
remote sensing

Article

Deep Learning-Based Point Upsampling for Edge Enhancement
of 3D-Scanned Data and Its Application to
Transparent Visualization

Weite Li 1,*, Kyoko Hasegawa 2, Liang Li 2, Akihiro Tsukamoto 3 and Satoshi Tanaka 2

����������
�������

Citation: Li, W.; Hasegawa, K.; Li, L.;

Tsukamoto, A.; Tanaka, S. Deep

Learning-Based Point Upsampling for

Edge Enhancement of 3D-Scanned

Data and Its Application to

Transparent Visualization. Remote

Sens. 2021, 13, 2526. https://

doi.org/10.3390/rs13132526

Academic Editor: Angel D. Sappa

Received: 6 May 2021

Accepted: 25 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Information Science and Engineering, Ritsumeikan University,
Kusatsu 525-8577, Shiga, Japan

2 College of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
hasegawa@media.ritsumei.ac.jp (K.H.); liliang@fc.ritsumei.ac.jp (L.L.); stanaka@is.ritsumei.ac.jp (S.T.)

3 Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Tokushima,
Japan; tsukamoto.akihiro@tokushima-u.ac.jp

* Correspondence: is0290fh@ed.ritsumei.ac.jp

Abstract: Large-scale 3D-scanned point clouds enable the accurate and easy recording of complex 3D
objects in the real world. The acquired point clouds often describe both the surficial and internal 3D
structure of the scanned objects. The recently proposed edge-highlighted transparent visualization
method is effective for recognizing the whole 3D structure of such point clouds. This visualization
utilizes the degree of opacity for highlighting edges of the 3D-scanned objects, and it realizes
clear transparent viewing of the entire 3D structures. However, for 3D-scanned point clouds, the
quality of any edge-highlighting visualization depends on the distribution of the extracted edge
points. Insufficient density, sparseness, or partial defects in the edge points can lead to unclear
edge visualization. Therefore, in this paper, we propose a deep learning-based upsampling method
focusing on the edge regions of 3D-scanned point clouds to generate more edge points during the
3D-edge upsampling task. The proposed upsampling network dramatically improves the point-
distributional density, uniformity, and connectivity in the edge regions. The results on synthetic and
scanned edge data show that our method can improve the percentage of edge points more than 15%
compared to the existing point cloud upsampling network. Our upsampling network works well
for both sharp and soft edges. A combined use with a noise-eliminating filter also works well. We
demonstrate the effectiveness of our upsampling network by applying it to various real 3D-scanned
point clouds. We also prove that the improved edge point distribution can improve the visibility of
the edge-highlighted transparent visualization of complex 3D-scanned objects.

Keywords: transparent visualization; point upsampling; 3D-scanned point cloud; opacity-based
edge highlighting; 3D edges; deep learning

1. Introduction

The recent development of 3D-scanning technology has enabled the rapid and accurate
recording of complex objects in the real world. The 3D-scanned data exist in the form of
a large-scale point cloud, which records the complex 3D structure of the object. When
the scanned object has internal 3D structures and the acquired point cloud records the
internal structures as well as the surficial shapes, the complexity of the 3D structure
becomes significant. To analyze the entire 3D structure of this complex point cloud data,
point-based transparent visualization [1] is effective. Transparent visualization enables
us to observe the internal structures and the surficial shapes simultaneously. However,
transparent visualization can provide too much information, which may increase clutter
and decrease visibility. To solve this problem, Kawakami et al. [2] proposed opacity-based
edge highlighting, which combines the edge-highlighting technique with transparent

Remote Sens. 2021, 13, 2526. https://doi.org/10.3390/rs13132526 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13132526
https://doi.org/10.3390/rs13132526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132526
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132526?type=check_update&version=1

Remote Sens. 2021, 13, 2526 2 of 26

visualization based on stochastic point-based rendering (SPBR) [1,3,4]. Highlighting 3D
edges improves the transparent visualization of 3D-scanned complex objects to a great
extent.

The above approach, i.e., highlighting 3D edges in transparent visualization, assumes
that the points are sufficiently dense and uniform along the edges. Unfortunately, this
assumption does not always hold for 3D-scanned point data. Therefore, upsampled points
are needed to realize the assumed situation. However, the upsampling of point data is
difficult because each constituent point does not have information on the neighboring
points. This lack of information makes it difficult for us to generate new points between
points. Therefore, we propose using the deep learning technique for effective and reliable
upsampling. Once a sufficiently dense and uniform point cloud is generated on 3D edges,
we can execute the steps in opacity-based edge highlighting; we use the opacity control
mechanism enabled by SPBR to increase opacity, that is, the brightness of the edge area.
Thus, the new contributions of this paper can be summarized as follows. (1) We propose a
deep neural network suitable for point upsampling that focuses on the point proliferation
of 3D edges. (2) We propose applying our neural network to realize comprehensible
transparent visualization with high-quality edge highlighting.

The problem of upsampling point clouds is essentially similar to the super-resolution
problem of images. However, because point clouds do not have any spatial order or regular
structure, unlike the image space represented by a regular grid, simple interpolation
between the input points does not give satisfactory results. Early approaches tried various
optimization strategies to generate upsampled point clouds without using deep learning
models to solve this problem. For example, Alexa et al. [5] upsampled points by referring
to Voronoi diagrams, which require surface-smoothing assumptions and are computed
on a moving least squares surface. Subsequently, the locally optimal projection (LOP)
operator [6,7] was shown to be effective for point resampling and surface reconstruction
based on the L1 median. The L1 median is defined as any point that minimizes the sum of
Euclidean distances to all points in the point cloud, especially for point clouds with noisy
or outlier points.

In recent years, deep neural networks have achieved outstanding performances in
various point cloud-processing tasks, including object detection [8,9], point cloud comple-
tion [10,11], shape classification [12–14], and semantic scene segmentation [15,16]. In the
field of point cloud upsampling, Yu et al. [17] proposed the first deep learning algorithm for
point cloud upsampling, which works on patches by learning multilevel per-point features
and expands the point cloud by multibranch convolution. Yifan et al. [18] proposed a
patch-based progressive point cloud upsampling method, which can gradually upsample
the input to a relatively large upsampling rate. Recently, Li et al. [19] proposed a GAN-
based framework to generate a high-quality upsampled point cloud. Existing methods
have achieved well-performing results on synthetic datasets such as ShapeNet [20] and
ModelNet40 [21]. However, for large-scale 3D-scanned point clouds with sparse points, es-
pecially for the edge data extracted based on point feature values in our previous work [2],
the points generated during upsampling are usually not concentrated near the edges, and
their visibility cannot be effectively improved due to the additional noise generated by
upsampling. Therefore, in this paper, we propose an upsampling network adapted to the
3D edges of 3D-scanned point cloud data, which exhibits good robustness to various types
of edges. The proposed method can be applied to both synthetic point cloud edges and
scanned point cloud edges.

This paper is organized as follows. In Section 2, we briefly review the eigenvalue-
based point feature values used in edge extraction. In Section 3, we review SPBR and
opacity-based edge highlighting, which can relate edge extraction to comprehensible
transparent visualization. In Section 4, we describe the steps in our method, which realizes
the comprehensible transparent visualization of 3D-scanned point cloud data with edge
highlighting. Details of our deep learning neural network are also explained in this
section. In Section 5, we offer experiments that demonstrate the effectiveness of our

Remote Sens. 2021, 13, 2526 3 of 26

method by applying it to real 3D-scanned point cloud data. We show that our neural
network successfully increases the point density in the 3D-edge regions and improves the
connectivity of the edge lines. We also demonstrate that our method improves the visibility
of the transparent visualization of the 3D-scanned objects. In Section 6, we discuss the
experimental results. In Section 7, we summarize our achievements and describe future
work.

2. Eigenvalue-Based 3D Feature Values

To achieve edge extraction of the target point cloud, we adopt a statistical method [22–24].
The method uses an appropriate eigenvalue-based 3D feature value to extract high curva-
ture areas, which are regarded as 3D edges of the point-based surface. For a local spherical
region centered at each point, variances and covariances of point distributions are numer-
ically calculated, and the local 3D structure tensor [25] is defined. Then, the 3D feature
value is calculated by using the three eigenvalues of the tensor, and the value is assigned to
the central point.

To date, several kinds of eigenvalue-based 3D feature values have been proposed [25].
In our work, we adopt change-of-curvature Cλ and linearity Lλ:

Cλ =
λ3

λ1 + λ2 + λ3
(1)

Lλ =
λ1 − λ2

λ1
(2)

where λ1, λ2, and λ3 are the eigenvalues of the 3D structure tensor with λ1 ≥ λ2 ≥ λ3 ≥ 0.
Cλ measures the minimal extension of the local point distribution that shows the degree of
deviation from the tangential plane at each point, and Lλ measures the difference between
the two independent-directional largest extensions of the local point distribution.

The limitation of the abovementioned edge extraction method is that its reliability
highly depends on the quality of the target point cloud. In visualization, a nonuniform point
distribution leads to unclear edges, and a local deficiency of points leads to disconnection
of the edge lines. Therefore, an upsampling of the extracted 3D edges of the point data is
required. Our proposed upsampling method is explained in Section 4.

3. Methods for Transparent Visualization and Edge Highlighting

In this section, we briefly review the two methods that we use in our study. In
Section 3.1, we explain the stochastic point-based rendering [1,3,4], which is the point-based
high-quality transparent visualization method. In Section 3.2, we explain the opacity-based
edge-highlighting method [2], which visually highlights 3D edges based on local opacity
control. These methods are both suitable for 3D-scanned point clouds. Their combined use
realizes a comprehensible transparent visualization of 3D-scanned point clouds with edge
highlighting.

3.1. Stochastic Point-Based Rendering (SPBR)

Traditionally, transparent visualization of a 3D-scanned object has been realized by
using alpha blending after transforming point cloud data into a polygon mesh. However,
the polygonization of point cloud data often fails for noisy 3D-scanned data. In addition,
the computational cost of alpha blending increases rapidly as the data size becomes large.
The reason for the high computational cost is that alpha blending includes the depth sorting
process of a great number of polygons. Therefore, in our work, we use SPBR, which is
directly applicable to point cloud data and does not require a depth sorting of rendering
primitives. In SPBR, the surface opacity of a visualized point-based object is determined
by its point density. The surface opacity α of any local surface is controllable based on a
mathematically well-defined opacity formula [1,3].

Remote Sens. 2021, 13, 2526 4 of 26

3.2. Opacity-Based Edge Highlighting

In our work, we adopt opacity-based edge highlighting. The concept of the method
is to relate the local feature value to the local surface opacity. Namely, we assign higher
opacity to points with larger feature values, that is, points on 3D edges. As the feature value,
we adopt change-of-curvature Cλ and linearity Lλ (see Section 2). Below, we represent
the feature value by f, and we normalize f such that its maximal value becomes one on
the target point-based 3D-scanned surface. Since the 3D-edge regions tend to have larger
f than the surrounding areas, the regions are given higher opacity and visualized more
brightly.

Reference [2] proposed three types of opacity functions, which relate the feature value
f to opacity α:

The type (a) function is the simplest but works robustly. This opacity function defines
the simplest binary relation between feature value f and opacity α. We assign a constant
high opacity αmax to points with f larger than a user-defined threshold fth. We regard the
points assigned αmax as edge points. We assign a constant low opacity αmin to points with
f less than fth and regard these points as non-edge points.

The type (b) function shows 3D edges as thinner lines compared to type (a). This
opacity function is suitable for highlighting sharp 3D edges with high curvatures within
narrow local areas. The relation of 3D feature value f and opacity α is defined as follows:

α(f) =
αmax − αmin

(1− fth)
d (f − fth)

d + αmin (3)

where fth is the threshold value of f , over which the corresponding local regions are
regarded as 3D edges. Minimal opacity αmin and maximal opacity αmax are assigned to
points with f < fth and f = 1, respectively. In the intermediate range, fth ≤ f < 1, and the
opacity α(f) increases as f becomes larger. Parameter d controls the speed of the increase
in opacity. Usually, we set d in a range of 1.0 ≤ d ≤ 3.0.

