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Abstract: Synthetic aperture radar (SAR) is an active earth observation system with a certain surface
penetration capability and can be employed to observations all-day and all-weather. Ship detection
using SAR is of great significance to maritime safety and port management. With the wide applica-
tion of in-depth learning in ordinary images and good results, an increasing number of detection
algorithms began entering the field of remote sensing images. SAR image has the characteristics of
small targets, high noise, and sparse targets. Two-stage detection methods, such as faster regions with
convolution neural network (Faster RCNN), have good results when applied to ship target detection
based on the SAR graph, but their efficiency is low and their structure requires many computing
resources, so they are not suitable for real-time detection. One-stage target detection methods, such as
single shot multibox detector (SSD), make up for the shortage of the two-stage algorithm in speed but
lack effective use of information from different layers, so it is not as good as the two-stage algorithm
in small target detection. We propose the two-way convolution network (TWC-Net) based on a
two-way convolution structure and use multiscale feature mapping to process SAR images. The
two-way convolution module can effectively extract the feature from SAR images, and the multiscale
mapping module can effectively process shallow and deep feature information. TWC-Net can avoid
the loss of small target information during the feature extraction, while guaranteeing good perception
of a large target by the deep feature map. We tested the performance of our proposed method using
a common SAR ship dataset SSDD. The experimental results show that our proposed method has a
higher recall rate and precision, and the F-Measure is 93.32%. It has smaller parameters and memory
consumption than other methods and is superior to other methods.

Keywords: synthetic aperture radar; ship detection; TWC-Net; two-way convolution; multiscale
feature mapping

1. Introduction

Remote sensing, which is based on aerospace photography, plays an important role
in resource management and disaster measurement. It is the only way to provide global
dynamic observation data so far. In ship detection, using this technology can quickly collect
ship information on the ocean surface, which has an important application in the protection
of marine safety [1,2]. Because of the great difference between remote sensing images and
ordinary optical images, remote sensing image processing is a challenging task.

SAR has the characteristics of all-day and all-weather operation, which is not affected
by weather, such as cloud and fog, and can image in a large area. It has unique advantages
in the military and civil fields and can perform better than other remote sensing methods
in some cases. The application of ship detection based on SAR has appeared for a long
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time. The ship SAR image has the characteristics of small targets, sparse ship, and large
noise interference. The generated SAR images not only have the characteristics of optical
images but also have complex electromagnetic characteristics. Therefore, it is difficult to
process the ship’s SAR images based on SAR.

Because the target of an SAR ship image is small and different from the ordinary
image, it is difficult to get the best result by using the target detection structure designed
according to the ordinary image directly. Therefore, according to the characteristics of the
SAR image, we designed TWC-Net. TWC-Net has a feature extraction structure different
from the residual network (ResNet) [3]. It uses a two-way convolution method to learn
more feature information through fewer convolution layers, reduce residual connection,
and save computing memory. Affected by the design idea of CrevNet [4], this module is a
variant of CrevNet feature extraction.

The effectiveness of the method is verified on the SAR ship data set SSDD [5]. The
experimental results show that this method has good performance in precision, recall,
and F-Measure score for small targets in SAR ships and targets with interference onshore.
In addition, this method has a smaller memory and faster operation speed. The main
contributions of this paper are as follows:

• To solve the problem that the traditional backbone has insufficient ability to extract
SAR features and make the network extract SAR features more effectively, a convolu-
tion model based on a two-way structure is designed. The model makes the feature
be used more effectively in the model through the information exchange between the
upper and lower channels, reduces the loss of information, realizes the use of fewer
parameters to learn more useful information, and reduces the overfitting of the model.

• We design a multi-scale mapping output structure to make more effective use of feature
information at different scales. The different outputs of the structure correspond
to the results of the feature maps of different positions of the backbones. After
simple processing of feature maps, the next step of detection can be conducted, which
improves the detection ability of the model for ships of different sizes.

The rest of this paper is organized as follows. The second part introduces the related
work. The third part introduces the specific implementation details of TWC-Net. The
fourth part introduces the dataset composition and settings, TWC-Net and other models
perform ship detection experiments based on the dataset, and provide different compara-
tive experiments and results. The fifth part analyzes the different results, and finally, the
sixth part summarizes the full text.

