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Abstract: This study presents a new approach for Urban Functional Zone (UFZ) mapping by inte-
grating two-dimensional (2D) Urban Structure Parameters (USPs), three-dimensional (3D) USPs,
and the spatial patterns of land covers, which can be divided into two steps. Firstly, we extracted
various features, i.e., spectral, textural, geometrical features, and 3D USPs from very-high-resolution
(VHR) images and light detection and ranging (LiDAR) point clouds. In addition, the multi-classifiers
(MLCs), i.e., Random Forest, K-Nearest Neighbor, and Linear Discriminant Analysis classifiers were
used to perform the land cover mapping by using the optimized features. Secondly, based on the land
cover classification results, we extracted 2D and 3D USPs for different land covers and used MLCs to
classify UFZs. Results for the northern part of Brooklyn, New York, USA, show that the approach
yielded an excellent accuracy of UFZ mapping with an overall accuracy of 91.9%. Moreover, we have
demonstrated that 3D USPs could considerably improve the classification accuracies of UFZs and
land covers by 6.4% and 3.0%, respectively.

Keywords: Urban Functional Zone (UFZ) mapping; land cover mapping; three-dimensional (3D)
Urban Structure Parameter (USP); multi-classifiers (MLCs)

1. Introduction

Urban Functional Zones (UFZs, acronyms used throughout the manuscript are listed
in Supplementary Material Table S1) refer to different functional divisions of urban lands,
e.g., commercial, residential, industrial, and park zones [1]. Different UFZs often feature
different architectural environments and are composed of various land covers. However,
previous studies pay much attention to land cover mapping instead of large-scale UFZ
classification [1]. As the basic spatial unit in cities, UFZs are vital for the urban planner
and managers to conduct urban-related applications, e.g., the investigation of land surface
temperatures, landscape patterns, urban planning, and urban ecological modeling [2–5].
Therefore, the detection of UFZs is a basis for urban management and provides a better
understanding of urban spatial structures [6,7].

Very-High-Resolution (VHR) images represent urban surfaces with good spatial de-
tails, capturing tiny differences in spectral and textural records, thus can be utilized for UFZ
mapping [8–10]. Many authors used VHR data to perform the UFZ classification [11–13].
Zhang et al. [11] proposed a Hierarchical Semantic Cognition (HSC) method to establish
four semantic layers, i.e., visual features, object categories, spatial patterns of objects, and
zone functions. They used their hierarchical relations to identify UFZs and found that the
HSC method yields a good accuracy for UFZ mapping (the overall accuracy was 90.8%).
Further, Zhang et al. [1] performed a top-down feedback method-Inverse Hierarchical
Semantic Cognition (IHSC) to optimize the initial HSC results, and they found that the
IHSC increased the Overall Accuracy (OA) from 84.0 to 90.5%. Recently, authors utilized
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the Point of Interest (POI) data for UFZ mapping. For instance, Hu et al. [12] generated
parcel information using the road networks and integrated Landsat 8 Operational Land
Imager images and POI data to classify parcels into eight functional zones (level I, e.g.,
residential, commercial, industrial, and institutional areas) and 16 land covers (Level II).
They found that the OA value of Level I classification was 81.04%. Besides, Zhou et al. [13]
proposed a Super Object-Convolutional Neural Network (SO–CNN) method to conduct
UFZ classification. They used the POI data to identify four UFZs, i.e., commercial office,
urban green, industrial warehouse, and residential zones in Hangzhou city, China and
found that the classification results are refined with an OA value of 91.1%. However,
previous studies did not explore the impacts of three-dimensional (3D) urban structure
parameters (USPs), e.g., building height (BH) and sky view factor (SVF) on UFZ detection.

It is noteworthy that 3D USPs play distinctive roles in describing urban layouts and
constructions [14]. For example, an investigation from the northern part of Brooklyn,
New York City, USA, shows that industrial zones usually locate on an open ground
surface, resulting in higher values of SVF than residential and commercial zones (Figure 1a).
Generally, industrial zones feature low-rise and large buildings, thus often have low BHs
(Figure 1b). In addition, different Street Aspect Ratios (SAR) and Floor Area Ratios (FAR)
were observed among different functional zones (Figure 1c,d). Hence, it is of importance
to consider 3D USPs for UFZ mapping. Recently, Light Detection And Ranging (LiDAR)
technology rise as it can provide a fast and straightforward approach to acquiring the
height information of underlying surfaces [15]. Thus, LiDAR technology can be regarded
as a feasible approach to extract 3D USPs [14]. Note that it is challenging to extract UFZs
directly from the VHR images because spectral, textural, and geometrical features can only
be effective in segment objects instead of identifying UFZs [11]. As one of the essential
elements of UFZs, the components and configurations of land covers exert significant
influences on measuring and analyzing UFZs [16]. Thus, it is important to perform the
land cover classification for the subsequent UFZ mapping.
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(c) street aspect ratio (SAR), the ratio of average building height to street width, and (d) floor area ratio (FAR), the ratio of
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In this study, a new approach that integrates multiple machine learning algorithms
and 3D USPs is introduced for UFZ mapping. The objectives of the study are:

• To integrate multi-machine learning algorithms and various features, primarily 3D
USPs, for enhancing land cover mapping;

• To perform UFZ mapping by coupling 3D USPs and multi-classifiers (MLCs);
• To evaluate the influence of 3D USPs on the classifications of both land covers and

UFZs.

