappa
statistic as a measure of the success of classification compared to what could be achieved
by chance agreement [3,8,60]. However, the necessity for applying a correction for chance
agreement and the appropriateness of Kappa as an estimate of chance agreement have been
criticized, resulting in strong recommendations to discontinue the use of Kappa [8,12,13].

Table 2. Multiclass metrics derived from the confusion matrix.

Measure Type of Measure Equation

Overall Accuracy (OA) Integrated summary Area of map correctly labeled
Total area of map

Kappa Integrated summary (OA−expected agreement)
(1−expected agreement)

User’s Accuracy (UA) Class-based Area of map correctly labeled as class x
Area of predicted map labeled class x

Producer’s Accuracy (PA) Class-based Area of map correctly labeled as class x
Area of reference map labeled class x

The most common class-based accuracies are user’s accuracy (UA) and producer’s
accuracy (PA) [3,8]. UA and PA are ratios representing the proportion of correctly classified
pixels for a specific class relative to the pixels classified as that class by the algorithm for
UA, or labeled that class in the reference data, for PA (Table 2). It is generally necessary
to report both user’s and producer’s accuracies, since it is possible to have a high user’s
accuracy with a low producer’s accuracy, or vice versa.

3. Literature Review Methods for Surveying Accuracy Evaluation of CNNs in
Remote Sensing

We sampled a random selection of 100 papers recently published in RS journals as the
basis of our summary review of how RS DL papers approach accuracy assessment. We
used Clarivate’s Web of Science database and limited the publication year to 2020. As our
focus was on DL in the RS community, we limited our search to the following eight RS
journals, which a preliminary search indicated were the primary outlets for the majority of
RS DL papers: IEEE Geoscience and Remote Sensing Letters, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, IEEE Transactions on Geoscience and Remote
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Sensing, International Journal of Remote Sensing, ISPRS Journal of Photogrammetry and Remote
Sensing, Remote Sensing, Remote Sensing Letters, and Remote Sensing of Environment.

After further experimentation, the following search query was used:

AB = (((CONVOLUTION* NEURAL NETWORK*) OR (CNN) OR (DEEP LEARNING))
AND ((SCENE CLASSIFICATION) OR (SCENE LABEL*) OR (OBJECT DETECTION)

OR (SEMANTIC SEGMENTATION) OR (INSTANCE SEGMENTATION)))

The literature search focused on terms used in the abstract, as indicated by the AB in
the above query. The * represents a wildcard, to ensure that variations of terms, such as
both NETWORK and NETWORKS, would be flagged. The keywords scene classification,
scene label*, object detection, semantic segmentation, and instance segmentation relate to
the four major applications of CNNs described below and summarized in Figure 2.
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• Scene classification, sometimes referred to as scene labeling, involves classifying an
entire image or image chip to a single category, or multiple categories, with no lo-
calized detection of features within the image. For example, an entire scene could
be recognized as an example of a developed area or a developed area and wood-
lands [20,21,34,35].

• Object detection includes the estimation of the location of occurrence of features within
the image extent. The output is a bounding box for each detected feature, along with
an associated class label and probability [20,21,24,25,89,90].

• Semantic segmentation is similar to traditional, pixel-based classification. Here, each
pixel is assigned to a thematic class. It is also possible to obtain the probability of each
pixel’s membership in each class [71,91–96].

• Instance segmentation differentiates and maps the boundaries of each unique occur-
rence of the classes of interest. For example, each building in an image could be
detected as a separate instance of the “building” class. The outputs include bounding
boxes for each instance, class probabilities, and pixel-level feature masks [24,25,97].

The Web of Science search resulted in 246 papers. A preliminary screening found eight
of these papers did not have RS DL classification as a primary focus and were therefore
deleted from the list. From the remaining 238 papers, a random subset of 100 papers
was generated to form the focus of the review. Three of the 100 papers each comprised
two separate studies, and thus, the total number of studies evaluated was 103 (Table 3).
Of these 103 studies, just under half were binary classifications or identified a single
class (for simplicity, we subsequently refer to both of these as binary classifications), the
remainder were multiclass classifications. Semantic segmentation was the most common
CNN classification type, and instance segmentation the least common. Scene classification
is generally conceptualized as a multiclass problem, and thus, no examples of binary scene
classification were identified.

Table 3. Studies surveyed in the literature review by CNN classification type. Of the 100 papers
that were surveyed, three papers each had two studies of different types, resulting in a total of
103 studies surveyed.

