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Abstract: Hyperspectral unmixing (HU) is a research hotspot of hyperspectral remote sensing
technology. As a classical HU method, the nonnegative matrix factorization (NMF) unmixing method
can decompose an observed hyperspectral data matrix into the product of two nonnegative matrices,
i.e., endmember and abundance matrices. Because the objective function of NMF is the traditional
least-squares function, NMF is sensitive to noise. In order to improve the robustness of NMF,
this paper proposes a maximum likelihood estimation (MLE) based NMF model (MLENMF) for
unmixing of hyperspectral images (HSIs), which substitutes the least-squares objective function in
traditional NMF by a robust MLE-based loss function. Experimental results on a simulated and two
widely used real hyperspectral data sets demonstrate the superiority of our MLENMF over existing
NMF methods.

Keywords: hyperspectral unmixing; maximum likelihood estimation; nonnegative matrix factorization

1. Introduction

A hyperspectral image (HSI) can be represented as a three-dimensional data cube,
containing both spectral and spatial information to characterize radiation properties, spa-
tial distribution and geometric characteristics of ground objects [1,2]. Compared with
panchromatic, RGB and multispectral pictures that have only several broad bands, HSI
usually has hundreds of spectral bands. The rich spectral information of HSI can be used
to discriminate subtle differences between similar ground objects, which makes HSI suit-
able for different applications, such as target recognition, mineral detection, precision
agriculture [1–3]. Due to the scattering of ground surface and low spatial resolution of
the hyperspectral sensor, an observed HSI pixel is often a mixture of multiple ground
materials [4–6]. This is the so called “mixed pixel”. The presence of “mixed pixels”
seriously affects the application of HSIs. To address the problem of mixed pixels, hyper-
spectral unmixing (HU) techniques have been developed [4–8]. HU aims to decompose
a mixed spectral into a collection of pure spectra (endmembers) while also providing the
corresponding fractions (abundances). In terms of the spectral mixture mechanism, HU
algorithms can be roughly categorized into linear and non-linear ones [4,5]. Although, in
general, the nonlinear mixing assumption represents the most-real cases better, the linear
mixing assumption (although more simplified) has been proved to work very satisfactory
in many cases in practice. Taking into account its mathematical tractability, it has attracted
significant attention from the scientific community. For these reasons, the linear mixture
model is adopted in the present paper, in which a measured spectral can be represented as
a linear combination of several endmembers.

Nonnegative matrix factorization (NMF) is a widely used linear HU method [9–20].
In this framework, HU is regarded as a blind source separable problem, and decomposes
an observed HSI matrix into the product of the pure pixel matrix (endmember matrix) and
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corresponding proportion matrix (abundance matrix). Respecting the physical constraints,
nonnegative constraints on the endmembers and abundances, and abundance sum-to-one
constraint (ASC) are imposed. The NMF algorithm has the characteristics of intuition and
interpretability. However, due to the existence of large number of unknown dependent
variables, the solution space of NMF model is too large. To restrict its solution space, many
NMF variants are proposed by adding constraints on the abundance or endmember [10–16].
Miao et al. incorporated a volume constraint of endmember into the NMF formulation
and proposed a minimum volume constrained NMF (MVC-NMF) model [10], which can
perform unsupervised endmember extraction from highly mixed image data without
the pure-pixel assumption. Jia et al. introduced two constraints to the NMF [11], i.e.,
piecewise smoothness of spectral data and sparseness of abundance fraction. Similarly, two
constraints on abundance (i.e., abundance separation constraint and abundance smoothness
constraint) were added into the NMF [12]. Qian et al. imposed an l1/2-norm-based sparse
constraints on the abundance and proposed an l1/2-NMF unmixing model [13]. Lu et al.
considered the manifold structure of HSI and incorporated manifold regularization into the
l1/2-NMF [14]. Wang et al. added endmember dissimilarity constraint into the NMF [15].

Although the aforementioned NMF methods improved the classical NMF unmixing
model at a certain extent, they ignored the effect of noise. As the objective function of NMF
is the least squares loss, NMF is sensitive to noise and corresponding unmixing results are
usually inaccurate and unstable. To suppress the effect of noise and improve the robustness
of the model, many robust NMF methods were proposed [17–20]. He et al. proposed a
sparsity-regularized robust NMF by adding a sparse matrix into the linear mixture model
to model the sparse noise [17]. Du et al. introduced a robust entropy-induced metric
(CIM) and proposed a CIM-based NMF (CIM-NMF) model, which can effectively deal with
non-Gaussian noise [18]. Wang et al. proposed a robust correntropy-based NMF model
(CENMF) [19], which contained a correntropy-based loss function and an l1-norm sparse
constraint on the abundance. Based on the Huber’s M-estimator, Huang et al. constructed
l2,1-norm and l1,2-norm based loss functions to obtain a new robust NMF model [20,21].
Defining the l2,1-norm (l1,2-norm) based loss function actually assumes that the column-
wise (row-wise) approximation residual follows Laplacian (Gaussian) distribution from the
viewpoint of maximum likelihood estimation (MLE). However, in practice this assumption
may not hold well, especially when HSI contains complex mixture noise, such as impulse
noise, stripes, deadlines, and other types of noise [22,23].