2. Study Area and Data
2.1. Study Area

Our study area lies in the northern part of Brooklyn, New York City, USA (Figure 2),
with an area of 6.12 km2. The eastern and northern parts of the area are along the East River.
The area has 8779 buildings, 8146 parcels, and 493 blocks. In addition, the area includes
four typical UFZs, i.e., commercial, residential, industrial, and park zones [10].
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2.2. Data

The primary data used in the study includes VHR images, LiDAR point clouds, road
networks, and land-lot information.

• VHR images

The high-resolution orthophotos of the study area were acquired from the New York
City Office of Information Technology Services [17] (Figure 2b). The images consist of four
bands (i.e., blue, green, red, and near-infrared bands) with a 0.3 m (1.0 ft) spatial resolution,
which provides rich spectral information for the classification of land covers and UFZs.

• LiDAR point clouds

The point cloud data was acquired in May 2017 and collected using a Cessna 402 C
or Cessna Caravan 208B aircraft equipped with Leica ALS80 and Riegl VQ-880-G laser
systems. The data is released by the New York City Department of Information Technology
and Telecommunications (NYCDITT) [18]. Furthermore, in order to generate an accurate
Digital Surface Model (DSM), we eliminated the noise points (i.e., outliers and isolated
points) using the “StatisticalOutlierRemove” filter operation of Point Cloud Library 1.6,
and a voxel grid filter was adopted to reduce the redundant points. After filtering, the
density of point clouds is about 8.0 points/m2 [14].

• Road networks and land-lot information

The road networks were obtained from Open Street Map (OSM) in 2017. We used the
networks to delineate the blocks’ boundaries, and the block was regarded as a basic unit for
UFZ mapping [19,20]. In addition, the land-lot data, released by NYCDITT, provides the
basic information of land functions. Thus, it could be used to label the blocks’ functional
attributes and provide the ground reference. Finally, 493 zones were generated from the
road networks and land-lot data.

3. Methods
3.1. Overview of the Study Approach

Figure 3 shows the workflow of the UFZ classification, including two key steps:
(1) Land cover mapping: a method ensemble multi-machine learning algorithms and
3D USPs was proposed for enhancing land cover mapping; in details, we extracted the
spectral, textural, geometrical features, and 3D USPs of objects that were determined by
the multi-resolution image segmentation; further, the feature optimization was employed
by using the method of mean decrease impurity; at last, we selected the best classifier from
three machine learning methods, i.e., Random Forest (RF), K-Nearest Neighbor (KNN),
and Linear Discriminant Analysis (LDA), to label those objects. (2) UFZ mapping: a new
method that integrates urban spatial information of both two-dimensional (2D) USPs, 3D
USPs and MLCs were utilized for UFZ mapping; in details, we extracted the 2D USPs
from the land cover mapping results and 3D USPs from LiDAR point clouds; then, Nearest
Neighbor Index (NNI) was used to identify three spatial patterns of land covers, i.e.,
random distribution, aggregation, and uniform distribution; finally, we chose the classifier
with the best performance to conduct UFZ classification.
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3.2. Land Cover Mapping
3.2.1. Multi-Feature Extraction

To avoid the “salt and pepper” phenomenon of land cover classification, firstly, multi-
resolution segmentation was used to segment the VHR images into multi-scale objects,
which was performed by using eCognition software. In particular, the Estimation of
Scale Parameter (ESP) tool [21–26] was used to generate the appropriate scale of land
cover object. Secondly, we extracted four categories of features, i.e., spectral, textural,
geometrical features and 3D USP, for the subsequent land cover labeling (Table 1). As
shown, the spectral features included spectral information (i.e., red, blue, green, and near-
infrared bands), Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index
(RVI), Difference Vegetation Index (DVI), Normalized Difference Water Index (NDWI),
Meani, Brightness, Ratio, Mean diff. to neighbor (Mean. diff.), Standard Deviation (Std.
Dev). The textural features were revealed by different indices from the Gray-Level Co-
occurrence Matrix (GLCM), i.e., angular second moment, variance, contrast, entropy, energy,
correlation, inverse differential moment, dissimilarity, and homogeneity. The geometrical
features were used to reveal geometrical characteristics of objects, i.e., area, border length,
length/width, compactness, asymmetry, border index, density, elliptic fit, main direction,
shape index. The spectral, textural, and geometrical features are widely used in object-based
image research [27,28]. In particular, we selected three features for 3D USPs, including
the Digital Surface Model (DSM), Sky View Factor (SVF), and flatness, all of them were
extracted from LiDAR point clouds.
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Table 1. Multi-feature extraction for land cover mapping.