CNN Classification Type
Number of Studies

Binary and Single
Class Classifications

Multiclass
Classifications Total

Scene Classification 0 12 12
Object Detection 18 13 32

Semantic Segmentation 20 33 52
Instance Segmentation 3 4 7

Total 41 62 103

Each of the 103 studies was reviewed to determine the accuracy measures reported.
We focused exclusively on accuracy measures reported regarding the classifier performance
using independent test data, and excluded any measures used only as part of training or
optimizing the classifier.

4. Accuracy Metrics Commonly Used in Remote Sensing CNN Classifications
4.1. The Confusion Matrix in RS CNN Studies
4.1.1. The Binary Confusion Matrix: True and False Positives and Negatives

The terminology generally used in the accuracy evaluations of RS CNN classifications
has its origins in the binary confusion matrix, with the class of interest referred to as the
positive case, and the background as the negative case (Table 4). The binary confusion
matrix has four entries: the number of true positive (TP) and true negative (TN) samples,
which are respectively those that are correctly mapped as positive and negative, and the
two error categories of false positive (FP) and false negative (FN) samples, which represent
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the number of negatives incorrectly mapped as positives, and vice versa (Table 4). In
statistical hypothesis testing, FPs are referred to as Type I errors, and FNs as Type II errors.
Due to the range of CNN classification types, the numbers of TP, FP, TN, and FN potentially
represent pixels, objects, or scenes. For objects, TN is commonly not defined. Therefore, for
object detection and instance segmentation, a full confusion matrix may only comprise the
remaining three components.

Table 4. Conceptualization of a binary classification confusion matrix. TP = True Positive, TN = True
Negative, FP = False Positive, and FN = False Negative.

Reference Data

Positive Negative

Classification Result
Positive TP FP

Negative FN TN

Although the binary confusion matrix is an important concept for deriving other
accuracy measures, none of the binary classification papers surveyed reported a complete
binary confusion matrix (Figure 3), though three other papers reported a subset of the
matrix, for example, just FP or the combination of FP and FN.

4.1.2. The Multiclass DL CNN Confusion Matrix

For multiclass classification, even if a full confusion matrix is presented in the paper,
the terminology of TP, FP, FN, and FP is often used in describing the classification results.
The main difference is that in multiclass classification, these terms are all class-specific, and
other than TP, represent the sum of multiple cells in the complete multiclass confusion
matrix illustrated in Table 1. For example, FP is the sum of the row representing the
proportion of samples labeled to a particular class by the classifier, minus the TP proportion
for that class. When presented in a paper, these confusion matrices are often color-coded,
to make it easier to discern the high and low values in the table. Unlike the situation for DL
binary classifications, DL multiclass classifications do sometimes report complete confusion
matrices. For example, 42% of scene classification and 30% of semantic segmentation
studies included an entire confusion matrix (Figure 3).

4.1.3. The Sample vs. the Population Confusion Matrix

Almost all the papers surveyed incorporated a sampling strategy that divide training
and evaluation samples using a method such as random sampling (49% of studies), strati-
fied random sampling (3%), systematic sampling (1%) or by locating evaluation samples
in an entirely different area (34%). The remaining 13% used either a purposive approach
in dividing training and testing samples, or the method was unclear. However, in almost
half of the studies, the original selection of the samples can be attributed to a purposive
selection (48%), or the method used is not clear (11%). Only 41% of studies appear to
use a sampling strategy that is designed to allow the eventual estimation of the popula-
tion confusion matrix, i.e., are a probability-based sample. It is notable that community
benchmark datasets often only label a purposive set of samples, thus also, not following a
probability-based sampling approach.

Of the 17 studies that reported a complete confusion matrix, only 4 present numbers
that appear to be equivalent to the landscape proportions of those classes, and thus meet the
definition of a population error matrix (Table 5). In the rest of the studies (13), the numbers
in the confusion matrix appear to have been normalized by dividing by the total number
of samples in the reference category (11 studies) or the predicted category (2 studies), so
that the columns or rows sum to 100%. The rationale for this normalization is generally
not explained, but is apparently designed to force each class to have an equal weighting
in the matrix, as with the now discouraged traditional RS approach of a “normalized”
confusion matrix.
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Table 5. Type of confusion matrix presented in the surveyed literature.

Type of Confusion Matrix Number of Studies

Reference category values add to 100% 11
Predicted category values add to 100% 2

Values in entire table add to 100% (or values
represent landscape proportions) 4

Total 17

4.2. Accuracy Metrics Derived from the Confusion Matrix and Commonly used in
CNN Applications

Table 6 presents an overview of the main metrics commonly reported in RS DL
studies. The table shows the most common name in the first column, and other names
found in our literature review for the same accuracy measure in the second column. The
large number of entries in this second column indicates that many common DL accuracy
assessment metrics are known by multiple names. Most of the accuracy measures in the
table are designed to scale from 0 to 1.0, with 0 representing total disagreement between the
reference and classification data, and 1.0 representing total agreement. However, Kappa
and the Matthews correlation coefficient are scaled from −1.0 to +1.0 [12,98]. Tharwat [98]
provides an excellent overview of the major DL accuracy measures and the variety of
names associated with them in the DL literature.