The type (c) function enables us to visualize the soft 3D edges. We define a soft
3D edge as a region that is less angled but has comparably higher curvatures than the
surrounding areas. The relation of the 3D feature value f and opacity α is realized by the
following opacity function:

α(f) =

{
αmax−αmin

(Fth− fth)
d (f − fth)

d + αmin (fth ≤ f < Fth)

αmax (Fth ≤ f < 1)
(4)

In formula (4), Fth and fth are the two threshold values with fth < Fth. The 3D-edge regions
are defined as areas with f ≥ fth as in type (a) and (b) functions. α gradually increases for
fth ≤ f < Fth and becomes constant for f ≥ Fth.

3.3. Resampling for Controlling Point Density

For the opacity-based edge highlighting explained in Section 3.2, we need to control
opacity α. Since our visualization is executed by stochastic point-based rendering, we can
control α, that is, by adjusting the local point density. In other words, we need to execute
resampling of the given point cloud data.

In reference [2], downsampling is executed by randomly eliminating points, and
upsampling is executed by copying randomly selected points. This strategy works well
if the point distribution has local uniformity and does not have a local deficiency in the
3D-edge regions. However, this assumption does not always hold, as we described in
Section 1. Therefore, we perform point upsampling using our deep learning-based neural
network to recover the assumed condition. Details are explained in Section 4.

Remote Sens. 2021, 13, 2526 5 of 26

4. Proposed Method for Edge-Highlighting Visualization

In this section, we present our method for the edge-highlighting transparent visualiza-
tion of 3D-scanned point cloud data. In Section 4.1, we summarize the steps of the method.
In Section 4.2, we describe our deep learning neural network for point upsampling of the
3D-edge regions.

4.1. Steps of the Proposed Method

Our proposed method is executed in the following steps:

1. Random downsampling of the 3D-edge regions: Execute downsampling for points
in the 3D-edge regions. We randomly eliminate points with f > fth such that the
resultant point distribution obeys the selected opacity function (type (a), (b), or (c)).
Points with f < fth are eliminated;

2. Deep learning-based upsampling of the 3D-edge regions: Execute the deep learning-
based upsampling for the points obtained in STEP 1;

3. Point integration and visualization: Merge the original 3D-scanned points, which
include points of the non-edge regions, with the upsampled edge points obtained
in STEP 2. Then, stochastic point-based rendering is applied to the integrated point
dataset. In this step, we obtain a transparent image of the target 3D-scanned point
cloud data with clear edge highlighting.

In STEP 1, which is different from the original opacity-based edge highlighting [2], we
regard α as the probability of keeping points in the downsampling. Correspondingly, we
set αmax = 1, which is the maximal probability. Then, the opacity function is regarded as
the probability function describing the feature value dependence of the probability. For
f with α = αmax = 1, the original points are fully kept. For f with α = 0, the points are
absolutely removed. For f with 0 < α < 1, the points are removed with probability 1− α.

In STEP 2, details of the deep learning network are described in the next section. STEP
2 recovers the local distributional uniformity of the 3D-edge points and fills the point
deficiency. After upsampling, the point distribution remains similar to that described by
the selected opacity function. Even though the original feature of the opacity function is
weakened, it is still true that the selection of type (a) is robust, the selection of type (b) is
suitable for sharp edges, and the selection of type (c) is suitable for soft edges.

The integration of the two point datasets in STEP 3 is easy. All we have to do is simply
appending the edge points acquired in STEP 2 to the original 3D-scanned points.

4.2. Proposed Upsampling Network
4.2.1. Overview

In our work, we aim to upsample the edge areas in 3D-scanned point clouds. For
our purpose, the training data have to contain sufficient information on 3D edges. Gener-
ally, dense and continuous edge data of 3D-scanned point clouds are considered the best
training data. However, it is challenging to collect large numbers of fine 3D-scanned point
cloud edges for training in practice. We also attempt to use the edge data of simple models
as the training dataset. However, since the edge data contain fewer local features, our
upsampling network cannot learn enough features, which causes most of the new points
generated in the upsampling results to be clustered in the high point density region of the
initially extracted edge data. Therefore, in our training phase, we adopt training strategies
similar to those of [17,19], which use polygon data to generate high-precision point cloud
data for training. Specifically, we cut each polygon mesh data used for training to generate
numerous local patches. To generate training point cloud data with uniform point distribu-
tion and fine detail retention, Poisson disk sampling (PDS) [26] is used to generate points
on these patches as ground truth T . Then, the ground truth data are downsampled to
generate sparse input point cloud data P =

{
pi ∈ R3×1}N

i=1 with N points. As illustrated
in Figure 1, the network consists of a generator and a discriminator, and the discriminator
guides the generator training. Continuous adversarial training by alternating between

Remote Sens. 2021, 13, 2526 6 of 26

the two models eventually makes the generator better able to perform the upsampling
task. Specifically, for each input point cloud data P , the goal of the generator is to produce
dense and uniformly distributed point clouds S =

{
si ∈ R3×1}rN

i=1, where pi and si are the
coordinates of 3D points and r is the upsampling rate. The discriminator finds the fake
data generated by the generator. Finally, we propose a patch-based training strategy with a
joint loss function formed by adversarial loss, reconstruction loss, and repulsion loss.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 26

discriminator guides the generator training. Continuous adversarial training by alternat-
ing between the two models eventually makes the generator better able to perform the
upsampling task. Specifically, for each input point cloud data ࣪, the goal of the generator
is to produce dense and uniformly distributed point clouds ܵ = ሼݏ ∈ ℝଷ×ଵሽୀଵே , where
and ݏ are the coordinates of 3D points and ݎ is the upsampling rate. The discriminator
finds the fake data generated by the generator. Finally, we propose a patch-based training
strategy with a joint loss function formed by adversarial loss, reconstruction loss, and re-
pulsion loss.

Figure 1. The architecture of the proposed upsampling network. Note that ܰ is the number of points in input patch ࣪, ݎ
is the upsampling rate, and ܥ, ܥ, ܥ, ܥᇱ ௗᇱܥ ௗ, andܥ , are the numbers of feature channels. Given a sparse input patch ࣪ with ܰ points, we generate a dense patch ܵ with ܰݎ points in the generator, which consists of feature extraction,
feature expansion, and coordinate reconstruction. The goal of the discriminator is to distinguish whether its input is pro-
duced by the generator.

4.2.2. Preparing the Training Data and Ground Truth
Before training the upsampling network, we preprocess all the collected polygon

mesh data to generate input point cloud data and ground truth for training (see Section
5.1 for details). First, for each polygon mesh data, we randomly find 200 vertices on its
surface and then grow patches around these vertices that cover 5% of the polygon mesh
surface. For all generated patches, we use the PDS method to generate the point cloud
data ࣮ with ܰݎ points and regard it as the ground truth. Finally, for each ࣮, we ran-
domly select ܰ points as the input data ࣪ for the network in the training phase.

4.2.3. Generator
After obtaining the sparse input point cloud data, we establish a dense point cloud

generation network as a generator to densify the sparse input point cloud ࣪ into a dense
point cloud ܵ. As shown at the top of Figure 1, the generator consists of three modules to
process input data ࣪, feature extraction, feature expansion, and coordinate reconstruc-
tion.

Point Feature Extraction. Feature extraction is important in the processing of dis-
crete point cloud data, especially sparse edge point clouds. To extract the complete edge
features, we propose a point feature extraction module to simultaneously extract the
global feature and the context information inside local regions. PointNet [12] is effective

Figure 1. The architecture of the proposed upsampling network. Note that N is the number of points in input patch P , r
is the upsampling rate, and Cg, Cl , Cp, C′p, Cd, and C′d are the numbers of feature channels. Given a sparse input patch P
with N points, we generate a dense patch S with rN points in the generator, which consists of feature extraction, feature
expansion, and coordinate reconstruction. The goal of the discriminator is to distinguish whether its input is produced by
the generator.

4.2.2. Preparing the Training Data and Ground Truth

Before training the upsampling network, we preprocess all the collected polygon mesh
data to generate input point cloud data and ground truth for training (see Section 5.1 for
details). First, for each polygon mesh data, we randomly find 200 vertices on its surface
and then grow patches around these vertices that cover 5% of the polygon mesh surface.
For all generated patches, we use the PDS method to generate the point cloud data T with
rN points and regard it as the ground truth. Finally, for each T , we randomly select N
points as the input data P for the network in the training phase.

4.2.3. Generator

After obtaining the sparse input point cloud data, we establish a dense point cloud
generation network as a generator to densify the sparse input point cloud P into a dense
point cloud S. As shown at the top of Figure 1, the generator consists of three modules to
process input data P , feature extraction, feature expansion, and coordinate reconstruction.

Point Feature Extraction. Feature extraction is important in the processing of discrete
point cloud data, especially sparse edge point clouds. To extract the complete edge features,
we propose a point feature extraction module to simultaneously extract the global feature
and the context information inside local regions. PointNet [12] is effective for extracting
global features of point clouds and performs well in various point cloud processing tasks.
Thus, we adopt a multilayer perceptron(MLP) structure of dimension (32, 64, 64), similar
to PointNet, to process each point and obtain global features with a size of N × Cg by

Remote Sens. 2021, 13, 2526 7 of 26

max-pooling the output of a set of MLPs. However, only using global features cannot
represent local geometric information. PointNet++ [27] is very effective and widely used
for local feature extraction. For example, EC-Net, [28,29] adopts PointNet++ to extract
features from the input point cloud data. However, within each local region, PointNet++
still extracts the features of each point independently without considering the relationship
between neighboring points. For 3D point cloud data with a small number of points,
PointNet++ feature extraction is efficient, but for large-scale 3D-scanned point cloud data,
which usually contain millions or even tens of millions of points, sampling and finding
neighboring points in PointNet++ consumes more memory and time as the number of
points increases. Therefore, a fast and lightweight feature extraction module becomes
necessary in our work since the main objective of our study is to upsample 3D-scanned
point clouds. Inspired by DGCNN [30], we define the local neighborhood in the feature
space and adopt a set of edge convolutions to extract local features. Given a sparse patch
P with the size of N × 3 as input, we compute the edge features of each point by applying
MLPs with dimensions of (32, 64, 128) and obtain the local feature with a size of N × Cl
after max-pooling among neighboring edge features, where Cl is the number of feature
channels. The local neighborhood is computed by k-nearest neighbors search in feature
space and dynamically updated due to different feature outputs for each layer. Then, we
concatenate the local features and global features to obtain the concatenated feature F with
a size of N × Cp and pass it to the next step for feature expansion.

Point Feature Expansion. The purpose of feature expansion is to establish the map-
ping from known points to more points. At present, the mainstream feature extraction
methods can be roughly divided into three categories: interpolation-based methods [27],
reshaping-based methods [31], and folding-based methods [32]. Interpolation-based meth-
ods usually influence feature expansion through the point interpolation relationship, but in
some cases, the interpolation relationship between point clouds is unclear. Additionally, the
reshaping-based method usually first expands the dimensions of the input features through
a deep network such as a set of MLPs or fully connected (FC) layers and then generates
the target features through a simple reshaping operation. However, the expanded features
obtained in this way are closer to the input features and thus affect the upsampling quality.
For example, the finally generated new points tend to be gathered near the original points.
Therefore, in our work, we adopted the point feature expansion method in [19], which is a
folding-based method. Compared with other feature expansion methods, the folding-based
method is more flexible and has good performance in multiple applications [11,32]. In
particular, the folding-based method not only avoids tedious multistep training but also
promotes the generation of fine-grained information. This can save considerable memory
and time for the upsampling task of 3D-scanned point cloud data and produce more refined
results.

Coordinate Reconstruction. For an expanded feature with a size of rN × C′p, we
regress the 3D coordinates through a series of fully connected layers of dimension (64, 3)
on the feature of each point and finally output a dense patch S with a size of rN × 3.

4.2.4. Discriminator

For the input data of the discriminator, the discriminator distinguishes whether
it is produced by the generator, thus guiding the generator training to achieve better
upsampling performance. In our work, we build a discriminator based on PCN [33] that
contains two PointNet layers to extract the global feature using a pointwise multilayer
perceptron with shared weights and a max-pooling operation. Specifically, for input point
cloud data with a size of rN × 3, we first extract a feature vector Fd with a size of rN × Cd
using an MLP of dimension (32, 64). Then, the global feature k is extracted from the feature
vector Fd using the max-pooling operation. We combine feature vector Fd with global
feature k as input to the second PointNet layer. Similar to the first PointNet layer, we
obtain the new feature vector through another MLP of dimension (128, 256) and perform
max-pooling to obtain the final global feature z. Finally, the confidence scores are regressed

Remote Sens. 2021, 13, 2526 8 of 26

through a set of fully connected layers of dimension (256, 1). If the confidence score is close
to 0, the discriminator anticipates that the input data are most likely from the generator.