Category Feature Description References

Spectral
feature

Spectral information Red Band (BR), Green Band (BG), Blue Band (BB) and
Near-Infrared Band (BNIR) [29]

Normalized Difference Vegetation Index
(NDVI) NDVI = (BNIR − BR)/(BNIR + BR) [30]

Ratio Vegetation Index (RVI) RVI = BNIR/BR [31]
Difference Vegetation Index (DVI) DVI = BNIR − BR [32]

Normalized Difference Water Index (NDWI) NDWI = (BNIR − BG)/(BNIR + BG) [33]

Meani
Average spectral value of pixels in an object of each layer (i refers

to different spectral bands)

[11]Brightness The average value of the Meani of the image objects
Ratio The ratio of the Meani to the sum of Meani of the image objects

Mean diff. to neighbor (Mean. diff.) The difference between the layer average value and its
adjacent objects

Standard Deviation (Std. Dev) Gray standard deviation of pixels in an object of each layer

Textural
feature

Angular Second Moment The angular second moment derived from GLCM and
GLDV, respectively

[34]Variance The variance derived from GLCM
Contrast The contrast derived from GLCM and GLDV, respectively
Entropy The entropy derived from GLCM and GLDV, respectively [35]Energy The energy derived from GLCM

Correlation The gray correlation derived from GLCM [36]Inverse Differential Moment The inverse differential moment derived from GLCM
Dissimilarity The heterogeneity parameters derived from GLCM [37]Homogeneity The homogeneity derived from GLCM

Geometrical
feature

Area The area of image objects
[13]Border Length The perimeter of image objects

Length/Width The length-width ratio of the image object’s minimum bounding
rectangle (MBR)

Compactness The ratio of the area of object’s MBR to the number of pixels
within image objects [38]

Asymmetry The ratio of the short axis to the long axis of an approximate
ellipse of image objects

Border Index The ratio of the perimeter of image object to the perimeter of the
object’s MBR.

Density The ratio of area to radius of image objects

[11]Elliptic Fit The fitting degree of eclipse fit
Main Direction Eigenvectors of covariance matrix of image objects

Shape Index The ratio of perimeter to four times side length

3D USP

Digital Surface Model (DSM, Figure 2c) DSM was produced by using an interpolation algorithm (i.e.,
binning approach) with all points. [39]

Sky View Factor (SVF, Figure 2d)
Sky view factor refers to the visible degree of sky in the ground

level and its values vary from 0 to 1. 0 refers to the sky is not
visible; in contrast, 1 refers to the sky is completely visible.

[40]

Flatness (the details can be found in
Supplementary Material Figure S1)

Flatness derived from DSM and refers to the flatness of the
non-ground points. The points were generated by using the

“lasground” filter operation in the LAStools.
[14,41]

Based on the spectral response of features on VHR images and investigation, six land
covers were identified, including buildings, trees, grasses, soil lands, impervious grounds,
and water bodies. Table 2 provides the details of the samples used for different land covers,
and the training samples are randomly selected by using the “model_selection” tool in the
sklearn package. As shown, 8/10 of the training samples were randomly selected and used
for classification, and the others were chosen for the accuracy assessment.

Table 2. Samples selected for the land cover mapping.

Category Number of Training Sample Number of Verification Sample Number of Total Samples

Building 5238 1379 6617
Tree 1562 407 1969

Grass 1443 329 1772
Soil 756 224 980

Impervious ground 7267 1854 9121
Water 245 68 313
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3.2.2. Feature Optimization

Feature optimization provides a better understanding of the feature importance and
is crucial to improve the classification accuracy. We used the Gini Index (GI) (i.e., Mean
Decrease Impurity) to measure the importance of each variable. GI was calculated from
the structure of the RF classifier, representing the average degree of error reduction by each
feature, and can be defined as [42,43]:

GI(P) = ∑K
k=1 Pk(1− Pk) = 1−∑K

k=1 P2
k (1)

where GI (P) is the GI value, k represents the kth classes, and Pk represents the probability
that the sample belongs to the k class. Generally, a higher GI value means the corresponding
variable exerts more influence on the classification. Details of feature optimization steps
can be found in [44].

3.2.3. The Classifier of Multiple Machine Learning

Three classifiers were utilized to label land covers and UFZs, including Random
Forest (RF, [45,46]), K-Nearest Neighbor (KNN, [47]), and Linear Discriminant Analysis
(LDA, [48]).