Table 6. Classification accuracy assessment metrics most commonly used in the DL literature, with the associated equation
for a binary classification matrix. Citations are from the literature review for illustrative purposes, and are not meant to
be comprehensive.

Generally Accepted or Most
Commonly Used Name of Measure

in RS DL
Other Names Used in the RS DL

Literature Equation
Relation to

Traditional RS
Measures

Overall Accuracy (OA) [99]
Percent Correct

Classification [100]
Pixel Accuracy [101]

TP+TN
TP+TN+FP+FN Overall Accuracy

Recall [102]

Sensitivity [101]
True Positive Rate (TPR) [101]

Overall Accuracy [103]
Detection Probability [68]

Hit Rate [104]

TP
TP+FN PA for positives

Precision [102] Positive Predictive Value (PPV) [101] TP
TP+FP UA for positives

Specificity [105] True Negative Rate (TNR) [101] TN
TN+FP PA for negatives

Negative Predictive Value (NPV) [101] TN
TN+FN UA for negatives

False Positive Rate (FPR) [106] Probability of False Detection [107]
False Alarm Probability [100]

FP
TN+FP 1− (PA for negatives)

False Negative Rate (FNR) 1
Missing Detection Probability [100]

Missing Alarm [108]
Misidentification Score [109]

FN
TP+FN 1− (PA for positives)

False Discovery Rate (FDR) 1 False Alarm Probability [68]
Commission Error [110]

FP
TP+FP 1− (UA for positives)

Balanced Accuracy [101] 1
2 (Recall + Specificity)

Matthews Correlation
Coefficient (MCC) [101]

(TP × TN)−(FP × FN)√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

F1 [111]

F-measure [112] (Liu et al. 2020)
F-score [113]

Fβ Score [114]
Sørensen–Dice Coefficient [115]

2× Precision × Recall
Precision + Recall

or
2× TP

2×TP+FN+FP

Intersection-over-Union (IoU) [99] Jaccard Index [115] TP
TP+FP+FN

1 FNR and FDR are not commonly used in RS DL accuracy assessments. However, for consistency with the use of these terms elsewhere in
the surveyed literature (e.g., the work of [116] uses FNR), and with Tharwat [98], we list them here.
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Figure 3 above summarizes the frequency at which each accuracy measure is used by
papers that focus on binary and multiclass classification types, as well as by scene classifi-
cation, object detection, semantic segmentation, and instance segmentation applications.
A comparison of the graphs indicates that some measures (for example, precision and
recall) are used for all types of classification applications, although it is notable that no
single measure is used by every single study, even within one category of applications
(e.g., multiclass scene identification). In other words, there is no single universally accepted
accuracy measure. On the other hand, some measures tend to be associated with specific
classification types and applications. For example, PR-curves are most strongly associated
with binary and multiclass object detection, as well as multiclass scene classification.

4.2.1. Overall Accuracy and Kappa

Overall accuracy (OA) and Kappa are notably the two measures reported in RS DL
studies that are usually identical in name and definition to those used in traditional remote
sensing studies. However, as Table 6 demonstrates, OA, like most RS DL accuracy measures,
is sometimes given alternative names such as percent correct classification, pixel accuracy,
or accuracy. OA is reported in under half of RS DL studies (46%, Figure 3). Part of the
reason for the low number of studies reporting OA is that this metric is not a good fit
for object identification or instance segmentation, since the TN category is normally not
defined for objects. Another reason suggested for either not reporting or de-emphasizing
OA is that rare classes are given only a low weighting in the OA calculations.

Kappa is reported only occasionally in RS DL studies (14%), most commonly in
semantic segmentation applications, where it is reported in 25% of binary studies and 21%
of multiclass studies.

4.2.2. Recall and Precision

Recall and precision, the most common summary metrics reported in the RS DL
literature, are reported respectively in 71% and 61% of binary studies, and in 50% and
48% of multiclass studies. Table 6 shows these metrics are equivalent to the traditional RS
measures of PA and UA for the positive class.