4.2.5. Loss Function

To move the generated point cloud closer to the ground truth, we adopt the Chamfer
distance [34] as the reconstruction loss to evaluate the similarity between the point cloud
generated by the generator and the ground truth. Specifically, the reconstruction loss is the
Chamfer distance between the generated dense point cloud data S and the ground truth T :

Lrec = dCD(S, T) = ∑
si∈S

min
ti∈T
‖si − ti‖2

2 + ∑
ti∈T

min
si∈S
‖si − ti‖2

2 (5)

where si is the point in the generated dense point cloud data S, ti is the point in the ground
truth T , and ‖·‖2 denotes the L2 norm of a vector.

The reconstruction loss moves the generated dense point cloud to fit the input point
cloud better. Furthermore, to improve the local uniformity of the generated point cloud,
we add the repulsion loss in [17] to more uniformly distribute the generated points rather
than distributing close to the original points:

Lrep =
rN

∑
i=0

∑
i′∈K(i)

η(‖si′ − si‖2)ω(‖si′ − si‖2) (6)

where K(i) is the index set of the k-nearest neighbors of point si. In our experiment, we
set k = 5. η(r) = −r is a decreasing function, and ω(r) = e−r2/h2

[6,7] is a fast-decaying
weight function; they are adopted to penalize si when it is too close to its neighboring
points in K(i). Here, h is a hyperparameter of ω, and we set it to 0.03 in our experiment.

Both Lrec and Lrep calculate the pointwise distance, which ignores high-order proper-
ties generated by the point cloud, such as continuity. Therefore, we adopt the least squares
method in [35] as our adversarial loss to train the generator and discriminator adversarially.
For the generator, the aim is to fool the discriminator by minimizing Lgan(G) to generate S
as close as possible to the ground truth:

Lgan(G) =
1
2
[D(S)− c]2 (7)

where D is the discriminator that aims to distinguish whether its input is generated by the
generator by minimizing Lgan(D), which is defined as follows:

Lgan(D) =
1
2
[D(T)− b]2 +

1
2
[D(S)− a]2 (8)

where a, b, and c are hyperparameters. As suggested by [1], we set a = 0, b = 1, and c = 1
in our experiment.

Altogether, we train the network end-to-end by minimizing LG for the generator and
LD for the discriminator:

LG = αLrec + βLrep + γLgan(G) (9)

LD = Lgan(D) (10)

where α, β, and γ are the weights and empirically set as 10, 0.02, and 0.5. During the
training process, the generator and discriminator are optimized alternatively.

5. Upsampling and Visualization Results and Evaluation of the Proposed Method

In this section, we show experiments applying the proposed upsampling network to
real 3D-scanned data. In Section 5.1, we demonstrate the robustness of the upsampling
network under different types of edges. In Section 5.2, we describe the test sets and

Remote Sens. 2021, 13, 2526 9 of 26

the network training. We also summarize the parameters used in our experiments. In
Section 5.3, we show the results of applying the trained network for upsampling 3D-edge
regions of real 3D-scanned point clouds. We also demonstrate that our upsampling of the
3D edges successfully improves the visibility of the transparent visualization of complex
3D-scanned objects. In Section 5.4, we describe the solution strategy for treating noisy
3D-scanned data. In Section 5.5, we show the effect of the proposed method on soft edges.

5.1. Verifying the Robustness of Upsampling Networks on Simulated Edges

Since the edges of the simple model have better recognizability than the real 3D-
scanned point cloud edges, to observe the effect of upsampling more intuitively, we first
show the upsampling result on simulated edges in this section. The application of the
proposed method to real 3D-scanned data is shown in Section 5.3. We simulate the possible
situations in realistic 3D-scanned edge data by modifying the point density, removing some
edges, and performing other operations. Specifically, as shown in Figure 2b, we first use
the PDS method to generate the point cloud data with 50,000 points on the surface of Joint
and Fandisk [36] and select the change-of-curvature as the feature value, combined with
the type (a) function to extract the 3D edges. Then, to enrich the types of edge shapes, we
modify the 3D edges of Joint and Fandisk differently.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 26

5. Upsampling and Visualization Results and Evaluation of the Proposed Method
In this section, we show experiments applying the proposed upsampling network to

real 3D-scanned data. In Section 5.1, we demonstrate the robustness of the upsampling
network under different types of edges. In Section 5.2, we describe the test sets and the
network training. We also summarize the parameters used in our experiments. In Section
5.3, we show the results of applying the trained network for upsampling 3D-edge regions
of real 3D-scanned point clouds. We also demonstrate that our upsampling of the 3D
edges successfully improves the visibility of the transparent visualization of complex 3D-
scanned objects. In Section 5.4, we describe the solution strategy for treating noisy 3D-
scanned data. In Section 5.5, we show the effect of the proposed method on soft edges.

5.1. Verifying the Robustness of Upsampling Networks on Simulated Edges
Since the edges of the simple model have better recognizability than the real 3D-

scanned point cloud edges, to observe the effect of upsampling more intuitively, we first
show the upsampling result on simulated edges in this section. The application of the
proposed method to real 3D-scanned data is shown in Section 5.3. We simulate the possi-
ble situations in realistic 3D-scanned edge data by modifying the point density, removing
some edges, and performing other operations. Specifically, as shown in Figure 2b, we first
use the PDS method to generate the point cloud data with 50,000 points on the surface of
Joint and Fandisk [36] and select the change-of-curvature as the feature value, combined
with the type (a) function to extract the 3D edges. Then, to enrich the types of edge shapes,
we modify the 3D edges of Joint and Fandisk differently.

For the edges in Joint, we simulate the absence of a point cloud in the real scene due
to occlusion by artificially removing points on the edge. For example, in region 1 and re-
gion 2 (regions in red rectangles in Figure 2c), we remove all points in a short edge and a
longer edge. To preserve the edge’s continuity at region 3 and region 4, we remove most
points in a short edge and a longer edge. In region 5, we remove 70% of the points in a
circular edge. For the edges in Fandisk, we simulate the uneven point density of the 3D-
scanned data in a real scene by adjusting the point density of different portions. For ex-
ample, for the edge data of different Fandisk areas, we adjust the point density from 5%
to 80% of the initially extracted point density.

(a) (b) (c) (d)

Figure 2. The upsampling results of the edge data for Joint (top) and Fandisk (bottom); (a) are the original polygon model,
(b) are the original point cloud and extracted 3D edges, (c) are the modified edge data, and (d) are the upsampling results
of the modified edge data.

Figure 2. The upsampling results of the edge data for Joint (top) and Fandisk (bottom); (a) are the original polygon model,
(b) are the original point cloud and extracted 3D edges, (c) are the modified edge data, and (d) are the upsampling results of
the modified edge data.

For the edges in Joint, we simulate the absence of a point cloud in the real scene due to
occlusion by artificially removing points on the edge. For example, in region 1 and region
2 (regions in red rectangles in Figure 2c), we remove all points in a short edge and a longer
edge. To preserve the edge’s continuity at region 3 and region 4, we remove most points in
a short edge and a longer edge. In region 5, we remove 70% of the points in a circular edge.
For the edges in Fandisk, we simulate the uneven point density of the 3D-scanned data in
a real scene by adjusting the point density of different portions. For example, for the edge
data of different Fandisk areas, we adjust the point density from 5% to 80% of the initially
extracted point density.

Table 1 shows the number of points and density of the original point cloud, initially
extracted edges, modified edges, and upsampling result. The upsampling results are shown
in Figure 2d. The upsampling network produces numerous new points on the low point
density edges in Joint and Fandisk. These edges form complete edges after upsampling.

Remote Sens. 2021, 13, 2526 10 of 26

In addition, numerous new points are also generated around edges, which improves the
visibility of the overall edge shape. However, for regions 1 and 2 of the edges in Joint, the
upsampling network cannot learn any information in these regions and cannot generate
new points. In practice, most upsampling strategies have such a limitation. The network
cannot know whether the gaps in the original data are due to missing points or if the
shape of the object contains gaps. Moreover, we consider the result shown in Figure 2d
to be reliable since not all gaps should be connected for realistic 3D edges. Generally,
undesired gaps can be eliminated by interactively inserting support points in the gap
before upsampling. Therefore, we consider that our upsampling network can be stable in
most scenarios and generate numerous new points along the edges to improve the edge
continuity. However, for regions where information is completely missing, new points
cannot be generated to connect the edges since feature information cannot be learned.

Table 1. The number of points and density of the Joint and Fandisk data.

Objects Scale [m] Data Number of
Points

Density (106)
[Points/m3]

Joint 0.93× 1.24× 1.18

Original point cloud 50,000 1.55
Extracted edges 2283 1.41
Modified edges 1072 1.19

Upsampling result 4290 2.99

Fandisk 1.29× 1.40× 0.72

Original point cloud 50,000 2.05
Extracted edges 2518 1.95
Modified edges 1441 1.62

Upsampling result 5764 2.69

5.2. Datasets and Implementation Details

Since the goal of our work is to upsample the edges, redundant curved surfaces and
large areas of planes in the training model will affect the quality of edge upsampling.
Therefore, we selected 80 polygon mesh models from the released PU-GAN datasets [19],
most of which contain more edge shapes and fewer curved surfaces. We selected 65 of these
models as the training dataset and 15 models as the test set. As we explained in Section 4.2,
we adopted a patch-based training strategy. By default, we cropped 200 patches for each
training model and set the number of patch points N = 512 and the upsampling rate r = 4.
For the optimization, we trained the network for 200 epochs using the Adam algorithm [37]
with a batch size of 24 and set the learning rate of the generator and the discriminator
as 0.001 and 0.0001, respectively. We implemented our network using TensorFlow and
trained it on an NVIDIA GeForce RTX 2080 Ti GPU. In the testing phase, we adopted the
farthest point sampling method to find the vertices and generated a local patch containing
N points for each test model. Then, we generated a dense patch through the generator
and combined all the upsampled results as the final output. We selected different feature
values and functions to extract edges depending on the target objects. In the transparent
visualization, we set LR = 100, and to fairly compare the visualization results of different
methods, we unified the number of points for all edge data.

To quantitatively evaluate the upsampling quality of the 3D edges, we employed three
evaluation metrics. First, we adopted the Hausdorff distance [38] and cloud-to-cloud [39]
distance to evaluate the similarity between the edge data and the upsampled results; the
smaller the distance was, the closer the upsampled edges were to the real edges. Then, for
the edge data extracted with different feature values f , we also calculated the same feature
value for the upsampled edge data to evaluate the upsampling quality for the edge portion.

In the verification experiment, we first extracted 3D edges for the testing models by
using the change-of-curvature with fth = 0.25 and randomly selected 8192 points as the
ground truth (see Figure 3b). Then, we used Poisson disk sampling to sample 2048 points
as input.

Remote Sens. 2021, 13, 2526 11 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 26

feature value for the upsampled edge data to evaluate the upsampling quality for the edge
portion.

In the verification experiment, we first extracted 3D edges for the testing models by
using the change-of-curvature with ୲݂୦ = 0.25 and randomly selected 8192 points as the
ground truth (see Figure 3b). Then, we used Poisson disk sampling to sample 2048 points
as input.

(a) (b) (c) (d) (e)

Figure 3. Qualitative verification of block (top) and cover rear (bottom). (a) Inputs, (b) ground truth, (c) PU-NET, (d) PU-
GAN, (e) our proposed method.

We qualitatively and quantitatively compared our proposed method with the exist-
ing deep learning networks for point upsampling: PU-NET [10] and PU-GAN [19]. We
show the upsampling results for block [36] and cover rear [36] with different methods in
Figure 3. Compared with the other two methods, our results can generate more points at
the edges. Table 2 shows the results of the quantitative comparison. Our proposed method
performs optimally on all metrics.

Table 2. Quantitative verification of the effectiveness of our method.

Objects Methods Ratio of Edge Points
ࣅ) ≥ .)