2. Related Work

The traditional method of SAR ship image processing, it is based on the mathematical
distribution of the image itself. The constant false alarm rate (CFAR) detection algorithm is
one of the most widely used algorithms. It detects ship targets by modeling the statistical
distribution of background clutter information. Gamma-based global CFAR [6] and global
CFAR [7] sliding window based on distribution are relatively simple algorithms and faster
speeds. However, the traditional method has high artificial design characteristics, poor
adaptability to the changing environment, and it is difficult to further improve the accuracy.
The application of the convolution neural network in common image processing has
achieved good results [3,8,9]. Therefore, the convolutional neural network is gradually
applied in remote sensing image processing [10,11]. The main advantages of neural
networks are high precision, good adaptability to the environment, and the ability to deal
with more complex information.

In the aspect of feature extraction of neural networks, Duta et al. [12] proposed the
idea of the pyramid convolution, which increased the receptive field of the backbone, and
then the pyramid idea made great progress. Lin et al. [13] proposed a feature pyramid
network (FPN) that can fuse multi-scale information and applied it to target detection.
Ghaisi et al. [14] proposed neural architecture search (NAS) FPN by using network search
technology. The object detection method based on the convolutional neural network is
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divided into two structures: two-stage target detection and one-stage target detection.
The main structures of two-stage detection methods include candidate region extraction,
regional target detection, and category prediction. These algorithms include Fast RCNN,
Faster RCNN, R-FCN, etc. [15–17]. The structure using the two-stage detection method has
high accuracy but because its structure has more processing steps, it will consume more
time in target detection. The structure of one-stage target detection integrates candidate
region extraction and target detection prediction. Compared with the two-stage target
detection network, the one-stage target detection network has a simpler structure, so it is
better than the two-stage target detection network in running speed. Such an algorithm
includes SSD, you only look once (YOLO), and so on [18,19]. Due to the lack of an
independent region proposal extraction module in its structure, the accuracy of the one-
stage structure is lower than that of the two-stage structure. RetinaNet [20] is mainly about
the application of focal loss. The author thinks that the accuracy of the one-stage target
detection structure is not as good as that of the two-stage target detection structure because
of the imbalance of samples. The new loss function avoids the impact of sample imbalance
on the results as much as possible through the loss constraint of different samples, the
detection accuracy of one-stage target detection structure is higher than that of the two-
stage target detection structure.

With the application of deep learning in remote sensing images, its effectiveness has
proved an increasing amount, so many researchers begin applying it to ship detection
in SAR images. Chen et al. [21] used a visual geometry group (VGG) network for ship
detection and achieved a good detection effect. To apply the idea of two-stage detection to
SAR ship detection, Zhou et al. [22] improved Faster RCNN and achieved better detection
accuracy. Researchers have favored one-stage detection because of its fast detection speed.
Tang et al. [23] used SAR image denoising to improve the detection of SAR image in a high
noise environment and achieved good results. Chen et al. [24] proposed the separation
attention module to improve the detection effect of YOLOv3 in remote sensing images.
Wang et al. [25] proposed a full neural network based on Gaussian heat map regression,
which has a good effect on remote sensing images. The detection network for processing
common images has many parameters and is easy to overfit. To reduce the number of
parameters, Cozzolino et al. [26] proposed a small network to realize SAR target detection.
Jin et al. [27] proposed a "pixel block to pixel block" convolution neural network for small
ship detection in SAR images. The network adopts a four-layer dense block structure with
the crop, combines with multilayer features to enhance the sensitivity of the network to
small targets, introduces hole convolution to increase the receptive field, reduces the false
alarm rate, and achieves a good detection effect. Chang et al. [28] proposed an improved
version of YOLOv2 for SAR image processing. They merged some of the convolution
layers of YOLOv2 to achieve faster detection. Lin et al. [29] proposed a method for context
feature fusion and proposed a new module to suppress redundant subfeature maps, which
achieved good detection results. Kang et al. [30] proposed the fusion of multi-scale feature
information with the ROI feature, to process the detection network at the same time, to
achieve the utilization of multi-scale information, and to improve the network detection
performance. Cui et al. [11] proposed a dense connected attention pyramid structure,
which overcomes the shortcomings of the traditional pyramid in feature usage. They make
full use of the SAR image features of network learning and enhances the recognition ability
of the model for small and clutter-jamming targets.