4.2.3. Specificity and Negative Predictive Value

Specificity and negative predictive value (NPV) are measures of the negative class
accuracy and are only occasionally reported in DL RS studies, respectively 3% and 1% of
studies. They are equivalent to the traditional RS accuracy metrics of PA and UA for the
negative class. The specificity metric is most often reported as a component of the receiver
operating characteristic (ROC) curve, discussed in more detail in Section 4.3.1.

4.2.4. False Positive Rate, False Negative Rate, False Discovery Rate

The three measures of false positive rate, false negative rate, and false discovery
rate represent 1.0 minus the value of specificity, recall, and precision, respectively. Since
each of the latter three measures is perfectly correlated with each of the former three, it is
redundant to report both corresponding pairs of measures. These measures were generally
only occasionally reported in the survey (<5% of studies).

4.2.5. Balanced Accuracy and Matthews Correlation Coefficient

A range of metrics combine previous metrics or the elements of the confusion matrix in
additional ways. Balanced accuracy, for example, is simply the average of recall and speci-
ficity. The Matthews correlation coefficient represents the correlation between the reference
and predicted classifications [98]. Both these measures are only occasionally reported.

4.2.6. F1

Many authors report the combined class-based measure F1, also called F1 score, F-
score, Sørensen–Dice Coefficient, or Dice Coefficient. This measure is often described as
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the harmonic mean of recall and precision [98], which are themselves popular accuracy
measures. However, as also shown by Table 6, it can also be useful to understand F1 in
terms of TP, FN, and FP in order to compare it more directly to other accuracy metrics. The
F1 statistic is reported in 59% of binary studies, and as a class-specific measure in 40% of
multiclass studies.

The F1 statistic is a specific version of the general Fβ score, which is occasionally
reported in DL literature.

Fβ Score =
(

1 + β2
) Precision × Recall

β2 × Precision + Recall
(1)

=

(
1 + β2) (TP)

(1 + β2)(TP) + β2(FN) + (FP)
(2)

As shown by Equation (2), β represents the weighting applied to TP and FN relative
to FP. When β = 1.0 (i.e., the F1 measure), FN and FP are equally weighted; higher values
of β exponentially increase the weighting of both TP and FN relative to FP. Other values
used for β in the surveyed papers include 0.3 [117] and 2 [114]. Adding further complexity
to the F1 score is that some studies use alternative, simpler versions for the equation for
calculating F1, e.g., (Precision × Recall)/(Precision + Recall) [40].

4.2.7. Intersection-Over-Union (IoU)

Intersection-over-union (IoU), or the Jaccard index, is a ratio of the intersection of the
reference and classified samples with the union of the two groups. As Table 6 indicates,
IoU has an equation similar to that of the F1 measure, making the two measures correlated,
though not linearly because F1 has twice the weighting of the intersection (TP) in the ratio.
As a result, other than at the extremes of 0.0 and 1.0, F1 values are higher than IoU for the
same map (Figure 4).
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The IoU ratio can be calculated based on pixels or bounding boxes that encompass
individual objects in the image (Figure 5). The bounding box concept has its origins
in the computer vision community, and IoU is commonly used in object identification
and instance segmentation (Figure 3). IoU is often used as the threshold that determines
if objects are regarded as TP or FN, with 0.5 as the most commonly chosen threshold
(e.g., Zhang et al. [40]). In semantic segmentation, IoU is usually applied directly to pixels
over the classified image as a whole.
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4.2.8. Combined Multiclass Metrics

A common approach in RS DL studies is to average individual metrics over all the
mapped classes. Examples of such metrics include mean recall (sometimes given the
term mean accuracy [118], which for binary data is equivalent to balanced accuracy [101]);
mean precision [111,119] (not to be confused with average precision, see Section 4.3.2.);
mean F1 [120], and mean IoU (mIOU) [121]. Mean F1, for example, is reported by 15% of
multiclass studies. As F1 combines precision and recall, some studies regard mean F1 as a
type of overall accuracy, and a replacement for the OA metric (e.g., [33]).

Most of these combined multiclass metrics apply a simple average, with each class
weighted equally. However, because such a combined metric implies a map with equal-
class prevalence, a number of studies report so-called frequency-weighted (FW) multiclass
versions of these metrics, for example, the FW IoU of Singh et al. [122].