(1) RF classifier consists of multiple decision trees and can utilize different trees to train
samples and predict results. In particular, each tree would yield its predicted result.
Then, by counting the vote results in different decision trees, RF integrates their
vote results to predict the final results. Therefore, the RF model can significantly
improve the classification results compared with a single decision tree. In addition,
RF has a good performance for the outlier as well as noise and can effectively avoid
overfitting [3,49].

(2) KNN classifier measures the weight of its neighbors when performs a new instance. The
classifier labeled objects with different categories according to the weight and is more
suitable than other classifiers when the class fields overlaps in the sample set [50].

(3) LDA classifier projects the training sample on a straight line to make project objects of
the same class as close as possible; in contrast, heterogeneous sample projection points
away from as far as possible. The classifier assumes that all data sets are followed
by a normal distribution and can reduce the dimensions of the original data. LDA
classifier calculates the probability density of each class sample, and the classification
results depend on the maximum probability of each category [51,52].

3.2.4. Classification Post-Processing and Accuracy Evaluation

Classification post-processing is a pivotal step to optimize the classification result [53,54].
We used the rules of classification post-processing for the objects (Table 3). In addition, we
used a confusion matrix to evaluate the accuracy of land cover classification [55]. Three
indices, including Overall Accuracy (OA), Producer’s Accuracy (PA), and User’s Accuracy
(UA), were utilized to quantify the accuracy of classification results.
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Table 3. Rules for the classification post-processing.

Confused
Classes Principles Attributes Rules

Class 1→Class 2 a

Impervious
ground and soil

Most of the soil and grass
are spatially adjacent.
Likewise, impervious
ground and buildings

are spatially contiguous.

Relative border (RB),
distance to grass (DG),

and distance to
building (DB)

Impervious ground → soil
â DG = 0, DB > 0
â RB to nearest soil object > T1

Soil → impervious ground
â DG > 0, DB = 0
â RB to nearest impervious ground object > T1

Impervious
ground and

building

Buildings are always
higher than impervious

grounds

Relative border (RB)
and height (H)

Impervious ground→ building
â H > 0
â RB to nearest building object > T2

Building→ impervious ground
â H = 0
â RB to nearest impervious ground object > T2

Tree and grass Trees are always higher
than grasses

Relative border (RB)
and height (H)

Tree → grass
â H = 0
â RB to nearest grass object > T3

Grass→ tree
â H > 0
â RB to nearest trees object > T3

a Class 1 → Class 2 indicates that Class 1 is reclassified as Class 2 when the subsequent conditions are satisfied.

3.3. UFZ Mapping
3.3.1. Feature Extraction

We utilized three feature categories, including 2D USP, 3D USP, and spatial pattern of
land covers, to assist the following UFZ classification (Table 4). The 2D USPs described the
landscape compositions in different UFZs. They were revealed by building coverage (BC),
tree coverage (TC), grass coverage (GC), soil coverage (SC), impervious surface coverage
at ground level (ISC_G), and water coverage (WC). We extracted 3D USPs by integrating
results of the land cover classification and LiDAR point clouds. For example, we obtained
building labels from the results of land cover classification, and then calculated the average
building height by using the height information from the LiDAR data [56]. The 3D USPs
including sky view factor (SVF), building height (BH), street aspect ratio (SAR), and floor
area ratio (FAR).

Previous studies have demonstrated that the NNI can measure the spatial patterns
of land covers, and thus help the UFZ mapping [57–59]. To avoid such biases as the
same landscape compositions or 3D USPs in different UFZs, we introduced the Nearest
Neighbor Index (NNI) to improve the UFZ classification using different spatial patterns of
land covers [60]. We considered three typical spatial patterns of land covers, i.e., random
distribution, aggregation, and uniform distribution. The NNI can be defined as:

dmin =
1
n ∑n

i=1 dmin (2)

E(dmin) =
1

2
√

n
A

(3)

NNI =
dmin

E(dmin)
(4)

where dmin is the distance between a specific land cover (i.e., a building) and its nearest same
object, and dmin is the average distance of dmin in a block. E(dmin) is the expectation of dmin
in complete space randomness mode, which is calculated based on the area of the block (A)
and the number of buildings (n). Modes of random distribution, aggregation, and uniform
distribution were identified when NNI value = 1, NNI value < 1, and NNI value > 1.



Remote Sens. 2021, 13, 2573 9 of 21

Table 4. Multi-feature extraction for UFZ mapping.

Category Feature Description References

2D USP

Building coverage (BC) Total building area divided by block area.
[61]Tree coverage (TC) Total tree area divided by block area.

Grass coverage (GC) Total grass area divided by block area.

[14]
Soil coverage (SC) Total soil area divided by block area.

Impervious surface coverage at ground
level (ISC_G)

Total impervious surface coverage at ground
level divided by block area.

Water coverage (WC) Total water area divided by block area.