Cloud-to-Cloud
Distance (ି)

Hausdorff
Distance

Block
PU-NET 65.26% 3.19 0.31
PU-GAN 58.53% 3.42 0.32

Proposed method 82.37% 1.63 0.29

Cover rear
PU-NET 62.62% 1.51 0.72
PU-GAN 53.77% 1.71 0.72

Proposed method 79.83% 1.15 0.67

5.3. Application to Real 3D-Scanned Data
This section demonstrates applying the proposed upsampling network to extract 3D

edges of 3D-scanned data. We also show the application of the upsampling results to
edge-highlighting visualization. Then, we compare the ability of our network with exist-
ing networks for upsampling point cloud data.

Figure 3. Qualitative verification of block (top) and cover rear (bottom). (a) Inputs, (b) ground truth, (c) PU-NET, (d) PU-
GAN, (e) our proposed method.

We qualitatively and quantitatively compared our proposed method with the existing
deep learning networks for point upsampling: PU-NET [10] and PU-GAN [19]. We show
the upsampling results for block [36] and cover rear [36] with different methods in Figure 3.
Compared with the other two methods, our results can generate more points at the edges.
Table 2 shows the results of the quantitative comparison. Our proposed method performs
optimally on all metrics.

Table 2. Quantitative verification of the effectiveness of our method.

Objects Methods
Ratio of Edge

Points
(Cλ ≥ 0.25)

Cloud-to-
Cloud Dis-

tance (10−2)

Hausdorff
Distance

Block
PU-NET 65.26% 3.19 0.31
PU-GAN 58.53% 3.42 0.32

Proposed method 82.37% 1.63 0.29

Cover rear
PU-NET 62.62% 1.51 0.72
PU-GAN 53.77% 1.71 0.72

Proposed method 79.83% 1.15 0.67

5.3. Application to Real 3D-Scanned Data

This section demonstrates applying the proposed upsampling network to extract 3D
edges of 3D-scanned data. We also show the application of the upsampling results to
edge-highlighting visualization. Then, we compare the ability of our network with existing
networks for upsampling point cloud data.

5.3.1. Results of Upsampling and Visualization for 3D-Edge Regions

Figure 4 shows the 3D laser-scanned point cloud of the former Nakajima residence
(24,074,424 points). The residence is a traditional Southeast Asian folk house that is
preserved by the Ritto History Museum in the Shiga Prefecture of Japan. Due to limited
scanning conditions, there are numerous missing parts in the roof portion. This leads to
poor recognizability of the extracted edges. Figure 5a shows the result of extracting 3D
edges (red parts). Standard binary extraction is adopted, using change-of-curvature Cλ

Remote Sens. 2021, 13, 2526 12 of 26

as the feature value f and regarding the regions with f > fth as the 3D-edge regions. In
Figure 5a, we hardly recognize the 3D edges as connected lines.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 26

5.3.1. Results of Upsampling and Visualization for 3D-Edge Regions
Figure 4 shows the 3D laser-scanned point cloud of the former Nakajima residence

(24,074,424 points). The residence is a traditional Southeast Asian folk house that is pre-
served by the Ritto History Museum in the Shiga Prefecture of Japan. Due to limited scan-
ning conditions, there are numerous missing parts in the roof portion. This leads to poor
recognizability of the extracted edges. Figure 5a shows the result of extracting 3D edges
(red parts). Standard binary extraction is adopted, using change-of-curvature ܥఒ as the
feature value ݂ and regarding the regions with ݂ > ୲݂୦ as the 3D-edge regions. In Figure
5a, we hardly recognize the 3D edges as connected lines.

The creation of the edge points in Figure 5a corresponds to STEP 1 of our method
(see Section 4.1), adopting the type (a) function and setting ߙ୫ୟ୶ = 1. Figure 5b shows the
result of applying our upsampling network to the edge points in Figure 5a. This upsam-
pling corresponds to STEP 2 of our method. In Figure 5b, we can see that numerous new
points are generated in the 3D-edge regions. The generated new points improve the point-
distributional uniformity on the edges and improve the continuity of the edge lines. In
addition, the improved edge lines, which are made denser and more continuous, provide
a clearer understanding of the roof shape. Table 3 shows the number of points and density
of the original point cloud, the initially extracted edges, and the upsampling edges.

Table 3. The number of points and density of the Nakajima residence data.

Data Scale [m] Number of Points Density ()
࢙࢚] ⁄]

Original point cloud 10.47 × 15.13 × 7.18
24,074,424 8.46

Initially extracted edges 3,821,874 3.33
Upsampling edges 15,287,496 6.34
Figure 6, which shows transparent edge-highlighting visualizations by SPBR,

demonstrates STEP 3 in our method. Figure 6a is created based on the integrated point
dataset composed of the original 3D-scanned points and the edge points in Figure 5a. Fig-
ure 6b shows a similar visualization in which the edge points in Figure 5b are used instead.
Figure 6b, which shows the result of our method after executing the three steps, improves
the comprehensibility of the transparent visualization.

Figure 4. The 3D laser-scanned data of the former Nakajima Residence, which is a traditional Southeast Asian folk house
(24,074,424 points).

Figure 4. The 3D laser-scanned data of the former Nakajima Residence, which is a traditional Southeast Asian folk house
(24,074,424 points).

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 26

(a) (b)

Figure 5. Extraction of edge points from 3D-scanned data in Figure 4. Standard binary extraction is adopted using change-
of-curvature ߣܥ as the feature value ݂ and regarding the regions with ݂ > ݂th as the 3D-edge regions. The threshold
parameter ݂th is set to 0.25. (a) shows the initially extracted points, and (b) shows the result of applying our upsampling
network.

(a) (b)

Figure 6. Edge highlighting transparent visualizations of the 3D-scanned data in Figure 4. (a) is created based on the
integrated point dataset composed of the original 3D-scanned points and the extracted edge points in Figure 5a. (b) shows
a similar visualization in which the upsampled edge points in Figure 5b are used instead.

Let us show the experimental results of upsampling another point cloud, the laser-
scanned data of a gymnasium. This laser-scanned object has many piles, which all appear
as 3D edges in visualization. We adopt change-of-curvature as the feature value ݂ and
select the type (b) function to extract the 3D edges. The extracted edges are shown in Fig-
ure 7a. Although the edges of the roof portion are extracted well, the 3D edges of the front
wall and surrounding objects are mostly incomplete. However, by upsampling the ex-
tracted 3D edges, we can update the disconnected edges to connect them (see the enlarged

Figure 5. Extraction of edge points from 3D-scanned data in Figure 4. Standard binary extraction is adopted using change-
of-curvature Cλ as the feature value f and regarding the regions with f > fth as the 3D-edge regions. The threshold
parameter fth is set to 0.25. (a) shows the initially extracted points, and (b) shows the result of applying our upsampling
network.

The creation of the edge points in Figure 5a corresponds to STEP 1 of our method
(see Section 4.1), adopting the type (a) function and setting αmax = 1. Figure 5b shows
the result of applying our upsampling network to the edge points in Figure 5a. This
upsampling corresponds to STEP 2 of our method. In Figure 5b, we can see that numerous
new points are generated in the 3D-edge regions. The generated new points improve
the point-distributional uniformity on the edges and improve the continuity of the edge
lines. In addition, the improved edge lines, which are made denser and more continuous,
provide a clearer understanding of the roof shape. Table 3 shows the number of points and
density of the original point cloud, the initially extracted edges, and the upsampling edges.

Remote Sens. 2021, 13, 2526 13 of 26

Table 3. The number of points and density of the Nakajima residence data.

Data Scale [m] Number of Points Density (105)
[Points/m3]

Original point cloud
10.47× 15.13× 7.18

24,074,424 8.46
Initially extracted edges 3,821,874 3.33

Upsampling edges 15,287,496 6.34

Figure 6, which shows transparent edge-highlighting visualizations by SPBR, demon-
strates STEP 3 in our method. Figure 6a is created based on the integrated point dataset
composed of the original 3D-scanned points and the edge points in Figure 5a. Figure 6b
shows a similar visualization in which the edge points in Figure 5b are used instead.
Figure 6b, which shows the result of our method after executing the three steps, improves
the comprehensibility of the transparent visualization.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 26

(a) (b)

Figure 5. Extraction of edge points from 3D-scanned data in Figure 4. Standard binary extraction is adopted using change-
of-curvature ߣܥ as the feature value ݂ and regarding the regions with ݂ > ݂th as the 3D-edge regions. The threshold
parameter ݂th is set to 0.25. (a) shows the initially extracted points, and (b) shows the result of applying our upsampling
network.

(a) (b)

Figure 6. Edge highlighting transparent visualizations of the 3D-scanned data in Figure 4. (a) is created based on the
integrated point dataset composed of the original 3D-scanned points and the extracted edge points in Figure 5a. (b) shows
a similar visualization in which the upsampled edge points in Figure 5b are used instead.

Let us show the experimental results of upsampling another point cloud, the laser-
scanned data of a gymnasium. This laser-scanned object has many piles, which all appear
as 3D edges in visualization. We adopt change-of-curvature as the feature value ݂ and
select the type (b) function to extract the 3D edges. The extracted edges are shown in Fig-
ure 7a. Although the edges of the roof portion are extracted well, the 3D edges of the front
wall and surrounding objects are mostly incomplete. However, by upsampling the ex-
tracted 3D edges, we can update the disconnected edges to connect them (see the enlarged

Figure 6. Edge highlighting transparent visualizations of the 3D-scanned data in Figure 4. (a) is created based on the
integrated point dataset composed of the original 3D-scanned points and the extracted edge points in Figure 5a. (b) shows a
similar visualization in which the upsampled edge points in Figure 5b are used instead.

Let us show the experimental results of upsampling another point cloud, the laser-
scanned data of a gymnasium. This laser-scanned object has many piles, which all appear
as 3D edges in visualization. We adopt change-of-curvature as the feature value f and select
the type (b) function to extract the 3D edges. The extracted edges are shown in Figure 7a.
Although the edges of the roof portion are extracted well, the 3D edges of the front wall
and surrounding objects are mostly incomplete. However, by upsampling the extracted 3D
edges, we can update the disconnected edges to connect them (see the enlarged images
shown in the rectangles). Table 4 shows the number of points and density of the original
point cloud, the initially extracted edges, and the upsampling edges.

Remote Sens. 2021, 13, 2526 14 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 26

images shown in the rectangles). Table 4 shows the number of points and density of the
original point cloud, the initially extracted edges, and the upsampling edges.

(a) (b)

Figure 7. (a) Points on the extracted 3D edges of the gymnasium using the change-of-curvature and type (b) function. (b)
Points obtained by executing our upsampling for the points in (a). The parameters are set as follows: ୲݂୦ = ୫୧୬ߙ ,0.3 ୫ୟ୶ߙ ,0.2= = 1.0, and ݀ = 3.0. Each large rectangle shows the enlarged image of the area indicated by the corresponding
small rectangle.

Figure 8a shows the result of transparent fused visualization, which is created by
applying SPBR to the fused point dataset of the original laser-scanned points and the edge
points in Figure 7a. Figure 8b shows a similar transparent fused visualization, for which
the edge points in Figure 7b obtained by our upsampling network are used. We can see
that the connectivity of the 3D edges is improved in Figure 8b, and the edge-highlighting
effect is improved.

(a) (b)

Figure 7. (a) Points on the extracted 3D edges of the gymnasium using the change-of-curvature and type (b) function.
(b) Points obtained by executing our upsampling for the points in (a). The parameters are set as follows: fth = 0.3, αmin = 0.2,
αmax = 1.0, and d = 3.0. Each large rectangle shows the enlarged image of the area indicated by the corresponding small
rectangle.

Table 4. The number of points and density of the gymnasium data.

Data Scale [m] Number of Points Density (103)
[Points/m3]

Original point cloud
25.59× 43.42× 20.04

5,234,550 5.21
Initially extracted edges 1,211,452 4.38

Upsampling edges 4,845,808 4.84

Figure 8a shows the result of transparent fused visualization, which is created by
applying SPBR to the fused point dataset of the original laser-scanned points and the edge
points in Figure 7a. Figure 8b shows a similar transparent fused visualization, for which
the edge points in Figure 7b obtained by our upsampling network are used. We can see
that the connectivity of the 3D edges is improved in Figure 8b, and the edge-highlighting
effect is improved.