3. Methods

In this section, we will describe the details of TWC-Net structure and its application
in SAR ship detection. Experiments by Duta et al. [10] show that in feature extraction,
the deep convolution layer is more sensitive to large targets, and the shallow convolution
layer is more sensitive to small targets. To realize the effective detection of small targets, it
is necessary to use the shallow features more and detect the small target information at
the feature layer with better induction. Therefore, to meet the corresponding information
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output of different scale features, TWC-Net has five output channels. We hope to realize
the detection of the small target and large target, respectively, through multi-scale feature
output and judge whether it is a ship target according to the predicted score of different
scale features. SAR image has the characteristics of sparsity, and the positive and negative
samples are unbalanced. We use the focal loss as the loss function to overcome this problem
and realize the target detection of SAR ships.

3.1. Network Architecture

TWC-Net is mainly composed of three parts: preprocess, two-way convolution, classi-
fication and regression, as shown in Figure 1. The size of the TWC-Net input SAR image
is 600 × 600. The main function of the preprocessing module is to preprocess the input
image, which is composed of the convolution and max-pooling. Because of the large noise
in SAR images, the preprocessing module can effectively remove part of the noise and
create better quality conditions for feature extraction. The two-way convolution module
presents a rectangular structure, and the middle part of the rectangle is a convolution
structure for feature extraction. The upper and lower blue arrows are the flow path of
feature information. The feature output is conducted at different positions of the rect-
angle to realize the information collection of five scales so that the feature map covers
the shallow to deep information. The collected multi-scale information is input into the
classification and region module for post-processing, and the anchor is used to classify the
categories. The classification network predicts the category probability of each anchor, and
the category-independent fully convolutional networks are used for border regression. The
classification sub network and border regression sub network share the same structure,
and the parameters are independent. The final result is obtained by filtering the prediction
box with non-maximum suppression.

Figure 1. Overall framework of TWC-Net.

3.2. Preprocess, Two-Way Convolution Structure, and Multi Scale Feature Extraction

For the preprocess module of TWC-Net, the main implementation details are shown
in Figure 2. In this figure, “conv” is convolution, “batch norm” is batch normalization, and
“ReLU” is the rectified linear unit. First, the convolution kernel with a size of 7 is used for
preliminary processing, and then through the batch normalization module and rectified
linear unit, finally, the max-pooling is performed. The size of the max-pooling kernel is 3,
and the stride is 2, after that, two copies of the feature map are copied for the next step. The
early-stage preprocessing can suppress the image noise, highlight effective information,
and facilitate subsequent processing of the model.
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Figure 2. Architecture of the preprocess.

Inspired by the autoencoder of CrevNet, the two-way convolution structure is a
variant of CrevNet. The two-way convolution structure is mainly used to extract SAR
image features, as shown in Figure 3. In the convolution process, to extract higher-level
information of the SAR image, we use the convolution layer added step by step. In the
two-way convolution structure, the middle part of the upper and lower circuits is the main
module of convolution extraction features, which is composed of a convolution structure
with a convolution kernel size of 1 and 3. After the convolution part of the middle feature
extraction, the size of the feature map will be reduced by half. At this time, the fusion with
the feature map on the road will cause dimension mismatch. Therefore, in Figure 3, the
feature map on the road will be downsampled once, to make the size of the feature map on
the road consistent with the size of the feature map extracted by middle convolution feature
extraction and conducting feature fusion. Figure 3 shows more details about a single two-
way convolution module. For the down-sampling module, we use a convolution kernel of
size 1 and batch normalization, which is inspired by the shortcut module of Resnet. The
middle feature extraction is achieved by stacking three convolution layers. Finally, the
stacked convolution feature map is added with the downsampled feature map, and the
rectified linear unit activation function is used uniformly.

Figure 3. Architecture of two-way convolution.

