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Abstract: Below-canopy UAVs hold promise for automated forest surveys because their sensors
can provide detailed information on below-canopy forest structures, especially in dense forests,
which may be inaccessible to above-canopy UAVs, aircraft, and satellites. We present an end-to-end
autonomous system for estimating tree diameters using a below-canopy UAV in parklands. We used
simultaneous localization and mapping (SLAM) and LiDAR data produced at flight time as inputs to
diameter-estimation algorithms in post-processing. The SLAM path was used for initial compilation
of horizontal LiDAR scans into a 2D cross-sectional map, and then optimization algorithms aligned
the scans for each tree within the 2D map to achieve a precision suitable for diameter measurement.
The algorithms successfully identified 12 objects, 11 of which were trees and one a lamppost. For
these, the estimated diameters from the autonomous survey were highly correlated with manual
ground-truthed diameters (R2 = 0.92, root mean squared error = 30.6%, bias = 18.4%). Autonomous
measurement was most effective for larger trees (>300 mm diameter) within 10 m of the UAV flight
path, for medium trees (200–300 mm diameter) within 5 m, and for trees with regular cross sections.
We conclude that fully automated below-canopy forest surveys are a promising, but still nascent,
technology and suggest directions for future research.

Keywords: below-canopy survey; UAV-mounted LiDAR; simultaneous localization and mapping;
tree diameter estimation

1. Introduction

Reliable and efficient methods for assessing forests’ physical structures are needed
for numerous applications in forestry, ecology, and conservation [1–3]. The estimation
of quantities such as stand volume, biomass, productivity, and basal area all depend on
physical measurements of trees. Remote-sensing technologies can potentially improve both
the reliability of measurements—through the use of high-density LiDAR, cameras, and
other sensors—and the efficiency—through automation and the use of unmanned aerial
vehicles (UAVs).

Here we focus on automated forest scanning from UAV platforms. Such platforms are
capable of surveying larger forest areas than ground-based vehicles [4,5] and stationary
platforms [6–9]. Satellite platforms can survey much larger areas, but at lower resolution.
Recent years have seen major advances in the use of cameras [10,11] and LiDAR [12–14] for
forest scanning, and in the software used to turn the scans into digital models from which
forests’ physical structures can be measured [1,3,15]. Most UAV-based surveys of forests
to date have used above-canopy UAVs [2,10,12,16–21]. These are effective in temperate
and boreal forests [2,20,21], where trees are deciduous or foliage is relatively sparse, so
that sensors can penetrate through the entire forest profile. In denser forests, however,
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sensor penetration from above-canopy UAV surveys may be low, limiting data collection
to the upper forest layers [18]. This limitation is particularly severe in tropical evergreen
forests, which are globally important because of their high biodiversity [22] and carbon
storage [23].

The use of below-canopy UAVs for forest surveys has received more limited attention
and is technically challenging, mainly because of the structural complexity of the below-
canopy forest environment and the unreliability of GPS signals there. Several below-canopy
UAV studies to date have relied on remotely piloted UAVs. Chisholm et al. [24] used
a remotely piloted UAV with onboard horizontal LiDAR to estimate tree diameters in
parklands. At least two recent studies have used remotely piloted UAVs with onboard
LiDAR to build a 3D model of a forest and thence estimate tree diameters [3,25].

For below-canopy surveys to be fully autonomous, however, remote human pilots
must ultimately be replaced by simultaneous localization and mapping (SLAM) technology,
which has advanced rapidly in recent years [26–30]. Liao et al. [31] and Gao et al. [32]
demonstrated navigation of an autonomous UAV in a below-canopy forest environment,
but did not focus on measuring forest physical structure. Other studies have focused
on the specific problem of autonomous trail following by UAVs in forests (e.g., [33]).
Here, we present the first example, to our knowledge, of an end-to-end below-canopy
autonomous UAV-based system for assessing a forest’s physical structure. We took data
from an autonomous UAV flight through parkland [31] and estimate tree diameters using
a post-processing LiDAR scan alignment algorithm that exploits the SLAM trajectory
generated by the UAV at flight time.