4.3. Metrics for CNN Classifications with Variable Decision Thresholds

In the description of accuracy measures so far, the decision boundary, or threshold,
that discriminates between classes has been conceptualized as having a single, fixed value.
However, generally, classes are not 100% separable, and any particular decision threshold
requires a tradeoff between minimizing FN and FP. This is illustrated in Figure 6, where
the curves represent hypothetical distributions of probabilities of the negative and positive
classes, as approximated by kernel density functions applied to the outcome of the classifier.
Although the peak probability for the positive and negative classes are clearly different,
there is overlap between the categories. The classifier performance can be characterized by
setting multiple decision thresholds, allowing the associated number of TP, TN, FP, and FN
samples for each threshold to be tabulated [98,123–129]. Two common types of graphs that
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explore the accuracy tradeoffs by systematically testing a range of thresholds are discussed
in the next two subsections.
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4.3.1. Receiver Operating Characteristic Curve (ROC) and Area under the Curve (AUC)

One way of exploring a classifier performance as a function of the decision threshold
is the receiver operating characteristic (ROC) curve. An ROC curve plots 1—specificity
versus sensitivity (another name for recall, see Table 6), as the decision threshold is varied
(Figure 7a). A classifier that is equivalent to guessing, and thus offers no useful informa-
tion, would plot on the graph diagonal, sometimes termed the baseline, indicated by the
dotted line in Figure 7a. An ideal classifier would have an ROC plot represented by two
perpendicular straight lines that intersect at the top left corner of the graph, which has
coordinates of (0,1), and is equivalent to 100% specificity and 100% sensitivity. Most real
classifiers plot in between the ideal and the baseline.

The ROC graph is often summarized by calculating the area under the curve (AUC).
The AUC ROC is equivalent to the probability that the classifier will rank a randomly chosen
positive (true) record higher than a randomly chosen negative (false) record [98,123–125].
An ideal classifier has an AUC ROC of 1.0 and a classifier that is no better than guessing,
i.e., the diagonal line, has a value of 0.5. In the multiclass case, some authors produce
multiple ROC curves and associated AUC ROC values by sequentially comparing each
single class to all other classes [127]. In our survey of RS DL studies, ROC plots and AUC
ROC statistics were occasionally reported (10% or less) for both binary and multiclass
semantic segmentations and multiclass scene classification.

The ROC curve and the associated AUC ROC metric’s reliance on specificity and
sensitivity has been criticized as misleading in cases where the class prevalence is not
equal [128], which is probably the norm in many RS applications. Using traditional remote
sensing terminology, the criticism is that the ROC curve uses only PA, and ignores UA.
A classifier with high PAs does not necessarily have high UAs, especially in the case of
imbalanced classes.
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4.3.2. Precision-Recall Curve (P-R Curve), Average Precision, and Mean Average Precision

An alternative to the ROC curve is the precision-recall (P-R) curve (Figure 7b), which
plots precision versus recall. Unlike the ROC, the P-R curve’s baseline, equivalent to
guessing, is the point on the precision axis that has a value equal to the class prevalence.
For example, in Figure 7b, the positive class has a roughly 40% prevalence, and therefore,
when the decision threshold is set at the extreme level that classifies every unknown as
the positive class, the precision will be equal to the prevalence value and the recall will be
100%. By convention, this baseline point is drawn as a horizontal line across the graph, to
document that this is the minimum precision, and to serve as a baseline.

As with the ROC curve, it is possible to generate a summary area under the curve
(AUC PR) metric [98,129,130]. In the DL community, however, this AUC PR metric is
generally referred to as average precision (AP) or mean average precision (mAP). Figure 8
illustrates the method for calculating AP and mAP for classification involving objects. For
each individual object, whether that object is a correct or incorrect prediction is defined
based on a minimum IoU. For example, for an IoU threshold of 0.6, objects that meet this cri-
terion are labeled as TP, and objects below the 0.6 threshold are labeled as FN (Figure 8a,b).
For each IoU threshold, a P-R curve is generated (Figure 8c) with an associated area un-
der the curve, or AP value (Figure 8d) [98,129,130]. AP is then averaged over multiple
IoU thresholds (Figure 8e) (e.g., from 0.55 to 0.90 with steps of 0.05, as demonstrated in
Figure 8b).
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There is, however, some inconsistency in the literature in the use of the terms AP and
mAP. Some authors use AP in reference to a single class and mAP for the average over
multiple classes (e.g., [40,89]), yet others refer to AP calculated for a single class at a single
IoU threshold as mAP [131]. Following trends in the computer science DL community [132],
many recent papers no longer differentiate between AP and mAP, and use AP as a general
term (e.g., [133]). The P-R curve was reported by 20% of the studies surveyed and AP
and/or mAP by 29% of the studies surveyed.