3D USP

Sky view factor (SVF) Sky view factor influenced by building. [40]
Building height (BH) The height of building [62]

Street aspect ratio (SAR) Average building high divided street width [61]
Floor area ratio (FAR) Total building floor area divided by block area. [63]

Spatial pattern

Building Nearest Neighbor Index (BNNI) The NNI value of buildings
[1]Tree Nearest Neighbor Index (TNNI) The NNI value of trees

Grass Nearest Neighbor Index (GNNI) The NNI value of grasses
Soil Nearest Neighbor Index (SNNI) The NNI value of soil lands

[60]Impervious ground Nearest Neighbor
Index (INNI) The NNI value of impervious grounds

Water Nearest Neighbor Index (WNNI) The NNI value of water bodies

3.3.2. Experiment Design

We determined the feature optimization using the GI method and selected the best
combination of features for UFZ mapping (details can be found in Section 3.2.2). To further
analyze the influences of 3D USP on UFZ mapping, we designed seven experiments with
different variable combinations based on the results of feature optimization (Table 5). In
this way, we tried to recognize the most significant feature category for UFZ mapping. As
shown, Exps. a, b, and c featured 2D USP, 3D USP, and spatial pattern feature, respectively,
and were meant to examine the ability of a single category in the UFZ mapping. Exp. d
consisted of fusion categories involving 2D USP, 3D USP and was designed to identify
2D and 3D USP combined effect on the UFZ mapping. Exp. e selected 2D USP and
spatial pattern feature as input variables. In addition, Exp. f consisted of mixed categories
involving 3D USP and spatial pattern features. Exps. f and g differed in that Exp. f did
not contain 2D USP, while Exp. g included all the categories. In addition, 307 zones were
selected as training samples and used for classification, and the others were chosen for the
accuracy assessment.

Table 5. Experiments used for UFZ mapping.

Experiment 2D USP 3D USP Spatial Pattern Feature

Exp. a
√

Exp. b
√

Exp. c
√

Exp. d
√ √

Exp. e
√ √

Exp. f
√ √

Exp. g
√ √ √

4. Results
4.1. Urban Land Cover Mapping
4.1.1. Results of Feature Optimization

Figure 4 shows the importance ranking of 44 variables for land cover classification.
As shown, firstly, DSM reached the highest variable importance value (GI value = 0.057) in
the classification, and SVF also yielded a high GI value (0.042), indicating that 3D USPs
exert considerable influences on the land cover classification. In particular, the GI value
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of NDVI was 0.050, suggesting that vegetation coverage is vital for land cover mapping.
The spectral features showed better performance in classification (all their GI values were
higher than 0.020); in contrast, the GI values of textural features were relatively low (most
of their GI values was lower than 0.02). Limited influence of geometrical features, i.e.,
asymmetry, area, and compactness, on the classifications was observed. In summary, the
variable importance ranked from high to low was 3D USPs > spectral features > geometrical
features > textural features.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 

4. Results 
4.1. Urban Land Cover Mapping 
4.1.1. Results of Feature Optimization 

Figure 4 shows the importance ranking of 44 variables for land cover classification. 
As shown, firstly, DSM reached the highest variable importance value (GI value = 0.057) 
in the classification, and SVF also yielded a high GI value (0.042), indicating that 3D USPs 
exert considerable influences on the land cover classification. In particular, the GI value 
of NDVI was 0.050, suggesting that vegetation coverage is vital for land cover mapping. 
The spectral features showed better performance in classification (all their GI values were 
higher than 0.020); in contrast, the GI values of textural features were relatively low (most 
of their GI values was lower than 0.02). Limited influence of geometrical features, i.e., 
asymmetry, area, and compactness, on the classifications was observed. In summary, the 
variable importance ranked from high to low was 3D USPs > spectral features > geomet-
rical features > textural features. 

 
Figure 4. Variable importance ranking for land cover mapping revealed by the RF algorithm. 

We further tested the varying OA values associated with different input variables 
(Figure 5). An increasing trend and followed by stable OA values were observed with the 
rising number of input variables. The highest OA value (87.4%) was observed when the 
number of the input variables was 24. Thus, we selected the 24 variables to perform the 
subsequent land cover mapping (details of the 24 optimal variables can be found in Sup-
plementary Material Table S2). 

Figure 4. Variable importance ranking for land cover mapping revealed by the RF algorithm.

We further tested the varying OA values associated with different input variables
(Figure 5). An increasing trend and followed by stable OA values were observed with
the rising number of input variables. The highest OA value (87.4%) was observed when
the number of the input variables was 24. Thus, we selected the 24 variables to perform
the subsequent land cover mapping (details of the 24 optimal variables can be found in
Supplementary Material Table S2).
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4.1.2. Results of Land Cover Mapping

Table 6 shows land cover classification accuracy using three classifiers, i.e., RF, KNN,
and LDA. As shown, the RF classifier had the highest accuracy with an OA value of 87.4%
(details of its confusion matrix see Supplementary Material Table S3). In contrast, the lowest
accuracy of the classification was observed by using the LDA classifier (the OA value was
74.0%). LDA was failed to distinguish trees from grasses and buildings from ground-level
impervious surfaces (details of its confusion matrix see Supplementary Material Table S4).
Regarding the KNN classifier, its OA value was 77.4%, and it wrongly classified the tree
and grass (details of its confusion matrix see Supplementary Material Table S5).