2. Materials and Methods
2.1. UAV Survey

The methods for our UAV survey have been reported elsewhere [31]; we give a brief
summary here. The hardware comprised a quadrotor UAV (measuring 1.2 m× 1.2 m× 0.5 m)
with two onboard LiDAR scanners for detecting obstacles in the horizontal and vertical
directions, a range finder to measure altitude, an inertial measurement unit for measuring
angles and acceleration, a Pixhawk flight controller, and a Mastermind processor for
high level control. The horizontal LidAR scanner, a Hokuyo UTM-30LX, performed
40 horizontal scans per second, and each scan comprised 962 pulses with evenly spaced
beam angles over a 240◦ field of view. Each pulse reported a distance to target, with a
distance of infinity indicating no pulse return. Henceforth we use the term “scan” to refer
to one of these horizontal scans and its constituent pulse returns. The high-level software
system for autonomous navigation included the construction of an occupancy grid map,
SLAM, and 3D path planning.

The survey was conducted in April 2015 in parkland near the Ayer Rajah Expressway
in Singapore (1◦17′54′′ N 103◦46′59′′ E; Figure 1). The parkland environment comprised
scattered trees and palms of commonly planted native and introduced species in Singa-
pore (including Andira inermis, Peltophorum pterocarpum, Syzygium polyanthum, Swietenia
macrophylla, Xanthostemon chrysanthus, Khaya senegalensis, and Cocos nucifera) and occasional
lampposts, underlain by grass and walking paths, with no bushes or undergrowth. The
UAV was programmed to fly a closed loop of approximately 100 m over two minutes, at a
height of ~1.2 m. The exact path was not pre-planned but autonomously charted during
the flight. The path was flown only once.

2.2. Data Analysis

In post-processing, we analyzed the SLAM data from the autonomous UAV, along with
the raw LiDAR data (which were input to SLAM at flight time), to estimate the diameters
of trees in the study area. The data analysis comprised three main steps: use of the SLAM
path to transform and collate the raw LiDAR data to produce a horizontal cross-section
map of the study area, identification of clusters of LiDAR points corresponding to putative
trees, and estimation of tree diameter for each cluster.
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Figure 1. A view of the study area with the UAV in flight.

The transformation and collation of LiDAR data across the multiple scans involved
projecting each scan’s LiDAR points into global coordinate space using the known orienta-
tion of the UAV at the corresponding time and the estimated location of the UAV from the
SLAM algorithm. To alleviate the computational load, we did not use all 4800 horizontal
LiDAR scans from the two-minute flight, but instead selected 500 scans equally spaced in
time. Of the 962 points in each scan, we used only those with pulse return distances of
0.1–7.0 m; points outside this range were considered unreliable. We identified clusters of
LiDAR points in the collated map using the algorithm described in Chisholm et al. [24],
with each point’s weight set to the reciprocal of its distance from the UAV, with points
within a distance 0.2 m of each other treated as part of the same cluster, and with the
minimum cluster size (sum of point weights) equal to 0.1.

The resulting clusters of points typically did not resemble tree cross-sections because
of errors in the estimated UAV positions from the SLAM algorithm (i.e., the SLAM output
alone was insufficiently precise for the purposes of tree diameter estimation). To overcome
this, we implemented a novel algorithm that adjusted the estimated UAV positions corre-
sponding to the scans for each of the n clusters with the goal of aligning the collated scans
to produce a more coherent shape. The tree diameter was then measured from the aligned
scans. The combined alignment and measurement algorithm for a cluster (with index i)
worked as follows:

(1) First, scans with fewer than eight pulses reporting finite distances to target were
discarded. Such scans contained too little information for reliable comparison to other
scans, and thus for reliable UAV position estimation. To limit the computational load,
we used a maximum of 16 scans, equally spaced in time among those available, for
each cluster.

(2) The two scans closest together in time were merged by adjusting the estimated UAV
horizontal-plane coordinates of the second scan (xUAV , yUAV) so that the length of
the minimal spanning tree of the merged tree was minimized (if there was more
than one candidate for this pair of scans, the pair was chosen randomly from among
candidate pairs). The minimization was achieved with the optimx() function in R
with the L-BFGS-B method with two fitting parameters xUAV and yUAV , and bounds
of ±ε on the two parameters, where ε = 0.2 m was the estimated maximum error in
the UAV position from the SLAM algorithm based on preliminary visual inspection of
the overlaid scans. The starting estimates for xUAV and yUAV were chosen randomly
from the intervals [x̂UAV − ε, x̂UAV + ε] and [ŷUAV − ε, ŷUAV + ε]. The algorithm
repeated the call to optimx() 100 times with different starting values for the parameter
estimates, to ensure the global minimum was found in each case.