For a better understanding, let us assume that the feature map of two way revolutions
is Xbottom ∈ RC×H×W , where C is the number of channels, H is the height of the feature
map, and W is the width of the feature map. All convolutions in the middle layer are
denoted by Fconv. According to the structure of Figure 3, Xbottom ∈ RC×H×W after Fconv is
denoted as X′bottom ∈ RC′×H/2×W/2. The whole process can be summarized as follows:

X′bottom = Fconv(Xbottom) (1)

The upper path feature map of two-way convolution is Xtop ∈ RC×H×W . Here, the
size of Xtop is twice that of X′bottom ∈ RC′×H/2×W/2; therefore, it is necessary to reduce the
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size of the upper path feature map by down sampling. Down sampling is set to Fdownsample.
The whole process can be summarized as follows:

X′top = Fdownsample(Xtop) (2)

Finally, the feature maps with the same size are obtained, and then merged. The
merged feature maps are marked as Xcombine. The process is summarized as follows:

Xcombine = X′top + X′bottom (3)

The two-way convolution module is composed of several structures, as shown in
Figure 3.

In the design of TWC-Net, for every feature extraction, the size of the feature map is
reduced by half and the number of channels is doubled, except for the first feature extraction.
For the first feature extraction, the size of the feature map is unchanged, and the number
of channels is doubled because the feature map with an unchanged size can retain more
shallow information, and the number of channels can extract more detailed information for
classification and regression calculation. As shown in the two-way convolution module in
Figure 1, a total of six feature extractions are made. After six feature extractions, the size of
the feature map, from left to right, is 75 × 75, 75 × 75, 38 × 38, 19 × 19, 10 × 10, and 5 × 5,
and the corresponding number of channels is 64, 128, 256, 512, 1024, 2048.

In the two-way convolution module, we design a multi-scale feature mapping struc-
ture to achieve effective reuse of shallow and deep features. This module is different from
the pyramid structure in the structure. We do not use too complex a pyramid convolution
structure design, because the too complex design will reduce the speed of the model. We
combine the main idea of a pyramid structure, that is, multi-scale information utilization.
TWC-Net uses five feature maps of different locations as feature information of different
scales. The sizes of these feature maps are 75 × 75, 38 × 38, 19 × 19, 10 × 10, and 5 × 5,
respectively. The five output structures are respectively located in the right branch of the
two-way convolution module, and the specific structure is shown in Figure 4. For the out-
put features of the multi-scale structure, we use a convolution kernel of size 1 to process, so
that the fused features can be better processed by the classification and regression module.

Figure 4. Architecture of the multi-scale feature extraction module.

3.3. Classification and Regression

The classification and regression module adopts the method of RetinaNet, as shown
in Figure 5. Each anchor box is associated with a one-hot vector of the category number
and a four-dimensional vector to perform border regression. The classification subnetwork
predicts the category probability of each anchor box, and the regression subnetwork
performs border regression. In TWC-Net, we define the anchor number as 9, and the
anchor size is 32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512. Although most of the
ships in the SAR image are slim, because their distribution direction is not uniform, using
the slim anchor is not a good choice for target detection boxes without direction, so the
anchor ratio in TWC-Net is 0.5, 1, 2.
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Figure 5. Architecture of the multi-scale feature extraction module.

To solve the problem of imbalance between positive and negative samples of SAR
image, the focal loss is used to replace the cross-entropy loss function in the classification
subnetwork. Focal loss is defined as follows:

Lcls = FL(pt) = −αt(1− pt)
γ log(pt) (4)

where αt ∈ [0, 1] is the weighting factor and γ ∈ [0, 5] is the adjustable parameter. It is
used to control the influence of positive and negative samples on total loss. Here, pt is
defined as:

pt =

{
p if y = 1
1− p otherwise

(5)

where p ∈ [0, 1] is the prediction probability. For SAR image processing, setting α = 0.25,
γ = 2 has the best effect. By setting the above parameters, we can make the model tend to
the mining of difficult samples. For the box subnet module, smooth L1 is used for border
regression. Smooth L1 is defined as:

Lreg = Smooth L1(t) =
{

0.5t2 if |t|< 1
|t|−0.5 otherwise

(6)

Thus, the loss function of TWC-Net can be expressed as:

LTWC−Net = Lcls + Lreg (7)

4. Experiments and Results

To test the performance of our proposed model, we will compare it with other models.
This section describes the datasets used in the evaluation, evaluation criteria, comparison
methods, and comparison results.