Table 6. Comparisons of the performances of RF, KNN, and LDA algorithms in land cover mapping. OA, PA, and UA
represent overall accuracy, producer’s accuracy, and user’s accuracy, respectively.

Category
RF (%) KNN (%) LDA (%)

PA UA PA UA PA UA

Building 85.4 88.6 75.1 74.3 74.8 67.8
Tree 82.1 88.6 74.9 78.0 72.7 77.1

Grass 86.6 78.5 80.2 75.4 79.6 77.7
Soil 84.4 84.0 79.5 82.0 71.9 86.1

Impervious ground 90.3 88.1 78.5 78.7 72.9 76.2
Water 92.6 96.9 86.8 96.7 75.0 92.7

OA 87.4 77.4 74.0

Figure 6 shows the details of land cover classification using different MLCs. As shown,
the RF classifier can better capture small trees (location g in Figure 6b). Moreover, the RF
classifier can effectively identify building boundaries (location h in Figure 6b). However,
the KNN classifier could not depict the building boundaries clearly, and wrongly classified
the shape of trees (location g in Figure 6c). The LDA classifier failed to capture small
trees; meanwhile, some building boundaries were poorly detected using the LDA classifier
(location h Figure 6d).
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4.1.3. Advantages of Using 3D USPs to Land-Cover Mapping

Table 7 shows the comparison of land-cover classification by using 2D USPs and
3D USPs against those using only 2D USPs (details regarding the confusion matrixes of
each classifier can be found in Supplementary Material Tables S6–S8). As shown, the
accuracies of all classifiers were increased after adding 3D USPs. The OA values of RF,
KNN, and LDA classifiers increased by 3.1, 2.3, and 3.5%, respectively. Further, it is found
that, after 3D USPs involved in classification, PA values of all land covers increased, but
different increasing degrees of varying land covers were observed. Tree yielded the highest
increased accuracy with an average increased PA value of 6.7%. The possible reason is that
the height information can be used to distinguish trees from grasses. In addition, 3D USPs
can increase the PA value of buildings (increased by 3.3%). The possible reason is that
the SVF can distinguish building roofs (featuring a high SVF) from impervious grounds
(feature a low SVF). In summary, 3D USPs significantly increased the accuracy of land
cover mapping. These findings were consistent with the previous studies by [14,64].

Table 7. Comparison of land-cover classification by using 3D USPs against those by using only 2D features.

Category
RF (%) KNN (%) LDA (%) Average Increase

Accuracy (%)PA (3D) PA PA (3D) PA PA (3D) PA

Building 85.4 80.6 75.1 73.5 74.8 71.4 3.3
Tree 82.1 75.2 74.9 67.3 72.7 67.1 6.7

Grass 86.6 81.5 80.2 77.8 79.6 76.3 3.6
Soil 84.4 81.7 79.5 77.7 71.9 68.3 2.7

Impervious ground 90.3 89.5 78.5 76.8 72.9 69.7 1.9
Water 92.6 91.2 86.8 83.8 75.0 73.5 2.0

OA 87.4 84.3 77.4 75.1 74.0 70.5 3.0

Figure 7 compares spatial details of land-cover classification by using 2D-3D USPs
against those by using only 2D USPs. It is found that the classification results using 2D-3D
USPs were better than those using only 2D USPs. As shown in Figure 7a, the trees in the
blue circle were mistakenly classified as impervious ground, and the building boundaries
cannot be captured by using 2D USPs (red rectangle). However, both were captured after
adding 3D USPs (Figure 7b), indicating that 3D USPs can help distinguish trees from
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impervious grounds and delineate the building boundaries. In addition, some impervious
grounds are mistakenly recognized as buildings (the red circle in Figure 7e), and some trees
were poorly captured (blue circle in Figure 7e) using only 2D USPs. In contrast, Figure 7f
shows that the impervious grounds and trees were correctly classified using 2D USPs and
3D USPs.
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4.2. UFZ Mapping
4.2.1. Results of Feature Optimization

Figure 8 demonstrates the variable importance ranking of 16 variables in UFZ mapping.
As shown, the most critical variable in UFZ mapping was SVF, which reached the highest
GI value of 0.138. Besides, SAR also had a high GI value of 0.131 and performed well in
UFZ mapping, indicating the importance of 3D USPs in UFZ mapping (note that all the GI
values of 3D USPs were higher than 0.06). In addition, TC reached the second-highest GI
value in UFZs (GI value = 0.134), suggesting that tree coverage plays an essential role in
UFZ classification. The other 2D USPs (i.e., BC, ISC_G, and GC) were also crucial for UFZ
mapping since their GI values were higher than 0.06. Moreover, the spatial patterns of land
covers occupied a relatively low importance rank in UFZ mapping, and all their GI values
were lower than 0.060.
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Figure 8. Variable importance ranking for UFZ mapping revealed by the RF algorithm.