(3) Step 2 was repeated until all scans had been merged.
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(4) A circle was fitted to the resulting merged points using Pratt’s method [34], and the
cluster was accepted as a physical tree if the resulting fitted circle had a diameter
of less than 1 m, if the circular standard deviation of points was greater than π/8
(indicating that a sufficient arc of the putative trunk had been scanned), and if the R2

value was greater than 0.9.
(5) If the cluster was accepted as a physical tree in step 4, the diameter of the fitted circle

was taken as the estimated diameter of the tree (d̂i).

2.3. Manual Survey

After processing the UAV LiDAR data, we returned to the field site in Septem-
ber 2017, mapped out all trees and lampposts within an estimated 20 m of the UAV’s
flight path, and measured their DBHs (di) with diametric tape. The manually measured
DBHs were then compared to the UAV-measured DBHs using the coefficient of deter-
mination (R2), median absolute error (median

∣∣∣(d̂i − di

)
/di

∣∣∣), root mean squared error

(

√
(1/n)∑n

i=1

((
d̂i − di

)
/di

)2
), and bias ((1/n)∑n

i=1

(
d̂i − di

)
/di). We did not attempt

to account for growth of the trees over the 29 months between the UAV survey and the
manual survey, because tree growth is known to be highly variable across individuals,
species, site, and year [35], but we acknowledge this as a source of error.

3. Results

The autonomous UAV successfully traced a closed loop of length ~100 m over two
minutes as reported in Liao et al. [31] (Figure 2), with a mean height of 1.26 m (excluding
take-off and landing stages). The SLAM and LiDAR data are provided as Supplementary
Materials (Tables S1 and S2). A total of 27 objects were identified as potential trees from the
clustering algorithm of Chisholm et al. [24]. Of these, 13 were accepted by our alignment
and measurement algorithm (Figure 3 shows the results of the alignment algorithm for one
of the objects). In the subsequent field survey, 11 of the 13 potential objects were matched
to real trees, and one was matched to a lamppost. The remaining potential object could
not be matched to any real object and had a highly irregular shape—it likely resulted from
LiDAR scans on humans supervising the UAV flight—and was discarded.
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Figure 2. Map showing horizontal cross-section of plot with SLAM trajectory (curve, with arrows
showing direction of UAV, starting and ending at {x, y} = {0, 0}) and clusters of transformed and
collated LiDAR scan points (indicated by sequence numbers in red).
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For the 12 confirmed objects (Table 1), there was high correspondence between the
autonomous diameter estimates and the manual ground-truthed estimates (Figure 4a;
R2 = 0.92, median absolute error = 10.4%; root mean squared error = 30.6%; bias = 18.4%).
Similar results were obtained if the lamppost was excluded (R2 = 0.91, median absolute
error = 13.9%; root mean squared error = 31.9%; bias = 19.5%).

Table 1. Summary data for the 12 accurately detected objects in the study area (object numbers
correspond to those in Figure 2).

Object Number DBH Manual (mm) DBH UAV (mm) Minimum Distance
from UAV Path (m)

2 232 403 2.3
4 196 252 3.2
7 267 410 3.7
12 373 348 3.2
14 549 567 2.4
15 87 93 1.4
18 230 262 1.9
19 308 298 4.4
21 740 727 3.0
22 428 507 3.0
23 785 758 6.5
26 208 287 5.9

Trees were more accurately detected when they were closer to the UAV. For the
50 objects (including 46 trees and four lampposts) in our survey area (Figure 2), the average
distance to the UAV path was 8.1 m, while the average distance for accurately detected
and measured objects was just 3.4 m (Figure 4b; Table 1). Larger trees tended to be more
accurately measured than small trees, in terms of percentage error (Figure 4b; Spearman’s
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ρ = −0.67, p = 0.028 for the relationship of percentage error to DBH; though note
this relationship did not hold if the lamppost, which was narrow but was accurately
measured, was included). The tree with lowest percentage error of 1.8% in measured DBH
was a 740 mm tree standing 3.0 m away from the UAV’s path (Tree 21; UAV estimated
DBH = 727 mm; Table 1). The tree with the lowest absolute error of 10 mm was a 308 mm
tree standing 4.4 m from the UAV’s path (Tree 19; UAV estimated DBH = 298 mm; Table 1).
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4. Discussion