The experimental results presented in this subsection demonstrate that our method
successfully increases the point density and connectivity of the 3D edges extracted from
a 3D-scanned point cloud. This effect improves the visibility and comprehensibility of
complex 3D-scanned objects in their transparent visualization. The goal of our work is
to increase the point density in the edge regions, especially in the inhomogeneous sparse
edge regions. As shown in Tables 3 and 4, our method can effectively increase the density
of the edge regions, which also proves the effectiveness of the proposed method.

Remote Sens. 2021, 13, 2526 15 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 26

images shown in the rectangles). Table 4 shows the number of points and density of the
original point cloud, the initially extracted edges, and the upsampling edges.

(a) (b)

Figure 7. (a) Points on the extracted 3D edges of the gymnasium using the change-of-curvature and type (b) function. (b)
Points obtained by executing our upsampling for the points in (a). The parameters are set as follows: ୲݂୦ = ୫୧୬ߙ ,0.3 ୫ୟ୶ߙ ,0.2= = 1.0, and ݀ = 3.0. Each large rectangle shows the enlarged image of the area indicated by the corresponding
small rectangle.

Figure 8a shows the result of transparent fused visualization, which is created by
applying SPBR to the fused point dataset of the original laser-scanned points and the edge
points in Figure 7a. Figure 8b shows a similar transparent fused visualization, for which
the edge points in Figure 7b obtained by our upsampling network are used. We can see
that the connectivity of the 3D edges is improved in Figure 8b, and the edge-highlighting
effect is improved.

(a) (b)

Figure 8. Fused transparent visualization of the original 3D-scanned point cloud with the extracted edge points. (a) shows
the fusion with the edge points before upsampling, and (b) shows the fusion after the upsampling using our proposed
network.

5.3.2. Comparison with Existing Upsampling Networks

In this subsection, we compare the upsampling results of our proposed network with
those of the existing deep learning networks for point upsampling. We demonstrate that
our proposed network, which is designed and trained for upsampling 3D edges, works
better. For the experiments, we first use a typical computer aided design (CAD) model,
as shown in Figure 9a, which is selected from ShapeNetCore [40]. To extract the 3D edges
of the CAD model, we generate 50,000 points on its surface and then adopt the change-
of-curvature Cλ as the feature value f with the type (a) function to extract the edges. The
extracted edges are shown in Figure 9b.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 26

Figure 8. Fused transparent visualization of the original 3D-scanned point cloud with the extracted edge points. (a) shows
the fusion with the edge points before upsampling, and (b) shows the fusion after the upsampling using our proposed
network.

Table 4. The number of points and density of the gymnasium data.

Data Scale [m] Number of Points Density ()
࢙࢚] ⁄]

Original point cloud 25.59 × 43.42 × 20.04
5,234,550 5.21

Initially extracted edges 1,211,452 4.38
Upsampling edges 4,845,808 4.84

The experimental results presented in this subsection demonstrate that our method
successfully increases the point density and connectivity of the 3D edges extracted from a
3D-scanned point cloud. This effect improves the visibility and comprehensibility of com-
plex 3D-scanned objects in their transparent visualization. The goal of our work is to in-
crease the point density in the edge regions, especially in the inhomogeneous sparse edge
regions. As shown in Tables 3 and 4, our method can effectively increase the density of
the edge regions, which also proves the effectiveness of the proposed method.

5.3.2. Comparison with Existing Upsampling Networks
In this subsection, we compare the upsampling results of our proposed network with

those of the existing deep learning networks for point upsampling. We demonstrate that
our proposed network, which is designed and trained for upsampling 3D edges, works
better. For the experiments, we first use a typical computer aided design (CAD) model, as
shown in Figure 9a, which is selected from ShapeNetCore [40].To extract the 3D edges of
the CAD model, we generate 50,000 points on its surface and then adopt the change-of-
curvature ߣܥ as the feature value ݂ with the type (a) function to extract the edges. The
extracted edges are shown in Figure 9b.

(a) (b)

Figure 9. (a) CAD model of the Resort Sofa Bed. (b) shows the extracted edge points by adopting change-of-curvature and
the type (a) function with ݂th = maxߙ ,0.2 = 1.0.

Figure 10 compares the results of upsampling the point cloud in Figure 9b by apply-
ing (a) PU-NET, (b) PU-GAN, and (c) our proposed network. For PU-NET and PU-GAN,
since they are proposed to be mainly applied to the upsampling task of the overall point
cloud, in the upsampling task for the edge portion, the results contain numerous points
beyond the edges. In contrast, our network is more discriminative for edges and can gen-
erate new points at the correct edges.

Figure 9. (a) CAD model of the Resort Sofa Bed. (b) shows the extracted edge points by adopting change-of-curvature and
the type (a) function with fth = 0.2, αmax = 1.0.

Figure 10 compares the results of upsampling the point cloud in Figure 9b by applying
(a) PU-NET, (b) PU-GAN, and (c) our proposed network. For PU-NET and PU-GAN, since
they are proposed to be mainly applied to the upsampling task of the overall point cloud,
in the upsampling task for the edge portion, the results contain numerous points beyond

Remote Sens. 2021, 13, 2526 16 of 26

the edges. In contrast, our network is more discriminative for edges and can generate new
points at the correct edges.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26

(a) (b) (c)

Figure 10. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning network.

To evaluate the point feature extraction module in our proposed network, including
the global and local feature extractors, we removed each of them from the network and
generated upsampling results for the extracted edge points in Figure 9b. Figure 11 shows
the upsampling results. In the case of using only local features, the generated new points
tend to cluster more in one place on the edges, especially at the corners, where this clus-
tering effect is more pronounced. This is due to the local features reflecting only the fea-
tures in the neighborhoods, and the lack of relationships between the neighborhoods
cause the points in the generated upsampled edges to cluster more in the respective local
neighborhoods. Conversely, the generated upsampled edges cannot present clear edge
lines when using only global features. Due to the lack of local geometric information, the
generated new points cannot be clustered around the edges and even fail to form a con-
tinuous edge in some regions. Thus, as shown in Figure 10c, our proposed full point fea-
ture extraction module performs the best. The absence of either the local features or the
global features reduces the overall performance, which shows that both of them contrib-
ute in the network.

(a) (b)

Figure 11. Ablation study on point feature extraction module. (a) shows the upsampling result using only local features,
and (b) shows the upsampling result using only global features.

Then, we use our 3D-scanned data of a campus building (see Figure 12), for which
we know the ground truth of the 3D edges well. Figure 13 shows the edge points extracted
from the points in Figure 12. In the following, we use these edge points as the input data
of the upsampling. The edge points are extracted according to the direction in STEP 1 (see
Section 4.1). The type (a) function is selected, and the change-of-curvature ߣܥ is adopted
as the feature value ݂ with a threshold value ୲݂୦ = 0.25 . We set ߙ୫ୟ୶ = 0.23, which
means that the downsampling is executed excessively for our upsampling tests. We in-
vestigate the recovery of the edge points when our proposed network and the existing
networks are applied. In particular, we focus on the point recovery in the selected areas
shown in the rectangles.

Figure 10. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning network.

To evaluate the point feature extraction module in our proposed network, including
the global and local feature extractors, we removed each of them from the network and
generated upsampling results for the extracted edge points in Figure 9b. Figure 11 shows
the upsampling results. In the case of using only local features, the generated new points
tend to cluster more in one place on the edges, especially at the corners, where this
clustering effect is more pronounced. This is due to the local features reflecting only the
features in the neighborhoods, and the lack of relationships between the neighborhoods
cause the points in the generated upsampled edges to cluster more in the respective local
neighborhoods. Conversely, the generated upsampled edges cannot present clear edge
lines when using only global features. Due to the lack of local geometric information,
the generated new points cannot be clustered around the edges and even fail to form a
continuous edge in some regions. Thus, as shown in Figure 10c, our proposed full point
feature extraction module performs the best. The absence of either the local features or the
global features reduces the overall performance, which shows that both of them contribute
in the network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26

(a) (b) (c)

Figure 10. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning network.

To evaluate the point feature extraction module in our proposed network, including
the global and local feature extractors, we removed each of them from the network and
generated upsampling results for the extracted edge points in Figure 9b. Figure 11 shows
the upsampling results. In the case of using only local features, the generated new points
tend to cluster more in one place on the edges, especially at the corners, where this clus-
tering effect is more pronounced. This is due to the local features reflecting only the fea-
tures in the neighborhoods, and the lack of relationships between the neighborhoods
cause the points in the generated upsampled edges to cluster more in the respective local
neighborhoods. Conversely, the generated upsampled edges cannot present clear edge
lines when using only global features. Due to the lack of local geometric information, the
generated new points cannot be clustered around the edges and even fail to form a con-
tinuous edge in some regions. Thus, as shown in Figure 10c, our proposed full point fea-
ture extraction module performs the best. The absence of either the local features or the
global features reduces the overall performance, which shows that both of them contrib-
ute in the network.

(a) (b)

Figure 11. Ablation study on point feature extraction module. (a) shows the upsampling result using only local features,
and (b) shows the upsampling result using only global features.

Then, we use our 3D-scanned data of a campus building (see Figure 12), for which
we know the ground truth of the 3D edges well. Figure 13 shows the edge points extracted
from the points in Figure 12. In the following, we use these edge points as the input data
of the upsampling. The edge points are extracted according to the direction in STEP 1 (see
Section 4.1). The type (a) function is selected, and the change-of-curvature ߣܥ is adopted
as the feature value ݂ with a threshold value ୲݂୦ = 0.25 . We set ߙ୫ୟ୶ = 0.23, which
means that the downsampling is executed excessively for our upsampling tests. We in-
vestigate the recovery of the edge points when our proposed network and the existing
networks are applied. In particular, we focus on the point recovery in the selected areas
shown in the rectangles.

Figure 11. Ablation study on point feature extraction module. (a) shows the upsampling result using only local features,
and (b) shows the upsampling result using only global features.

Then, we use our 3D-scanned data of a campus building (see Figure 12), for which we
know the ground truth of the 3D edges well. Figure 13 shows the edge points extracted
from the points in Figure 12. In the following, we use these edge points as the input data of
the upsampling. The edge points are extracted according to the direction in STEP 1 (see
Section 4.1). The type (a) function is selected, and the change-of-curvature Cλ is adopted as
the feature value f with a threshold value fth = 0.25. We set αmax = 0.23, which means
that the downsampling is executed excessively for our upsampling tests. We investigate
the recovery of the edge points when our proposed network and the existing networks are

Remote Sens. 2021, 13, 2526 17 of 26

applied. In particular, we focus on the point recovery in the selected areas shown in the
rectangles.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26

Figure 12. 3D laser-scanned data used in our comparative experiments of deep learning networks
(10,480,242 points). The scanned target is the campus building of Kyoto Women’s University, Ja-
pan.

Figure 14 compares the results of upsampling the point cloud in Figure 13 by apply-
ing (a) PU-NET, (b) PU-GAN, and (c) our proposed network. All three networks generate
new points on and around the edges to increase the point density. However, the existing
networks tend to create many extra points in non-edge regions. This is because they can-
not distinguish between edge and non-edge regions. In contrast, our proposed network
intensively creates points in the edge regions. In the three images in Figure 14, we selected
the areas where the differences mentioned above were most pronounced (see the enlarged
images in the rectangles). In the enlarged images in Figure 14c, the number of points in
the non-edge region increased somewhat, but the ratio is much smaller than in Figure
14a,b. As a result, our proposed network works better for increasing point density on the
3D edges and improving their connectivity.

Figure 13. Edge points extracted from the 3D laser-scanned points in Figure 12. We use these edge
points for our comparative study of the upsampling. Each large rectangle shows the enlarged im-
age of the area indicated by the small rectangle with the same shape.

Figure 12. 3D laser-scanned data used in our comparative experiments of deep learning networks
(10,480,242 points). The scanned target is the campus building of Kyoto Women’s University, Japan.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26

Figure 12. 3D laser-scanned data used in our comparative experiments of deep learning networks
(10,480,242 points). The scanned target is the campus building of Kyoto Women’s University, Ja-
pan.