We also separately tested the variable importance of each category of features. Figure 9a–c
show the results of the variable importance of 2D USPs, 3D USPs, and spatial patterns. The
most crucial variable in 2D USPs was TC (Figure 9a), which reached a high GI value of
0.32, indicating that tree coverage plays an essential role in UFZ classification. Besides,
building coverage yielded a high GI value of 0.25. However, SC and WC showed a
relatively low variable importance with GI values of less than 0.02. Figure 9b shows
that SVF (GI value = 0.29) and SAR (GI value = 0.28) yielded good performance in UFZ
mapping. Notably, all the GI values of 3D USPs exceeded 0.20, suggesting that 3D USPs
are indispensable for UFZ mapping. Figure 9c shows that the top 2 important spatial
pattern features were: TNNI (GI values = 0.30) and BNNI (GI values = 0.29). In addition,
the variable importance ranking of spatial patterns from high to low was TNNI > BNNI >
INNI > GNNI > SNNI > WNNI.
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Figure 10 shows the changes in the OA value with different input variables. As shown,
the OA value increased rapidly when the number of variables changed from 1 to 4, and it
reached the highest accuracy of 91.9% when the number of input variables was 14. Therefore,
the 14 variables of the optimal combination were selected to perform the UFZ mapping (the
details of 14 optimal variables can be found in Supplementary Material Table S9).
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4.2.2. Results of UFZ Mapping

Table 8 shows the accuracy of UFZ classification revealed by different classifiers (De-
tails concerning the confusion matrix of three classifiers are shown in Supplementary
Material Tables S10–S12). It is found that the RF classifier generated the highest accuracy
results of UFZ mapping with an OA value of 91.9%. For example, the results of com-
mercial zone classification show that the highest accuracy was found in the RF classifier
(PA value = 88.9%), but low accuracies were observed in KNN (PA value = 64.4%) and
LDA (PA value = 80.0%) algorithms. In summary, the RF classifier produced more accurate
results and had more tremendous advantages in identifying UFZs than KNN and LDA
classifiers do.

Table 8. A comparison of using RF, KNN, and LDA algorithms in UFZ mapping.

Category
RF (%) KNN (%) LDA (%)

PA UA PA UA PA UA

Commercial zone 89.7 78.8 72.4 61.8 75.9 73.3
Residential zone 94.6 96.6 79.3 84.9 89.1 89.1
Industrial zone 89.8 93.6 73.5 70.6 85.7 84.0

Park zone 87.5 88.2 68.8 73.3 75.0 85.7
OA 91.9 75.8 84.9

The results of UFZ classification revealed by RF, KNN, and LDA classifiers are shown
in Figure 11a–c. We selected three sub-regions to show their differences in spatial classifica-
tion details (Figure 11d–f). Figure 11d gives an example of a residential site. We found that
the site could be well recognized using the RF classifier; however, it was wrongly classified
as an industrial zone using KNN or LDA classifiers. Likewise, Figure 11e gives an example
of a commercial site and found that the RF classifier could accurately classify the place;
yet, the KNN classifier mistakenly classified it as a residential zone and the LDA classifier
wrongly recognized it as an industrial zone.
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Moreover, Figure 11f shows an industrial zone with irregularly disturbed buildings
and some large trucks. It is found that the RF classifier recognized the site well, but it was
incorrectly classified as a residential zone using the KNN or LDA classifiers. Thus, based
on the above analyses, the RF classifier was more suitable for UFZ classification.