4.1. Datasets

The performance test mainly uses the SSDD dataset, which contains 1160 SAR images
and 2456 ships, mainly from RadarSat-2, TerraSAR-X, and Sentinel-1. It contains four
polarization modes: HH, HV, VV, and VH. The resolution is 1-15m. There are ship targets
in large sea areas and coastal areas. Some data are shown in Figure 6, which are ship targets
in large sea areas, ship targets in coastal areas, and ship targets in a complex background.
The experiment classified 954 randomly divided images into training and validation sets,
and the remaining 206 images as test sets. To ensure the consistency of variables, all models
in this test use uniformly divided training, validation, and test sets.
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Figure 6. SSDD sample, in which ship targets in large areas of the sea, offshore areas, and complex
background are listed in column 1, column 2, and column 3.

4.2. Evaluation Indicators

Quantitative evaluation of the model, and evaluation of the model using the precision
rate and recall rate is performed. Precision defines the ratio of the correct target to the
number of detected targets, and recall defines the ratio of the correct target to the actual
number of detected targets. The recall rate and the precision rate are usually contradictory
measures. More cautious models tend to obtain higher precision, but the recall rate will be
lower. On the contrary, a lower precision rate will be obtained. In the case of an imbalance
between recall and precision, we add an F-measure index to measure recall and precision.
The calculation method is as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F− measure = 2
Precision × Recall
Precision + Recall

(10)

where TP is true positive, FP is false positive, and FN is false negative. In this test, if the
IOU between the prediction frame and the real frame is higher than 0.5, it is defined as TP.
If the IOU is lower than 0.5, it is defined as FP, and if it is not detected, it is defined as FN.

4.3. Implementation Details

For the experimental platform, we used an Intel Core i7-8700k, 3.7 GHz six-core
processor, 32 g memory, NVIDIA GeForce GTX 1080ti 11 g graphics card. In terms of
the software environment, we used Windows 7 Ultimate 64-bit operating system. The
programming language used was python 3.7, and the deep learning framework was used
in PyTorch 1.6.0. THOP 0.0.31 was used to calculate floating point operations (FLOPs) and
parameters. The GPU computing platform is CUDA 10.0 and cuDNN 7.4. TWC-Net uses
the stochastic gradient descent (SGD) optimizer with an initial learning rate of 1 × 10−3,
optimizer momentum of 0.9, weight decay of 5 × 10−4, and learning rate decay of 0.8. The
training mode is overall training, and there is no need to freeze partial weights to train
separately. The image data sizes were different in the experiment, so they were uniform to
600 × 600 before the input model.
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4.4. Comparative Experiment

To test the effectiveness of TWC-Net, we used RetinaNet, YOLO, SSD, and Faster
RCNN as experimental comparison methods. TWC-Net belongs to the one-stage detector.
In the comparison method, RetinaNet, YOLO, and SSD belong to the one-stage detector,
and Faster RCNN belongs to the two-stage detector. To verify the validity of the model, we
tested the validity of the model in a common image.

We used the VOC2007 dataset to validate the model’s ability to detect on common
datasets, as shown in Table 1. Our model is better at small target detection of remote
sensing images, so obtaining these results is not our primary goal.

Table 1. Recall, precision, and F-measure of TWC-Net in VOC2007 (IOU = 0.5).

Methods Recall (%) Precision (%) F-Measure (%)

TWC-Net 82.67 81.36 82.01

RetinaNet is a detector based on focal loss, which mainly solves the problem of
sample imbalance. RetinaNet uses ResNet50 (Res50) + FPN as the backbone, and the target
classifier sub network uses focal loss as a loss function, which effectively eliminates the
problem of sample imbalance and prompts the model to mine difficult samples.

YOLO is a one-stage target detection network. YOLO solves the problem of object
detection as a regression problem. The input image can be processed once to output
the location of the object and the corresponding category and confidence level. Through
continuous development and improvement, YOLO has several different versions, of which
YOLOv4 [31] has better overall performance. Therefore, YOLOv4 was also used as a
comparison model in this experiment.

SSD runs faster than other models. SSD uses feature pyramid detection to predict
targets on feature maps of different receptive fields. Different types of SSD have a different
backbone, mainly including VGG19 [32] and ResNet50, which have a better performance
than those using ResNet50. The SSD used in this experiment was SSD + ResNet50.

Faster RCNN is a two-stage detector proposed by Girshick and is an upgrade to the
target detector of the previous RCNN series. Faster RCNN combines feature extraction,
proposal extraction, and bounding box regression classification in a network to improve its
comprehensive performance. Faster RCNN also has several different backbones, including
ResNet50 and FPN as the backbone. This experiment used Faster RCNN + ResNet50 +
FPN.