4.4. Note on Loss Metrics

Although we specifically focused on accuracy assessment metrics and methods in this
review, it is important to note that many of the considerations discussed above for accuracy
assessment are also important for selecting an appropriate loss metric. The loss metric is the
measure that is monitored during the training process. Over multiple learning epochs, or



Remote Sens. 2021, 13, 2450 18 of 27

iterations over the training data, the optimization algorithm updates weights to minimize
or decrease the loss metric. Since loss should be reduced with improved performance, it
is generally a measure of error as opposed to accuracy. Given that this metric serves to
quantify error rates and guides the optimization algorithm, selecting an appropriate metric
is very important [134].

For example, binary cross-entropy (BCE) loss, which is also referred to as log loss,
often serves as the default loss metric for binary classification tasks [134–136]. However, it
often performs poorly when data are imbalanced [134,137,138]. As a result, it may be more
appropriate to apply class weighting, or weighted binary cross-entropy (WBCE), when
classes are imbalanced [134,135]. Alternatively, 1—F1 Score or 1—Dice, generally referred
to as Dice loss, is more robust to data imbalance than BCE [137–140]. It is even possible
to combine multiple loss functions, such as BCE and Dice loss with equal or different
weighting applied to each loss component [134]. Tversky loss augments the Dice loss to
allow for different weighting to be applied to the FN and FP components, allowing the
user to prioritize different types of error [134,141,142]. In the case of smooth Dice loss, class
probabilities are used as opposed to the hard classification [134,143,144]. Focal loss, focal
Dice loss, and focal Tversky loss augment BCE, Dice, and Tversky loss, respectively, to
allow for increased focus on classifying difficult samples [139,142,145–147].

For multiclass classification, it is common to employ a multiclass version of cross-
entropy (CE) loss. However, in cases of class imbalance, class weightings can be applied,
a multiclass Dice loss can be used, or multiple losses can be combined, such as CE and
multiclass Dice [134]. Loss metrics used for binary or multiclass classification are inappro-
priate for regression problems. In such cases, mean square error (MSE) or mean absolute
error (MAE) are commonly used [148,149]. Models that have multiple outputs often use
different loss metrics for each component, which can then be aggregated to a multi-task
loss. For example, Mask R-CNN uses different loss metrics for classification, bounding box
regression, and mask generation [97].

In summary, we encourage researchers to experiment with different loss functions and
consider the impact of class imbalance and types of error. Just as it is important to select as-
sessment metrics appropriate to the task being undertaken, choosing a loss function is also
important, especially in the context of imbalanced class proportions. Ma et al. [134] provide
a detailed discussion of loss functions and considerations for selecting loss functions in the
context of medical image analysis, which is also relevant to RS studies.

5. Discussion and Recommendations
5.1. Comparison of DL and Traditional RS Approaches to Accuracy Assessment

Although the terminology used for accuracy assessment in RS DL papers is very differ-
ent from that of traditional RS studies, the approaches have much in common, particularly
in basing derived metrics on the confusion matrix. However, despite the importance of
the confusion matrix, only 17% of the DL papers surveyed actually reported the entire
confusion matrix. One reason for not presenting the complete confusion matrix is that in
some studies, particularly scene classification, the number of categories is so large that
confusion matrices simply take up too much space [35]. A complete confusion matrix is
also normally not defined for object detection, because of a lack of an easily defined TN
class. Nevertheless, it can be useful to provide a complete tabulation of the remaining three
numbers of the object detection confusion matrix, TP, FP, and FN, to clarify the details of
the accuracy evaluation.

The summary metric of OA is also common in both traditional RS and DL RS papers.
Another similarity between traditional RS and DL RS accuracy is the common use of
precision and recall, though traditional remote sensing names these metrics UA and
PA respectively.

One of the major differences between traditional RS and DL RS is the use of F1 (which
is a combination of precision and recall) and IoU, as well as mean F1 and mean IoU.
Summary measures can be useful for ranking classifiers, but since multiple combinations of
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precision and recall can produce the same F1 statistic or IoU, also reporting the underlying
statistics, and, in particular, a population confusion matrix, can be helpful.

Several aspects of RS DL accuracy design stand out as being worthy of emulation
by the broader RS community. Traditional RS studies could gain by using the P-R curve
and the AP measure for classifications involving a threshold, for example, those using
spectral ratios, such as the normalized difference snow index (NDSI) [150]. Moreover,
the DL community in many cases designs the accuracy assessment to incorporate testing
the algorithm in entirely new geographic regions, away from the data used in training,
or images acquired on entirely different dates, or even with data acquired by different
sensors. These testing designs give valuable insight regarding the generalization potential
of algorithms and their likely performance in real-world monitoring applications, where it
might be impractical to collect new training data to support every new data acquisition.