Figure 14 compares the results of upsampling the point cloud in Figure 13 by apply-
ing (a) PU-NET, (b) PU-GAN, and (c) our proposed network. All three networks generate
new points on and around the edges to increase the point density. However, the existing
networks tend to create many extra points in non-edge regions. This is because they can-
not distinguish between edge and non-edge regions. In contrast, our proposed network
intensively creates points in the edge regions. In the three images in Figure 14, we selected
the areas where the differences mentioned above were most pronounced (see the enlarged
images in the rectangles). In the enlarged images in Figure 14c, the number of points in
the non-edge region increased somewhat, but the ratio is much smaller than in Figure
14a,b. As a result, our proposed network works better for increasing point density on the
3D edges and improving their connectivity.

Figure 13. Edge points extracted from the 3D laser-scanned points in Figure 12. We use these edge
points for our comparative study of the upsampling. Each large rectangle shows the enlarged im-
age of the area indicated by the small rectangle with the same shape.

Figure 13. Edge points extracted from the 3D laser-scanned points in Figure 12. We use these edge
points for our comparative study of the upsampling. Each large rectangle shows the enlarged image
of the area indicated by the small rectangle with the same shape.

Figure 14 compares the results of upsampling the point cloud in Figure 13 by applying
(a) PU-NET, (b) PU-GAN, and (c) our proposed network. All three networks generate
new points on and around the edges to increase the point density. However, the existing
networks tend to create many extra points in non-edge regions. This is because they
cannot distinguish between edge and non-edge regions. In contrast, our proposed network
intensively creates points in the edge regions. In the three images in Figure 14, we selected
the areas where the differences mentioned above were most pronounced (see the enlarged
images in the rectangles). In the enlarged images in Figure 14c, the number of points in the
non-edge region increased somewhat, but the ratio is much smaller than in Figure 14a,b.
As a result, our proposed network works better for increasing point density on the 3D
edges and improving their connectivity.

Remote Sens. 2021, 13, 2526 18 of 26Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 26

(a) (b) (c)

Figure 14. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning network.
Each large rectangle shows the enlarged image of the area indicated by the small rectangle with the same shape, corre-
sponding to Figure 13.

It should also be noted here that our network is robust for the measurement noise
included in the 3D-scanned data. The noise distributes the 3D-scanned points out of the
edge regions. Our network tends to ignore such outliers. In addition, we can also use the
statistical outlier removal (SOR) filter together with our network for very noisy data (see
the following subsection for details).

We compare the performance of the three upsampling networks in Figure 15, which
shows the frequency distribution of the point number with respect to the feature value.
We computed the feature value ݂ for the results obtained by PU-NET, PU-GAN, and our
proposed method. We adopted change-of-curvature ߣܥ as the feature value ݂ and com-
puted it at each point in every upsampling result. We set ୲݂୦ = 0.25 in the feature value-
based edge extraction to extract the edge points. This means that we regard points with ܥఒ < 0.25 as nonedge points. Therefore, the successful upsampling of the edge points
should have the following features: (i) points are intensively created within the edge re-
gion of ܥఒ ≥ 0.25. (ii) The number of points created in the non-edge region of ܥఒ < 0.25
is sufficiently small. In Figure 15, we can see that the proposed method satisfies both (i)
and (ii) best. A more quantitative comparison of the three networks is summarized in Ta-
ble 5. First, the ratio of edge points with ܥఒ ≥ 0.25 is higher than 90% only in our method.
Second, the Hausdorff and cloud-to-cloud distances between the point clouds before and
after upsampling are smallest in our method, which means that our upsampling retains
the edge regions specified by the initially extracted edge extraction best.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

N
um

be
r o

f p
oi

nt
s

Feature value (change-of-curvature Cλ)

 Initially extracted edges
 PU-NET
 PU-GAN
 Proposed method

Figure 14. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning net-
work. Each large rectangle shows the enlarged image of the area indicated by the small rectangle with the same shape,
corresponding to Figure 13.

It should also be noted here that our network is robust for the measurement noise
included in the 3D-scanned data. The noise distributes the 3D-scanned points out of the
edge regions. Our network tends to ignore such outliers. In addition, we can also use the
statistical outlier removal (SOR) filter together with our network for very noisy data (see
the following subsection for details).

We compare the performance of the three upsampling networks in Figure 15, which
shows the frequency distribution of the point number with respect to the feature value.
We computed the feature value f for the results obtained by PU-NET, PU-GAN, and
our proposed method. We adopted change-of-curvature Cλ as the feature value f and
computed it at each point in every upsampling result. We set fth = 0.25 in the feature
value-based edge extraction to extract the edge points. This means that we regard points
with Cλ < 0.25 as nonedge points. Therefore, the successful upsampling of the edge points
should have the following features: (i) points are intensively created within the edge region
of Cλ ≥ 0.25. (ii) The number of points created in the non-edge region of Cλ < 0.25 is
sufficiently small. In Figure 15, we can see that the proposed method satisfies both (i) and
(ii) best. A more quantitative comparison of the three networks is summarized in Table 5.
First, the ratio of edge points with Cλ ≥ 0.25 is higher than 90% only in our method.
Second, the Hausdorff and cloud-to-cloud distances between the point clouds before and
after upsampling are smallest in our method, which means that our upsampling retains
the edge regions specified by the initially extracted edge extraction best.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 26

(a) (b) (c)

Figure 14. Results of the upsampling when using (a) PU-NET, (b) PU-GAN, and (c) our proposed deep learning network.
Each large rectangle shows the enlarged image of the area indicated by the small rectangle with the same shape, corre-
sponding to Figure 13.

It should also be noted here that our network is robust for the measurement noise
included in the 3D-scanned data. The noise distributes the 3D-scanned points out of the
edge regions. Our network tends to ignore such outliers. In addition, we can also use the
statistical outlier removal (SOR) filter together with our network for very noisy data (see
the following subsection for details).

We compare the performance of the three upsampling networks in Figure 15, which
shows the frequency distribution of the point number with respect to the feature value.
We computed the feature value ݂ for the results obtained by PU-NET, PU-GAN, and our
proposed method. We adopted change-of-curvature ߣܥ as the feature value ݂ and com-
puted it at each point in every upsampling result. We set ୲݂୦ = 0.25 in the feature value-
based edge extraction to extract the edge points. This means that we regard points with ܥఒ < 0.25 as nonedge points. Therefore, the successful upsampling of the edge points
should have the following features: (i) points are intensively created within the edge re-
gion of ܥఒ ≥ 0.25. (ii) The number of points created in the non-edge region of ܥఒ < 0.25
is sufficiently small. In Figure 15, we can see that the proposed method satisfies both (i)
and (ii) best. A more quantitative comparison of the three networks is summarized in Ta-
ble 5. First, the ratio of edge points with ܥఒ ≥ 0.25 is higher than 90% only in our method.
Second, the Hausdorff and cloud-to-cloud distances between the point clouds before and
after upsampling are smallest in our method, which means that our upsampling retains
the edge regions specified by the initially extracted edge extraction best.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

N
um

be
r o

f p
oi

nt
s

Feature value (change-of-curvature Cλ)

 Initially extracted edges
 PU-NET
 PU-GAN
 Proposed method

Figure 15. Frequency distribution of the point number with respect to the feature value (change-of-
curvature Cλ) for the initially extracted edge points and the upsampled edge points by using the
three networks.

Remote Sens. 2021, 13, 2526 19 of 26

Table 5. Quantitative comparisons of the upsampling networks.

Ratio of Edge Points
(Cλ ≥ 0.25)

Cloud-to-Cloud
Distance (10−2)

Hausdorff
Distance

PU-NET 75.00% 4.42 0.89
PU-GAN 84.02% 3.53 1.44

Proposed method 92.71% 2.65 0.64

5.4. Use of Statistical Outlier Removal (SOR) Filter for Noisy Data

For noisy data, it is effective to use a statistical outlier removal filter (SOR filter) [41],
which eliminates points that are sufficiently distant from other points further than the
average interpoint distance. The SOR filter works well in a combined manner with our
upsampling network.

For the 3D-scanned data in Figure 16, we executed experiments to investigate the
effects of the SOR in its combined use with our upsampling network. First, we extracted
edge points using linearity Lλ as the feature value (fth = 0.25) and adopting the type (b)
function and then increased the extracted points solely using our upsampling network. The
result is shown in Figure 17. Figure 17a shows the obtained edge points, and Figure 17b
shows their transparent fused visualization with the original 3D-scanned points in Figure 16.
In Figure 17a, we can see that many outlier points are extracted incorrectly, suffering from
measurement noise. These outlier points deteriorate the visibility of the edge-highlighted
transparent visualization (see Figure 17b). In contrast, Figure 18 shows the improved
results from using the SOR filter together with our upsampling network. The edge points
in Figure 18a are created by applying the SOR filter before and after upsampling. In
Figure 18a, we can see that the outlier points are significantly suppressed compared to
Figure 17a. Figure 18b shows an edge-highlighted transparent fused visualization similar
to that in Figure 17b, using the improved edge points in Figure 18a. We can see that the
suppression of the outlier points results in improved visibility of the edge-highlighting
transparent visualization, although the total number of edge points is reduced.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 26

Figure 15. Frequency distribution of the point number with respect to the feature value (change-
of-curvature ܥఒ) for the initially extracted edge points and the upsampled edge points by using
the three networks.

Table 5. Quantitative comparisons of the upsampling networks.

 Ratio of Edge Points
ࣅ) ≥ .)

Cloud-to-Cloud
Distance (ି)

Hausdorff
Distance

PU-NET 75.00% 4.42 0.89
PU-GAN 84.02% 3.53 1.44

Proposed method 92.71% 2.65 0.64

5.4. Use of Statistical Outlier Removal (SOR) Filter for Noisy Data
For noisy data, it is effective to use a statistical outlier removal filter (SOR filter) [41],

which eliminates points that are sufficiently distant from other points further than the
average interpoint distance. The SOR filter works well in a combined manner with our
upsampling network.

For the 3D-scanned data in Figure 16, we executed experiments to investigate the
effects of the SOR in its combined use with our upsampling network. First, we extracted
edge points using linearity ܮఒ as the feature value (୲݂୦ = 0.25) and adopting the type (b)
function and then increased the extracted points solely using our upsampling network.
The result is shown in Figure 17. Figure 17a shows the obtained edge points, and Figure
17b shows their transparent fused visualization with the original 3D-scanned points in
Figure 16. In Figure 17a, we can see that many outlier points are extracted incorrectly,
suffering from measurement noise. These outlier points deteriorate the visibility of the
edge-highlighted transparent visualization (see Figure 17b). In contrast, Figure 18 shows
the improved results from using the SOR filter together with our upsampling network.
The edge points in Figure 18a are created by applying the SOR filter before and after up-
sampling. In Figure 18a, we can see that the outlier points are significantly suppressed
compared to Figure 17a. Figure 18b shows an edge-highlighted transparent fused visual-
ization similar to that in Figure 17b, using the improved edge points in Figure 18a. We can
see that the suppression of the outlier points results in improved visibility of the edge-
highlighting transparent visualization, although the total number of edge points is re-
duced.

Figure 16. 3D-laser-scanned point cloud of the Hachiman-Yama float used in the Gion Festival in
Kyoto City, Japan (7,866,197 points).

Figure 16. 3D-laser-scanned point cloud of the Hachiman-Yama float used in the Gion Festival in
Kyoto City, Japan (7,866,197 points).

Remote Sens. 2021, 13, 2526 20 of 26
Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 26

(a) (b)

Figure 17. (a) Edge points of the point cloud data in Figure 16. The set of edge points is created by extracting points by
using linearity ܮఒ and adopting the type (b) function and then applying our upsampling network. (b) Edge-highlighted
transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

(a) (b)

Figure 18. (a) Edge points improved by the combined use of the SOR filter with our upsampling network. (b) Edge-high-
lighted transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

In Figure 19, we compare the frequency distribution of the point number with respect
to the feature value for the initially extracted edge points, upsampled edge points without
using the SOR filter, and the upsampled edge points using the SOR filter. By using the
SOR filter, the distributional shape of the upsampled points becomes similar to the ini-
tially extracted edge points. This means that the negative influence of the measurement
noise on the upsampling is reduced successfully.