The proposed comparison between TWC-Net and RetinaNet, SSD, and Faster RCNN
is quantitative and intuitive. Tables 2 and 3 show the precision, recall, and F-Measure for
all methods, and Figure 7 shows the visual detection results for different methods on the
test sets.

Table 2. Recall, precision, and F-measure of all methods (IOU = 0.5).

Methods Recall (%) Precision (%) F-Measure (%)

RetinaNet+Res50+FPN 81.28 92.11 86.36
YOLOv4 82.14 91.90 86.75

SSD+Res50 95.21 89.03 92.01
Faster RCNN+Res50+FPN 79.76 88.28 83.80

TWC-Net 95.28 91.44 93.32

In terms of recall rate, TWC-Net scored the highest at 95.29%, followed by SSD, which
scored 95.21%. In terms of precision, RetinaNet achieved the highest score of 92.11%,
followed by YOLOv4 with a score of 91.90%. The precision of the TWC-Net is 91.44%,
which was close to the score of YOLOv4. In terms of F-measure, TWC-Net achieved the
highest score of 93.32%, followed by SSD of 92.01%, RetinaNet of 86.36%, and Faster RCNN
of 83.80%. Simply put, TWC-Net and SSD are better than other models, but SSD has
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lower precision than TWC-Net. Figure 7 shows the visual detection results of the different
detection methods. It can be seen from the diagram that other methods have some degree
of miss detection in small target detection or complex background detection near the shore,
which is also the difficult point in SAR ship detection. Small target information is easily
submerged in the continuous feature extraction. The high noise characteristics of SAR
images make small target detection more difficult. Nearshore targets have a larger size, but
image features are more complex. Detectors are prone to be miss detected and missed due
to the interference of near-shore irrelevant information. In the figure, RetinaNet missed
inshore ship targets, SSD performed poorly in small target detection, and small target ship
missed detection that occurred in large areas of the sea. The result of the detection in the
comprehensive graph shows that TWC-Net has a better comprehensive performance in
detection.

Table 3. Recall, precision, and F-measure of all methods (IOU = 0.75).

Methods Recall (%) Precision (%) F-Measure (%)

RetinaNet+Res50+FPN 55.00 53.30 54.14
YOLOv4 37.37 21.82 27.55

SSD+Res50 56.19 46.20 50.71
Faster RCNN+Res50+FPN 32.84 36.02 34.36

TWC-Net 62.75 53.05 57.49

Figure 7. Comparison of the different detection methods; from left to right are ground truth, TWC-Net, RetinaNet, SSD,
YOLOv4, and Faster RCNN.

For a more comprehensive comparison of the detection performance of each model, we
set the IOU to 0.75 to re-evaluate the model. The IOU is 0.75, which means that the detection
box has a higher overlap range with the ground truth box, so the model needs to detect the
location of the detection more accurately. From Table 3, we can see that TWC-Net achieved
the highest scores in recall rate and F-measure, while TWC-Net achieved the highest scores in
precision. Next came RetinaNet and SSD. By comparison, our TWC-Net locations are more
accurate and can more effectively locate the ship targets in the SAR image.

In the actual application environment, the complexity and memory requirements of
the model are required. Models with high complexity require more stringent operating
conditions and are more prone to over-fitting. Therefore, models with less memory and less
complexity have more advantages. For a more comprehensive assessment of the model,
we included comparisons of the model size, FLOPs, and parameters. The model size is
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the amount of memory occupied by the model after the training is completed. FLOPs are
used to calculate floating-point arithmetic, which can measure the complexity of the model.
Parameters represent the variables needed to define the model and measure the complexity
of the model. Tables 4 and 5 show the model size, FLOPs, and parameters for all methods.

Table 4. Model size, FLOPs, and number of parameters of backbones.

Backbones Model Size (MB) FLOPs (G) Parameter (M)

VGG19 549 62.26 143.73
ResNet50 98 13.29 25.67

DenseNet201 [33] 78 13.75 20.21
EfficientNet B7 [9] 256 255.83 66.72

Two-way Convolution 77 5.80 19.54

Table 5. Model size, FLOPs, and number of parameters of all methods.