4.2.3. Advantages of Using 3D USPs to UFZ Mapping

Figure 12 summarizes the UFZ classification results of different variable combinations
(the corresponding table can be found in Supplementary Material Table S13). As shown,
firstly, Exp. g yielded the highest accuracy with an OA value of 91.9%, suggesting the
advantages of integrating 2D USPs, 3D USPs and spatial pattern features of land covers. In
contrast, Exp. c produced the worst classification results (OA value = 67.7%), suggesting
the disadvantages of using only spatial patterns of land covers for UFZ mapping. Secondly,
using combinations of different categories was generally better than using the single
category (e.g., Exps. a VS. d and Exps. b VS. e). However, it is found that the OA value of
Exp. a was higher than that of Exp. f, suggesting that 2D USPs are indispensable for the
UFZ classification.
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To explore the impacts of 3D USPs on UFZ mapping, we compared the two pairs of
experiments (i.e., Exps. a vs. d and Exps. e vs. g) in Figure 13. As shown, the experiments
with 2D USPs and 3D USPs produced more accurate classification results than those with
only 2D USPs. For example, block a in Figure 13 is an industrial zone with low-rise
and large buildings; however, it was incorrectly classified as a park in Exp. a. Similarly,
residential zone b was incorrectly identified as a commercial zone in Exp. a. Yet, it is
noteworthy that blocks a and b were correctly classified in Exp. d by using 3D USPs. The
possible reason is that SAR and FAR can help with UFZ mapping. SARs in industrial zones
are higher than those in parks (Figure 1c), and FARs in residential zones are higher than
those in commercial zones (Figure 1d). In addition, blocks c and d were correctly identified
as the industrial and commercial zones, respectively, in Exp. g, whereas they were wrongly
labeled as residential zones in Exp. e that did not contain 3D USPs. Our results verified
that the importance of 3D for UFZ classification.
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5. Discussion

Previous studies use only 2D features, e.g., spectral, textural, and geometrical features
to perform UFZ mapping [11–13], whereas our approach first considered the potentials of
3D USPs, i.e., BH, SVF, FAR, and SAR for the UFZ mapping. It is important to introduce
3D USPs for the UFZ mapping since different UFZs yield essentially 3D heterogeneity
(Figure 1). Our results verified that 3D USPs could considerably improve the OA values of
UFZ and land cover mapping by 6.4% and 3.0% (Table 8 and Figure 12).

To better illustrate the advantages of our approach, we further compare the proposed
approach with relevant literature on the data source and evaluated results, i.e., OA value
(Table 9). First, our approach obtains more refined evaluation results than most of the
considered strategies (OA value = 91.9%). Second, the main idea of UFZ mapping is to
fully use the differences in spectral features [12], textual features [64], the spatial pattern
of objects [1,11], and 3D USPs among various UFZs. Note that different strategies and
indicators may yield extra costs. Our approach needs VHR images and LiDAR point
clouds producing additional expenses, i.e., 3D data. Yet, nowadays, accurate 3D data is
more accessible, i.e., low-cost LiDAR and terrestrial LiDAR systems are becoming more
affordable [14]. Based on the above discussion, our approach is suitable for accurate UFZ
mapping due to better accuracy and affordable costs.

Table 9. Comparisons of the exist methods for UFZ mapping.

Method Data Source Study Area OA Value

HSC method [11] VHR images (0.61m) and POIs Beijing, China 90.8%

Bottom-up and top-down
feedback method [1] VHR images (0.5 m) Beijing, China 84.0%

Super object-CNN method [13] High-resolution images
(1.19 m) and POIs Hangzhou, China 91.1%

Integrating Landsat images and
POIs method [12]

Rough resolution images
(30m) and POIs Beijing, China 81.0%

Integrating nighttime light and
multi-view imagery method [64]

High-resolution images
(5.8m), VHR images (0.92),

and POIs

Beijing, China and
Wuhan, China

89.6% (Beijing, China)
85.2% (Wuhan, China)

Our method VHR images (0.3m) and
LiDAR data

Brooklyn, New York
City, USA 91.9%

As stated earlier, this study achieved an accurate method for UFZ classification by
considering 3D USPs. However, several limitations need to be noted. First, this study
highlights the distinctive role of 3D USPs in UFZ mapping. However, cities composed of
complex and various landscapes require more 3D variables, i.e., 3D spatial patterns, to
label the objects to obtain accurate UFZ classification results. Second, the UFZs relevant
to socioeconomic events, and people usually conduct different activities in various UFZs.
The open social data related to human activity (i.e., POI, public transport data, mobile
phone positioning data) are valuable for UFZ mapping [11,12,64]). Therefore, studies that
explore additional available features and integrate open social data for more accurate UFZ
mapping are required in the future.

6. Conclusions

In this study, we proposed a new approach for UFZ mapping by integrating 2D
USPs, 3D USPs and the spatial patterns of land covers. The approach was then verified in
Brooklyn, New York City, USA. We evaluated the influence of 3D USPs on the classifications
of land covers and UFZs. The conclusions can be drawn as follows.

Our results show that the approach yielded an excellent accuracy of UFZ mapping
with an overall accuracy of 91.9%. The RF classifier produced the highest accuracies of
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both land cover and UFZ classifications. In addition, 3D USPs considerably improved the
classification accuracy of land cover by increasing the average OA value of 3.0% and can
help the UFZ recognition, which improved the accuracy of UFZ mapping (increasing the
OA value by 6.4%). Moreover, we verified DSM was the most critical variable of 44 features
in land cover mapping, which obtained the GI value as 0.057. In addition, SVF was the top
importance variable for UFZ classification with a GI value of 0.138. Our research provides
a new perspective for UFZ mapping and highlights that 3D USPs should be considered in
future studies that perform UFZ mapping.
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