Table 6 shows the experimental results of the quantitative evaluation of the effects of
the SOR filter. The first data column compares the number of initially extracted edge
points, upsampled edge points without applying the SOR filter, and upsampled edge
points applying the SOR filter. By using the SOR filter, the number of edge points is

Figure 17. (a) Edge points of the point cloud data in Figure 16. The set of edge points is created by extracting points by
using linearity Lλ and adopting the type (b) function and then applying our upsampling network. (b) Edge-highlighted
transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 26

(a) (b)

Figure 17. (a) Edge points of the point cloud data in Figure 16. The set of edge points is created by extracting points by
using linearity ܮఒ and adopting the type (b) function and then applying our upsampling network. (b) Edge-highlighted
transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

(a) (b)

Figure 18. (a) Edge points improved by the combined use of the SOR filter with our upsampling network. (b) Edge-high-
lighted transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

In Figure 19, we compare the frequency distribution of the point number with respect
to the feature value for the initially extracted edge points, upsampled edge points without
using the SOR filter, and the upsampled edge points using the SOR filter. By using the
SOR filter, the distributional shape of the upsampled points becomes similar to the ini-
tially extracted edge points. This means that the negative influence of the measurement
noise on the upsampling is reduced successfully.

Table 6 shows the experimental results of the quantitative evaluation of the effects of
the SOR filter. The first data column compares the number of initially extracted edge
points, upsampled edge points without applying the SOR filter, and upsampled edge
points applying the SOR filter. By using the SOR filter, the number of edge points is

Figure 18. (a) Edge points improved by the combined use of the SOR filter with our upsampling network. (b) Edge-
highlighted transparent visualization using the points of (a) and the original 3D-scanned points in Figure 16.

In Figure 19, we compare the frequency distribution of the point number with respect
to the feature value for the initially extracted edge points, upsampled edge points without
using the SOR filter, and the upsampled edge points using the SOR filter. By using the
SOR filter, the distributional shape of the upsampled points becomes similar to the initially
extracted edge points. This means that the negative influence of the measurement noise on
the upsampling is reduced successfully.

Remote Sens. 2021, 13, 2526 21 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 26

reduced by 24 percent. However, the number is still sufficiently larger than the initially
extracted edge points. The second data column compares the ratio of the edge points with ܮఒ ≥ 0.25. We can see that upsampling with the SOR filter realizes the largest ratio. Alt-
hough the increased ratio is only 2 percent compared with the initially extracted edge
points, it reflects the elimination of the outlier points demonstrated in Figure 18. The third
data column compares the average feature value at the edge points. We can see that the
value is largest when using the SOR filter, which means that the real edge regions are most
intensively extracted.

Figure 19. Frequency distribution of the point number with respect to the feature value (linearity ܮఒ) for the initially extracted edge points, upsampled edge points without using the SOR filter, and
the upsampled edge points using the SOR filter.

Table 6. Quantitative evaluation of the effects of the SOR filter.

 Number of
Edge Points

Ratio of Edge Points
ࣅࡸ) ≥ .)

Average ࣅࡸ of the
Edge Points

Initially extracted edges 1,200,278 95.32% 0.64
Upsampling edges 4,801,112 95.67% 0.66

SOR filter 3,661,036 97.17% 0.73

5.5. Visibility Improvement of Soft Edges Using Our Upsampling Network
Soft or rounded edges often characterize the 3D structure of objects as well as sharp

edges. As described in Section 3.2, the type (c) function is available for extracting soft
edges. When using the type (c) function, edges are represented by the gradation of point
density, which leads to the gradation of brightness in the visualized image. However, the
gradient becomes blurred if the local point density is insufficient. In such a case, we should
upsample the points on soft edges. Our proposed upsampling also works well for upsam-
pling soft edges.

We extracted the soft edges for 3D-scanned data of the Japanese armor in Figure 20a.
The surface of this armor has many unsharp concave and convex local areas, that is, soft
edges. We extracted the soft edges using the type (c) function with change-of-curvature ܥఒ as the feature value ݂. Figure 20b shows the extracted edge points before upsampling.
There are many local regions where the soft edges are not clearly visible; for example, see
the enlarged image in the rectangle. The point density gradation does not express the local
concavity and convexity well. This leads to unclear visualization of the soft edges. In con-
trast, Figure 20c shows the edge points increased by our upsampling network, which

0.0 0.2 0.4 0.6 0.8 1.0

0

10,000

20,000

30,000

40,000

50,000

N
um

be
r o

f p
oi

nt
s

Feature value (linearity Lλ)

 Initially extracted edges
 Upsampling edges
 SOR filter

Figure 19. Frequency distribution of the point number with respect to the feature value (linearity Lλ)
for the initially extracted edge points, upsampled edge points without using the SOR filter, and the
upsampled edge points using the SOR filter.

Table 6 shows the experimental results of the quantitative evaluation of the effects
of the SOR filter. The first data column compares the number of initially extracted edge
points, upsampled edge points without applying the SOR filter, and upsampled edge points
applying the SOR filter. By using the SOR filter, the number of edge points is reduced by
24 percent. However, the number is still sufficiently larger than the initially extracted edge
points. The second data column compares the ratio of the edge points with Lλ ≥ 0.25.
We can see that upsampling with the SOR filter realizes the largest ratio. Although the
increased ratio is only 2 percent compared with the initially extracted edge points, it reflects
the elimination of the outlier points demonstrated in Figure 18. The third data column
compares the average feature value at the edge points. We can see that the value is largest
when using the SOR filter, which means that the real edge regions are most intensively
extracted.

Table 6. Quantitative evaluation of the effects of the SOR filter.

Number of
Edge Points

Ratio of Edge
Points (Lλ ≥ 0.25)

Average Lλ of the
Edge Points

Initially extracted edges 1,200,278 95.32% 0.64
Upsampling edges 4,801,112 95.67% 0.66

SOR filter 3,661,036 97.17% 0.73

5.5. Visibility Improvement of Soft Edges Using Our Upsampling Network

Soft or rounded edges often characterize the 3D structure of objects as well as sharp
edges. As described in Section 3.2, the type (c) function is available for extracting soft
edges. When using the type (c) function, edges are represented by the gradation of point
density, which leads to the gradation of brightness in the visualized image. However,
the gradient becomes blurred if the local point density is insufficient. In such a case, we
should upsample the points on soft edges. Our proposed upsampling also works well for
upsampling soft edges.

We extracted the soft edges for 3D-scanned data of the Japanese armor in Figure 20a.
The surface of this armor has many unsharp concave and convex local areas, that is, soft
edges. We extracted the soft edges using the type (c) function with change-of-curvature
Cλ as the feature value f . Figure 20b shows the extracted edge points before upsampling.
There are many local regions where the soft edges are not clearly visible; for example, see
the enlarged image in the rectangle. The point density gradation does not express the local
concavity and convexity well. This leads to unclear visualization of the soft edges. In

Remote Sens. 2021, 13, 2526 22 of 26

contrast, Figure 20c shows the edge points increased by our upsampling network, which
learned the soft-edge features beforehand. The enlarged image in the rectangle, which
clips the same part as that in Figure 20b, shows the clearer point density gradation. This
successfully makes the soft edges more visible.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 26

learned the soft-edge features beforehand. The enlarged image in the rectangle, which
clips the same part as that in Figure 20b, shows the clearer point density gradation. This
successfully makes the soft edges more visible.

(a) (b) (c)

Figure 20. Upsampling experiment for 3D-scanned data with soft edges. The scanned target is the Japanese armor. Image
(a) shows the 3D-scanned point cloud (9,094,466 points) acquired by our photogrammetric 3D scanning. Image (b) shows
the extracted edge points (2,571,474 points) by adopting change-of-curvature and the type (c) function with ݂th = thܨ ,0.03 = minߙ ,0.2 = maxߙ ,0.2 = 1.0, and ݀ = 2.0. Image (c) shows the soft-edge points increased by our upsampling net-
work (10,285,896 points).

Figure 21 shows the results of the edge-highlighted transparent visualization. We
fused the extracted edge points with the original 3D-scanned points in Figure 20a and
applied SPBR for the integrated point dataset. Figure 21a shows the result of using the
initially extracted edges, i.e., the edge points in Figure 20b, and Figure 21b shows the re-
sult of using the upsampled edge points in Figure 20c. The edge points in Figure 20b are
multiplied by simple copying, resulting in the same number of points as the edge points
in Figure 20c. (In SPBR, point multiplication based on simple point copying is allowed for
increasing opacity [1].) By comparing Figure 21a and Figure 21b, we can see that the latter
visualizes the soft edges more clearly. This improvement is due to the clear gradation of
the point density realized by our proposed network. Thus, our upsampling network
works effectively to improve the comprehensibility of the transparent visualization of an
object with soft edges.

Figure 20. Upsampling experiment for 3D-scanned data with soft edges. The scanned target is the Japanese armor. Image
(a) shows the 3D-scanned point cloud (9,094,466 points) acquired by our photogrammetric 3D scanning. Image (b) shows
the extracted edge points (2,571,474 points) by adopting change-of-curvature and the type (c) function with fth = 0.03,
Fth = 0.2, αmin = 0.2, αmax = 1.0, and d = 2.0. Image (c) shows the soft-edge points increased by our upsampling network
(10,285,896 points).

Figure 21 shows the results of the edge-highlighted transparent visualization. We
fused the extracted edge points with the original 3D-scanned points in Figure 20a and
applied SPBR for the integrated point dataset. Figure 21a shows the result of using the
initially extracted edges, i.e., the edge points in Figure 20b, and Figure 21b shows the
result of using the upsampled edge points in Figure 20c. The edge points in Figure 20b are
multiplied by simple copying, resulting in the same number of points as the edge points in
Figure 20c. (In SPBR, point multiplication based on simple point copying is allowed for
increasing opacity [1].) By comparing Figure 21a and Figure 21b, we can see that the latter
visualizes the soft edges more clearly. This improvement is due to the clear gradation of
the point density realized by our proposed network. Thus, our upsampling network works
effectively to improve the comprehensibility of the transparent visualization of an object
with soft edges.

Remote Sens. 2021, 13, 2526 23 of 26
Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 26

(a) (b)

Figure 21. Edge highlighting by fusing extracted edge points with the 3D-scanned points in Figure 20a. Figure (a) shows
the result of fusing the initially extracted edge points in Figure 20b, and Figure (b) shows the results of fusing the upsam-
pled edge points in Figure 20c.

6. Discussion
We successfully demonstrate the effectiveness of the proposed upsampling method

on the 3D edges of point cloud data. Applying the proposed method to the upsampling
task on synthetic edges and scanned edges, we find that the GAN network-based upsam-
pling method is effective in improving the visibility of edge regions in the point cloud.
Our results in transparent visualization show that the edge regions are more visible com-
pared with the conventional point cloud upsampling network.

Compared with our previous work [2], which uses 3D edges obtained by feature
value extraction, the proposed deep learning-based edge upsampling method can learn
the features of edges in the neural network and form more continuous and dense edges
by expanding the features of edges. We also demonstrate in Section 5.3 that our method
can enhance the visibility of 3D edges in both opaque and transparent visualization on
real 3D-scanned data. Compared with the conventional upsampling networks of PU-NET
[17] and PU-GAN [19], our method can focus more on the edge regions of point clouds
and generate more edge points. In addition, our results in Section 5 also show that our
method achieves better performance for large-scale 3D-scanned point clouds.

For the 3D-edge upsampling task, we consider that the ideal training data should
consist of high-precision edges extracted from high-density scanned point clouds. How-
ever, it is challenging to collect a large training set of high-precision 3D-edge data at pre-
sent because real 3D-scanned point clouds generally have a relatively large number of
missing portions, causing extracted edges with low accuracy. Therefore, in our work, a
patch-based training strategy is adopted to obtain the sparse input point cloud. As shown
in Section 5, for real 3D-scanned point clouds, the extracted edges also generally contain
many noise points in non-edge regions; thus, we consider that the sparse input point
clouds, which are generated by randomly selecting points, can simulate the edges in real
3D-scanned data relatively well. In addition, by applying this approach to synthetic and
real edges, we find that using the generated sparse point cloud in the training phase is

Figure 21. Edge highlighting by fusing extracted edge points with the 3D-scanned points in
Figure 20a. Figure (a) shows the result of fusing the initially extracted edge points in Figure 20b, and
Figure (b) shows the results of fusing the upsampled edge points in Figure 20c.

6. Discussion

We successfully demonstrate the effectiveness of the proposed upsampling method on
the 3D edges of point cloud data. Applying the proposed method to the upsampling task
on synthetic edges and scanned edges, we find that the GAN network-based upsampling
method is effective in improving the visibility of edge regions in the point cloud. Our
results in transparent visualization show that the edge regions are more visible compared
with the conventional point cloud upsampling network.