We have presented an end-to-end autonomous system for assessing forest physical
structure from a below-canopy UAV: both the UAV flight and the post-processing to
estimate tree DBHs were achieved with automated algorithms. This advances on previous
work where diameters have been estimated from remotely piloted below-canopy UAV
flights [3,24,25]. We have also shown here how the SLAM path generated by an autonomous
UAV can facilitate analysis and physical structure assessment in a GPS-denied environment,
but that imprecision in the SLAM path means that post-processing is still required for
alignment of the LiDAR scans.

The correlation between UAV-estimated DBH and manually estimated DBH was
higher than in a previous study of ours using a remotely piloted UAV [24] (R2 = 0.92
vs. R2 = 0.45), but this was mainly because the range of tree sizes was larger in the
present study; the root mean square errors were similar across the two studies (30.6% here
vs. 25.1% in the previous study) and the bias was actually higher in the present study
(18.4% vs. −1.2%), although this difference was likely due to small sample sizes. Our two
poorest estimates were for smaller trees, and these failures illuminate current technical
challenges. One of these trees (Tree 2; DBH = 232 mm; UAV-estimated DBH = 403 mm;
reddest point on Figure 4b) was scanned from one side at the beginning of the flight
and the other side at the end, and the post-processing algorithm was unable to align
the scans from the two sides accurately. For the other inaccurately measured small tree
(Tree 7; DBH = 267 mm; UAV estimated DBH = 410 mm), insufficient angular variance
was present in the scans. Interestingly, the lamppost, which stood 1.4 m from the UAV’s
path, was accurately measured, despite having a narrow DBH of 87 mm (Object 15; UAV
estimated DBH = 93 mm), demonstrating in principle that even small trees can be assessed
accurately providing they are regularly shaped, not too far for the UAV, and are scanned
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over sufficiently large angles. Autonomous flight software could address this by actively
identifying blind spots and directing the UAV to scan them. To address the issue that some
tree trunks have irregular non-circular shapes, fitting algorithms could allow shapes more
flexible than circles (e.g., ellipses or non-convex shapes) and estimate basal area rather
than diameter.

Autonomous surveys of forest physical structure could be further improved via the
integration of 3D LiDAR, optical cameras, and more sophisticated methods of point cloud
analysis [1,3,4,6,7,11,12,15,17,18,21,36]. Chen et al. [3] flew a remotely piloted below-canopy
UAV with mounted 3D LiDAR in a temperate pine forest and developed novel software
for reconstructing tree geometry from 3D point clouds. They reported a median absolute
DBH error of 1.7 cm, lower than our median error of 3.0 cm. Hyyppä et al. [25] conducted a
similar study in a pine-dominated boreal forest, and also developed novel software for 3D
point cloud analysis, yielding a root mean squared error of 2.2% for tree DBHs, substantially
lower than our value of 30.6%. We have focused on estimation of DBH here because it is
currently a demanding, expensive, and time-consuming part of manual forest surveys, and
thus a suitable starting point for developing automated technology. If a 3D point cloud is
available, other forest structural properties, such as volume, can be assessed also.

One outstanding challenge is autonomous navigation in forest environments that
are more complex than the parkland at our study site. In real forests, objects such as
resprouting trees, bushes, lianas, ferns, epiphytes, and branches pose substantial obstacles
to autonomous vehicles. Some autonomous navigation studies in forests to date have
focused on trail following (e.g., [33]), which presents unique challenges but is a distinct
problem from comprehensively surveying large tracts of forests. Fortunately, the general
goal of autonomous navigation in complex environments is a problem of general scientific
and engineering interest [30], and forest ecologists can expect to benefit from ongoing
developments in coming years. We foresee that gradual improvements in below-canopy
UAV surveys in forests will make them increasingly useful as a complement to above-
canopy surveys and analyses of satellite data [2], and will lead to more comprehensive
assessments of forest physical structure, with benefits for forest ecology and conservation,
particularly in evergreen tropical forests.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13132576/s1, Table S1: SLAM path data (bagfile-_serial_pub.csv), Table S2: LiDAR scan data
(bagfile-_laser_horizontal_scan.csv).
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