Methods Model size (MB) FLOPs (G) Parameter (M)

RetinaNet+Res50+FPN 143 12.58 35.17
YOLOv4 251 29.88 63.94

SSD+Res50 122 16.23 15.43
Faster RCNN+Res50+FPN 324 134.25 41.35

TWC-Net 104 9.39 26.36

Table 4 compares TWC-Net’s backbone with other mainstream backbones. By com-
parison, TWC-Net’s two-way convolution module has lower FLOPs and parameters, and a
better performance in model size. Therefore, the backbone of TWC-Net has lower complex-
ity and is suitable for lightweight devices with lower performance.

TWC-Net has a smaller memory footprint in terms of model size, followed by SSD. For
FLOPs, TWC-Net has lower model complexity, followed by RetinaNet. SSD performed best
in terms of parameters, followed by TWC-Net. Because Faster RCNN is a two-stage detector
and has more module design in the structure, it has a poor performance in memory and
complexity of the model. Overall, TWC-Net performs better in terms of model complexity.

To measure precision rates and recall rates, we used precision–recall curves to measure
different models. The precision–recall curve can show the model’s overall recall and
precision. The precision–recall curves take precision as the vertical axis and recall as
the transverse axis. A skewed curve is obtained by counting each sample. As shown in
Figure 8, the precision–recall curves shows that RetinaNet and TWC-Net perform better.

Figure 8. Precision–recall curves of different detection methods.
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4.5. Generating Heatmap

Generation of a heatmap can be used to interpret models. Gradient-weighted class
activation mapping (Grad CAM) [34] uses the gradient of the target concept to flow into
the final convolution layer, producing a rough positioning map that highlights the area in
the image used for prediction. Grad CAM overcomes the drawback of requiring a global
average pooling (GAP) layer in class activation mapping (CAM) [35] network architecture
and achieves the visualization result without modifying the network structure. In this
experiment, Grad CAM was used to generate heatmap images to determine the effect
of different locations on the output. As shown in Figure 9, the heatmap generated by
TWC-Net using Grad CAM is displayed.

Figure 9. Heatmap is generated, with the leftmost column listed as ground truth, and the 2, 3, 4, 5, and 6 columns
corresponding to the output of the multi-scale feature extraction module of TWC-Net from a high scale to a low scale (from
shallow to deep), and the last column representing the output of TWC-Net.

From Figure 9, it can be observed that the TWC-Net responds to each output feature
map using large sea area images and offshore sea area images. Large sea area images have
a simple background and small target. Based on the design of TWC-Net, high-scale shallow
information is used for detection. Columns 2, 3, and 4 of Figure 9 show that the shallow
output characteristics of TWC-Net can effectively respond to small targets. The image of
the offshore sea area has the characteristics of a complex background and more interference
information, so the network should extract deeper features for detection. TWC-Net can
output deep low-scale information. As shown in columns 5 and 6 of Figure 9, it is easier
for a network to learn the characteristics of larger targets from deep features and respond
to them. Overall, through heatmap visualization, we can see that TWC-Net can effectively
use multiscale structures to learn ship characteristics and detect ship targets of different
scales.

4.6. Generalized Performance Test

Generalization ability is used to evaluate the model’s adaptability to fresh samples
and is of great significance in practical application scenarios. In this experiment, we used
other SAR ship data to test the generalization performance of TWC-Net, mainly using
the HRSID [36] and SAR-Ship-Dataset [37]. HRSID contains 5604 high-resolution SAR
images and 16951 ship targets, including SAR images of different resolutions, polarizations,
and marine environments at resolutions of 0.5, 1 and 3m. The SAR-Ship-Dataset contains
43,819 SAR images. In total, 102 high-resolution 3rd and 108 Sentinel-1 images are used
to construct the SAR images, including multiple imaging modes with resolutions of 3,
5, 8, 10 and 25 m. The SAR images that construct the sample library are multi-source
and multi-mode. The three images of the HRSID and SAR-Ship-Dataset were selected for
detection as shown in Figure 10.
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Figure 10. Generalization performance tests, column 1 images from HRSID, column 2 results from
column 1, column 3 images from SAR-Ship-Dataset, and column 4 results from column 3.