Compared with our previous work [2], which uses 3D edges obtained by feature
value extraction, the proposed deep learning-based edge upsampling method can learn
the features of edges in the neural network and form more continuous and dense edges
by expanding the features of edges. We also demonstrate in Section 5.3 that our method
can enhance the visibility of 3D edges in both opaque and transparent visualization on real
3D-scanned data. Compared with the conventional upsampling networks of PU-NET [17]
and PU-GAN [19], our method can focus more on the edge regions of point clouds and
generate more edge points. In addition, our results in Section 5 also show that our method
achieves better performance for large-scale 3D-scanned point clouds.

For the 3D-edge upsampling task, we consider that the ideal training data should
consist of high-precision edges extracted from high-density scanned point clouds. However,
it is challenging to collect a large training set of high-precision 3D-edge data at present
because real 3D-scanned point clouds generally have a relatively large number of missing
portions, causing extracted edges with low accuracy. Therefore, in our work, a patch-based
training strategy is adopted to obtain the sparse input point cloud. As shown in Section 5,
for real 3D-scanned point clouds, the extracted edges also generally contain many noise
points in non-edge regions; thus, we consider that the sparse input point clouds, which
are generated by randomly selecting points, can simulate the edges in real 3D-scanned
data relatively well. In addition, by applying this approach to synthetic and real edges,
we find that using the generated sparse point cloud in the training phase is effective; thus,

Remote Sens. 2021, 13, 2526 24 of 26

we consider that the sparse point cloud generated by the polygon patches can effectively
obtain the edge features of the original data.

7. Conclusions

In this paper, we proposed a deep learning-based upsampling method that is suitable
for intensively increasing the number of edge points of 3D-scanned data. We applied the
proposed methods to various real 3D-scanned data and demonstrated its effectiveness
compared to the existing upsampling networks. Our edge upsampling network works
well for both sharp and soft edges. We also showed that the creation of outlier points is
significantly reduced by the combined use of the SOR filter. Thus, for a variety of 3D-
scanned point cloud data, our upsampling network works well for increasing the point
density in the edge regions. In addition, the network successfully intensively improves
the point-distributional uniformity and connectivity in the edge regions. Therefore, it is
possible to improve the visibility of the edge-highlighting transparent visualization realized
by the recently proposed opacity-based edge highlighting [2].

There are still limitations to our method. The quality of the upsampled edges depends
on the original 3D-scanned point cloud, especially the point distribution in its edge regions.
For example, in cases where points are partially very sparse or largely lacking in the edge
regions, our method cannot completely compensate for the insufficiency. In the future, we
plan to investigate a multi-object training strategy that combines features from the original
scanned point cloud with features from the edge data, which will encourage the network
to better distinguish between edge and non-edge regions.

We believe the proposed method enables easier recognition of complex 3D-scanned
data and contributes to dynamic/static visual analyses. We plan to apply our edge-
highlighting transparent visualization method to the collision-warning visualization of
dynamical/moving objects. 3D edges are likely to be involved in collisions, and thus,
edge-highlighting visualization leads to efficient collision detection. For example, our
recent visual collision simulation of a festival float and street obstacles [42] will become
faster and more visible.

Author Contributions: Conceptualization, W.L., K.H., L.L. and S.T.; methodology, W.L., K.H., L.L.
and S.T.; software, W.L.; validation, W.L.; formal analysis, W.L.; investigation, W.L.; resources, A.T.;
data curation, W.L. and K.H.; writing—original draft preparation, W.L.; writing—review and editing,
W.L., K.H., L.L. and S.T.; visualization, W.L.; supervision, L.L. and S.T.; project administration, S.T.;
funding acquisition, S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by JSPS KAKENHI Grant No. 19KK0256 and the AY2020
Program for Asia-Japan Research Development, Ritsumeikan University.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Ritto History Museum, Y. Kitao of Kyoto
Women’s University, the Hachiman-Yama Preservation Society, the Tokushima Castle Museum, and
Shrewd Design Co. Ltd. for their cooperation in executing the 3D scanning.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K. See-Through Imaging

of Laser-Scanned 3D Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds. In Proceedings of the
ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016;
Volume III-3.

2. Kawakami, K.; Hasegawa, K.; Li, L.; Nagata, H.; Adachi, M.; Yamaguchi, H.; Thufail, F.I.; Riyanto, S.; Tanaka, S.; Brahmantara.
Opacity-based edge highlighting for transparent visualization of 3D scanned point clouds. ISPRS Ann. Photogramm. Remote. Sens.
Spat. Inf. Sci. 2020, 5, 373–380. [CrossRef]

3. Tanaka, S.; Hasegawa, K.; Shimokubo, Y.; Kaneko, T.; Kawamura, T.; Nakata, S.; Ojima, S.; Sakamoto, N.; Tanaka, H.T.; Koyamada,
K. Particle-Based Transparent Rendering of Implicit Surfaces and its Application to Fused Visualization. In Proceedings of the
Eurographics Conference on Visualization (EuroVis), Vienna, Austria, 5–8 June 2012.

http://doi.org/10.5194/isprs-annals-V-2-2020-373-2020

Remote Sens. 2021, 13, 2526 25 of 26

4. Uchida, T.; Hasegawa, K.; Li, L.; Adachi, M.; Yamaguchi, H.; Thufail, F.I.; Riyanto, S.; Okamoto, A.; Tanaka, S. Noise-robust
transparent visualization of large-scale point clouds acquired by laser scanning. ISPRS J. Photogramm. Remote. Sens. 2020, 161,
124–134. [CrossRef]

5. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. Computing and rendering point set surfaces. IEEE Trans. Vis.
Comput. Graph. 2003, 9, 3–15. [CrossRef]

6. Lipman, Y.; Cohen-Or, D.; Levin, D.; Tal-Ezer, H. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph.
2007, 26, 22. [CrossRef]

7. Huang, H.; Li, D.; Zhang, H.; Ascher, U.; Cohen-Or, D. Consolidation of unorganized point clouds for surface reconstruction.
ACM Trans. Graph. 2009, 28, 1–7. [CrossRef]

8. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp.
4490–4499.

9. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 770–779.

10. Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. PF-Net: Point Fractal Network for 3D Point Cloud Completion. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2020; pp. 7659–7667.

11. Wen, X.; Li, T.; Han, Z.; Liu, Y.-S. Point Cloud Completion by Skip-Attention Network With Hierarchical Folding. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2020; pp. 1936–1945.

12. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Institute of Electrical
and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 652–660.

13. Zhang, Y.; Rabbat, M. A Graph-CNN for 3D Point Cloud Classification. In Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; Institute of Electrical and Electronics
Engineers (IEEE): New York, NY, USA, 2018; pp. 6279–6283.

14. Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 8887–8896.

15. Landrieu, L.; Simonovsky, M. Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 4558–4567.

16. Wang, W.; Yu, R.; Huang, Q.; Neumann, U. SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA; pp. 2569–2578.

17. Yu, L.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.A. PU-Net: Point Cloud Upsampling Network. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 2790–2799.

18. Yifan, W.; Wu, S.; Huang, H.; Cohen-Or, D.; Sorkine-Hornung, O. Patch-based Progressive 3D Point Set Upsampling. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–21 June 2019; pp. 5958–5967.

19. Li, R.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.-A. PU-GAN: A Point Cloud Upsampling Adversarial Network. In Proceedings of
the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; Institute
of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2019; pp. 7203–7212.

20. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H. Shapenet: An
information-rich 3d model repository. arXiv 2015, arXiv:1512.03012 2015.

21. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2015; pp. 1912–1920.

22. West, K.F.; Webb, B.N.; Lersch, J.R.; Pothier, S.; Triscari, J.M.; Iverson, A.E. Context-Driven Automated Target Detection in 3D
Data. In Proceedings of the Automatic Target Recognition XIV, Orlando, FL, USA, 21 September 2004.

23. Rusu, R.B. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. KI Künstliche Intell. 2010, 24,
345–348. [CrossRef]

24. Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D scene interpretation: A framework combining optimal neighborhood size
selection with relevant features. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, II-3, 181–188. [CrossRef]

25. Jutzi, B.; Gross, H. Nearest neighbour classification on laser point clouds to gain object structures from buildings. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 4–7.

http://doi.org/10.1016/j.isprsjprs.2020.01.004
http://doi.org/10.1109/TVCG.2003.1175093
http://doi.org/10.1145/1276377.1276405
http://doi.org/10.1145/1618452.1618522
http://doi.org/10.1007/s13218-010-0059-6
http://doi.org/10.5194/isprsannals-II-3-181-2014

Remote Sens. 2021, 13, 2526 26 of 26

26. Corsini, M.; Cignoni, P.; Scopigno, R. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE
Trans. Vis. Comput. Graph. 2012, 18, 914–924. [CrossRef]

27. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Comput. Vis.
Pattern Recognit. 2017, arXiv:1706.02413 2017.

28. Yu, L.; Li, X.; Fu, C.-W.; Cohen-Or, D.; Heng, P.A. EC-Net: An Edge-Aware Point Set Consolidation Network. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer Science and Business
Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 398–414.

29. Chen, N.; Liu, L.; Cui, Z.; Chen, R.; Ceylan, D.; Tu, C.; Wang, W. Unsupervised Learning of Intrinsic Structural Representation
Points. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 13–19 June 2020; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2020; pp. 9118–9127.

30. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. 2019, 38, 1–12. [CrossRef]

31. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; Guibas, L. Learning Representations and Generative Models for 3d Point Clouds. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 40–49.

32. Yang, Y.; Feng, C.; Shen, Y.; Tian, D. FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 206–215.

33. Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. Pcn: Point Completion Network. In Proceedings of the 2018 International
Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 728–737.

34. Fan, H.; Su, H.; Guibas, L. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Institute of
Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 2463–2471.

35. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least Squares Generative Adversarial Networks. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Institute of Electrical and
Electronics Engineers (IEEE): New York, NY, USA, 2017; pp. 2794–2802.

36. Visionair. Available online: http://www.infra-visionair.eu (accessed on 21 March 2021).
37. Kingma, D.P.; Ba, J. Adam: A method for Stochastic Optimization. In Proceedings of the International Conference Learn Represent

(ICLR), San Diego, CA, USA, 5–8 May 2015.
38. Berger, M.; Levine, J.A.; Nonato, L.G.; Taubin, G.; Silva, C.T. A benchmark for surface reconstruction. ACM Trans. Graph. 2013, 32,

1–17. [CrossRef]
39. Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the

Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [CrossRef]
40. ShapeNetCore. Available online: https://shapenet.org (accessed on 4 June 2021).
41. Rusu, R.B.; Cousins, S. 3d is Here: Point Cloud Library (pcl). In Proceedings of the 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.
42. Li, W.; Shigeta, K.; Hasegawa, K.; Li, L.; Yano, K.; Adachi, M.; Tanaka, S. Transparent Collision Visualization of Point Clouds

Acquired by Laser Scanning. ISPRS Int. J. Geo-Inf. 2019, 8, 425. [CrossRef]

http://doi.org/10.1109/TVCG.2012.34
http://doi.org/10.1145/3326362
http://www.infra-visionair.eu
http://doi.org/10.1145/2451236.2451246
http://doi.org/10.1016/j.isprsjprs.2013.04.009
https://shapenet.org
http://doi.org/10.3390/ijgi8090425

	Introduction
	Eigenvalue-Based 3D Feature Values
	Methods for Transparent Visualization and Edge Highlighting
	Stochastic Point-Based Rendering (SPBR)
	Opacity-Based Edge Highlighting
	Resampling for Controlling Point Density

	Proposed Method for Edge-Highlighting Visualization
	Steps of the Proposed Method
	Proposed Upsampling Network
	Overview
	Preparing the Training Data and Ground Truth
	Generator
	Discriminator
	Loss Function

	Upsampling and Visualization Results and Evaluation of the Proposed Method
	Verifying the Robustness of Upsampling Networks on Simulated Edges
	Datasets and Implementation Details
	Application to Real 3D-Scanned Data
	Results of Upsampling and Visualization for 3D-Edge Regions
	Comparison with Existing Upsampling Networks

	Use of Statistical Outlier Removal (SOR) Filter for Noisy Data
	Visibility Improvement of Soft Edges Using Our Upsampling Network

	Discussion
	Conclusions
	References