5.2. Clarity in Terminology

As discussed in Section 2.1, a primary purpose of accuracy assessment measures is
to communicate the uncertainty associated with classification products. As the names
of the RS DL accuracy measures used are mostly from the computer vision community,
these terms may be a barrier to traditional remote sensing readers. For example, the
traditional terms of UA and PA were reported in only 2% of the studies surveyed (Figure 3).
Furthermore, the large number of alternate names used for each metric listed in Table 6 is a
potential source of confusion to readers. When authors tabulate accuracy measures that
though not identical are perfectly correlated (e.g., recall and false discovery rate [108] or
F1 and IoU [151]), readers may not realize the information is redundant. Similarly, when
studies refer to the same metric by different names in different parts of the paper (e.g., the
text and tables [105]), or, in some cases, even in the same parts of the paper (e.g., within a
single table [68]), communication may also be undermined. The problem is particularly
acute when studies compare the ROC and P-R graphs, usually using true positive rate
for the ROC, but recall for the same accuracy measure in the P-R graph [106,117,118,152].
Therefore, to the extent that it is possible, it would be preferable for studies to use the most
common names in Table 6 (typically, the left column), rather than less common names.
When multiple names are used for a single metric, highlighting the equivalency of the
names would help readers.

Though it may seem a waste of space to define well-known metrics, such as most of
those listed in Table 6, it is nevertheless useful when studies give the equations for the
metrics used. Providing the equations will help RS readers less experienced in DL, as well
as ensure there is no confusion as to exactly which measure is meant. This is particularly
important for metrics that are given general names such as average accuracy or accuracy.
Lack of consistency in the literature as to what is meant by some measures is not just
limited to F1, AP, and mAP, but includes other terms, such as false alarm rate/probability
(e.g., compare [100,103]), reinforcing the importance of this issue.

5.3. Class Prevalence and Imbalance

Some RS DL papers note concerns regarding class imbalance, and either implicitly
or explicitly design the accuracy assessment to minimize the influence of class imbalance.
Three main strategies are used. One approach is to use equalized stratified random
sampling to generate a dataset with an equal number of samples in each class. This
approach requires a subsequent analysis protocol to take into account that sampling
does not reflect the prevalence of the class. Though many studies in the survey sampled
each class equally, we identified no examples of studies that applied the necessary class
prevalence correction. A second approach is to tabulate the values in the confusion matrix
as percentages that sum to 100% in the reference categories, or occasionally, the predicted
categories (Table 5). However, such a confusion matrix does not represent the population
confusion matrix, but like the first approach, is instead, apparently, an attempt to represent
a hypothetical situation in which each class has equal prevalence.
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A third approach is to report only measures that are thought not sensitive to imbalance,
such as recall or specificity (producer’s accuracies in the terminology of traditional RS).
Tharwat [98] provides an explanation of why these measures are thought not to be sensitive
to imbalance. However, Foody has questioned the underlying assumption of this argument,
stating, “ . . . in common remote sensing applications the producer’s accuracy may, however,
be expected to be prevalent dependent” [12] p. 3). Perhaps more importantly, recall and
precision are separate aspects of class accuracy, and it is entirely possible for one to be
high, and the other low. Reporting only recall, and not precision, on the basis that the
latter is sensitive to imbalance, will necessarily lead to only a partial understanding of
classifier performance.

In summary, the three approaches to avoiding the issue of prevalence appear to be a
denial that the prevalence of each class is an inherent feature of a classification, and that
the class prevalence affects the accuracy of the classification outcome. Comparing classifier
performance with classes of equal assumed prevalence means that the classifier is not tested
with imbalanced classes, which is likely to be common in real remote sensing problems.

It could be argued that these concerns do not apply to scene classification applications,
since they do not produce a map. However, as pointed out above, the proportion of the
classes is a fundamental characteristic of all classifications, and thus is an important issue
for all applications.

There are, however, a number of RS DL studies that, instead of trying to avoid imbal-
anced classes, incorporate prevalence as a factor in the accuracy assessment design. This
trend is perhaps most significant in the development of benchmark datasets, because these
datasets are often used in multiple studies. For example, Qian et al. [153] designed a change
detection dataset of 3420 pairs of Google Earth images where the proportion of true change
in the images varies from 0% to over 80%. Zhang et al. [68] designed their community
synthetic aperture RaDAR (SAR) dataset for ship detection to have a large number of
images where ships are rare, with a prevalence of just 0.0001%, unlike comparison datasets
where pixels representing ships are between 2 and 4 orders of magnitude more prevalent.
Another notable way the RS DL community has embraced the importance of considering
prevalence is to move from the ROC to the P-R curve, the baseline of which provides
information on the class prevalence.