Figure 10 shows that TWC-Net has a good detection effect for small target detection.
It can detect most vessels effectively. The SAR-Ship-Dataset dataset contains some high
noise interference images. It shows few such images during training. TWC-Net can still
detect some high noise targets in the SAR-Ship-Dataset.

To quantitatively assess model generalization capabilities, we tested 10,955 pictures
from the SAR-Ship-Dataset as test sets. The models used included TWC-Net, RetinaNet,
SSD, and Faster RCNN. The indicators tested included recall, precision, and F-measure.
The test results are shown in Table 6.

Table 6. Recall, precision, and F-measure of all methods.

Methods Recall (%) Precision (%) F-Measure (%)

RetinaNet+Res50+FPN 70.55 66.93 67.23
YOLOv4 63.99 58.03 60.86

SSD+Res50 82.57 66.75 72.37
Faster RCNN+Res50+FPN 61.87 60.37 61.11

TWC-Net 85.72 64.90 73.87

Table 6 shows that TWC-Net achieved the best results in recall rates, followed by
SSD. RetinaNet achieved the best precision, followed by SSD. TWC-Net achieved the best
results in the F-measure, followed by SSD. Overall, TWC-Net has better generalization
performance.

5. Discussion

Through the comparison experiment shown in Table 2, we can see that TWC-Net
achieved a higher recall rate and F-measure score for the SSDD dataset of 95.28% and
93.32%, respectively. For precision, a score of 91.44% was identified. In practice, most
scenarios pay more attention to the model’s recall rate and have a higher tolerance for
precision. Compared with other models in this experiment, TWC-Net has more advantages
in real-world scenarios.

From Table 6, we can see that our proposed TWC-Net has good generalization capa-
bility on the new dataset, with the recall rate reaching 85.72%, while YOLOv4 and Faster
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RCNN have a relatively poor generalization performance, indicating that our model is
more suitable for an unknown environment than other models. If we combine the data
from Table 5 simultaneously, we can get another interesting conclusion in that smaller-
sized models have a stronger generalization ability, so for SAR ship detection tasks, it can
improve the generalization ability of models by reducing the model size appropriately.

The validity of the TWC-Net method was verified by comparative analysis of the above
experiments. Figure 9 illustrates that the proposed two-way convolution and multi-scale
feature extraction structures can effectively learn the main features of SAR images.

However, from the results of the test in Figure 11, it shows that not all the test results
are ideal. As you can see from column 1 in the figure, TWC-Net partially misses images
with complex backgrounds and small targets. Columns 2 and 3 show that TWC-Net
partially misses images with high noise. These noises are caused by the principal defect
of SAR itself. In the radar echo signals, the gray values of adjacent pixels will change
randomly due to coherence, and this random change is around a certain mean value, which
results in speckle noise in the image. Because there are fewer high-noise images in SSDD
and the recognition of high-noise targets is difficult, TWC-Net lacks the response to the
characteristics of high-noise images.

Figure 11. TWC-Net test results, ground truth for behavior 1, detection result for behavior 2, images
in columns 1 and 2 are from SSDD, and images in column 3 are from SAR-Ship-Dataset.

In the future, we will explore how to enhance the detection capability of detectors in
more complex environments, especially for SAR images with a lot of noise, to reduce false
positives and misses. We plan to build a dataset with a lot of noise to make the model more
focused on learning difficult samples.

6. Conclusions

Ship detection based on SAR images is a meaningful and challenging task. The
difficulty comes from the sparsity of the image object and the complexity of interference.
To solve this problem, we proposed a detection method based on two-way convolution
and multi-scale feature extraction. First, the image is preprocessed simply, and then the
image is divided into two paths for feature processing, respectively. Feature extraction and
fusion of the upper and lower side paths are adopted, and feature extraction of different
scales is conducted for different size targets. The experimental results show that TWC-Net
can achieve a better detection performance compared with the existing classical target
detection methods. Simultaneously, TWC-Net has a smaller memory consumption and
parameters, which allows TWC-Net to achieve a better detection effect in a generalization
performance test. In the test of generalization performance, TWC-Net will still detect the
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high-noise SAR image incorrectly. The reason for this phenomenon is that the high-noise
image will contain more useless information, which will cause great interference in the
model detection. Alternatively, if the number of high-noise images in the SSDD dataset is
small, the model does not fully learn the characteristic information of high-noise images.
Future work will focus on better processing of high-noise SAR images.
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