6. Conclusions

We reviewed 100 randomly-selected papers focusing on DL classification that were
published in eight major RS journals in 2020. As three of the papers each comprised two
separate studies, this resulted in 103 studies in the survey. The review of these papers
confirms that the RS DL community have largely abandoned traditional RS accuracy
assessment terminology. The abandonment of traditional RS accuracy measures is most
likely a result of the RS DL community drawing from the traditions of the computer science
and AI communities. RS DL scientists use the metrics of those communities to facilitate
communication of their work with the broader DL community, and a comparison of their
work with other DL research outside that of RS applications. In addition, DL metrics such
as F1 and IoU are seen as offering new ways of summarizing accuracy. The DL RS approach
to accuracy assessment is grounded in the idea of the confusion matrix and measures that
derive from it, but other than OA and Kappa, the names of the various measures tend to
be different. The widely used DL terms of precision and recall are equivalent to UA and
PA for the positive class in the case of a binary classification, or the class of interest for a
multiclass classification.

There are several notable features of RS DL accuracy assessment compared to tradi-
tional RS studies. DL studies tend to, instead, average other statistics to produce a single
class measure, most notably the F1 statistic, which is often described as the harmonic mean
of precision and recall. It is, however, also conceptually similar to the IoU, though in the
F1 measure, TP has twice the weighting it has in the IoU. In many cases, these individual
class statistics are then averaged over all classes.
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Another notable feature of RS DL studies is that, though the metrics used derive
from the confusion matrix, they only rarely report a complete confusion matrix. For object
detection, an important CNN application, the TN class is usually not defined, and so a
complete confusion matrix is not possible. For scene classification, there may be so many
classes that a complete confusion matrix may take up a lot of space. However, even for
semantic segmentation, the complete confusion matrix is only rarely provided. Perhaps
more significantly, we found only four studies where the confusion matrix was reported
with numbers that were clearly defined as representing the proportion of that class in the
landscape. Instead, when studies did report the confusion matrix, most present the entries
as proportions, with either the reference data class or the predicted class values summing
to 1.0. These types of individually class-normalized error matrices do not represent the
population error matrix, and therefore, will not generate derived measures that represent
unbiased estimates of the map accuracy. Instead, they appear to be an attempt to predict
the accuracy of a hypothetical situation where the classes have equal prevalence. A key
finding in our review of the RS DL literature is that the abandonment of traditional RS
accuracy measures is not limited to a subset of RS journals, but is an almost universal
change, and is consistent across all the journals surveyed. In addition, the issues that
we highlight, including the use of different names for the same metric, the reporting of
partially or completely redundant accuracy metrics, and the use of error matrices that do
not necessarily represent an estimate of the population error matrix, also occur in all the
journals surveyed.

Many RS DL studies are paying increased attention to the role of varying prevalence
of classes in evaluating accuracy. Perhaps most importantly, this includes designing
benchmark datasets that have class proportions that more closely reflect likely real-world
scenes, or that provide scenes of varying and documented class proportions. Similarly,
the dominant use of the P-R curve, along with the associated AP and/or mAP as an
alternative to the traditional ROC and AUC, is also important in this regard. Although
the P-R-curve, AP, and mAP are mainly used in object detection and semantic instance
detection applications, these metrics are potentially useful for any classification involving
a threshold.

Another important contribution of RS DL studies is to emphasize the testing of trained
models using entirely new datasets, for example, data of a different region, a different time,
or acquired from a different sensor. This type of experimental accuracy assessment design
points to the potential of RS for monitoring applications, and could well be followed by
RS studies investigating traditional classification methods. In the next paper in this series
(Maxwell et al., in review), we provide recommendations for best practices for assessing
CNN-based products based on the findings from this literature review.
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96. Yurtkulu, S.C.; Şahin, Y.H.; Unal, G. Semantic Segmentation with Extended DeepLabv3 Architecture. In Proceedings of the 2019
27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4.

97. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

98. Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2021, 17, 168–192. [CrossRef]
99. Du, L.; McCarty, G.W.; Zhang, X.; Lang, M.W.; Vanderhoof, M.K.; Li, X.; Huang, C.; Lee, S.; Zou, Z. Mapping Forested Wetland

Inundation in the Delmarva Peninsula, USA Using Deep Convolutional Neural Networks. Remote Sens. 2020, 12, 644. [CrossRef]
100. Zhang, X.; Liu, G.; Zhang, C.; Atkinson, P.M.; Tan, X.; Jian, X.; Zhou, X.; Li, Y. Two-Phase Object-Based Deep Learning for

Multi-Temporal SAR Image Change Detection. Remote Sens. 2020, 12, 548. [CrossRef]
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