Inspired by the robust regression theory [23,24], we design the approximation residual
as an MLE-like estimator and propose a robust MLE-based l1/2-NMF model (MLENMF)
for HU. It replaces the least-squares loss in the original NMF by a robust MLE-based loss,
which is a function (associated with the distribution of the approximation residuals) of the
approximation residuals [24]. The proposed MLENMF can be converted to a weighted
l1/2-NMF model and can be solved by a re-weighted multiplication update iteration
algorithm [9,13]. By choosing an appropriate weight function, MLENMF can automatically
assign small weights to bands with large residuals, which can effectively reduce the effect
of noisy bands and improve the unmixing accuracy. Experimental results on simulated and
real hyperspectral data sets show the superiority of MLENMF over existing NMF methods.

The rest of the paper is organized as follows. Section 2 introduces the NMF and
l1/2-NMF. Section 3 describes our proposed MLENMF method. The experimental results
and analysis are provided in Section 4. Section 5 discusses the effect of parameters in the
algorithm. Finally, Section 6 concludes the paper.

2. NMF Unmixing Model

Under the linear spectral mixing mechanism, an observed spectral h ∈ RM×1 can be
represented linearly by the endmember z1, · · · , zP [4,10–13]:

h = Zs + ε, (1)
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where Z = [z1, · · · , zP] ∈ RM×P represents the endmember matrix, s ∈ RP×1 is the
coefficient (abundance) vector, and ε is the residual. Applying the above linear mixing
model (1) for all hyperspectral pixels h1, · · · , hN , the following matrix representation can
be obtained:

H = ZS + E, (2)

where H = [h1, · · · , hN ] ∈ RM×N , S = [s1, · · · , sN ] ∈ RP×N are nonnegative hyperspectral
data matrix and abundance matrix, respectively. E ∈ RM×N is the residual matrix.

In Equation (2), to make the decomposition result as accurate as possible, the residual
should be minimized. Then, an NMF unmixing model can be obtained by considering the
nonnegative property of endmember and abundance matrices:

min
Z,S
‖H− ZS‖2

F, s.t., Z ≥ 0, S ≥ 0, (3)

where ‖·‖F denotes the Frobenius norm, and Z ≥ 0 means that each element of Z is
nonnegative. As each column of abundance matrix S records the proportion of endmembers
in representing a pixel, the columns of S (each one corresponding to a pixel) should satisfy
the sum-to-one constraint, i.e., ∑P

p=1 Spn = 1, n = 1, · · · , N.
The above NMF Model (3) can be easily solved by the multiplication update algo-

rithm [9,13]. However, its solution space is very large [13]. To restrict the solution space, an
l1/2-constraint can be added to the abundance matrix S, and an l1/2-NMF model can be
obtained as [13]:

min
Z,S
‖H− ZS‖2

F + λ‖S‖1/2, s.t., Z ≥ 0, S ≥ 0, (4)

where λ is a regularization parameter and ‖S‖1/2 is the l1/2-regularizer [13]. As proved
in Refs. [13,25], l1/2-regularizer is a good choice in enforcing the sparsity of hyperspectral
unmixing because the sparsity of the lq (1/2 ≤ q < 1) solution increases as q decreases,
whereas the sparsity of the solution for lq (0 < q ≤ 1/2) shows little change with respect to
q. Meanwhile, the sparsity represented by l1/2 also enforces the volume of the simplex to
be minimized [13].

3. MLENMF Unmixing Model

In the NMF model (3) or (4), the objective function ‖H− ZS‖2
F is the least-squares

(LS) function which is sensitive to noise. Here, we employ a new robust MLE-based loss
to replace the LS objective function and propose an MLE-based NMF (MLENMF) model
for HU.

Firstly, the matrix norm form is transformed into vector norm form:

‖H− ZS‖2
F =

M

∑
i=1
‖Hi − (ZS)i‖

2
2, (5)

where Hi is the i-th row of matrix H.
We can regard the least squares objective function as the sum of approximation resid-

uals, and then construct an MLE-like robust estimator to approximate the minimum of ob-
jective function. Denote the approximation residual of the i-th band as ei = ‖Hi − (ZS)i‖2
and define residual vector e = [e1, . . . , eM ]T , the above Formula (5) can be rewritten as:

J(e) = ‖e‖2
2 =

M

∑
i=1

e2
i . (6)
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Assume that e1, . . . , eM are independent and identically distributed (i.i.d) random
variables, which follow the same probability distribution function gθ(ei), where θ is the
distribution parameter. The likelihood function can be expressed as:

Jθ(e1, . . . , en) =
M

∏
i=1

gθ(ei). (7)

According to the principle of MLE, the following objective function should be minimized:

− ln Jθ =
M

∑
i=1

ϕθ(ei), (8)

where ϕθ(ei) = − ln gθ(ei). If we replace the objective function ‖H− ZS‖2
F in Equation (4)

by the loss in Equation (8), we can get the following optimization problem:

min
Z,S

M

∑
i=1

ϕθ(ei) + λ‖S‖1/2, s.t., Z ≥ 0, S ≥ 0, (9)

In fact, the aim is to construct a loss function to replace the least squares func-
tion to reduce the impact of noise. To construct the loss function, we analyze its Tay-
lor expansion. Assume that gθ is symmetric, and gθ(ei) < gθ

(
ej
)

if
∣∣ei
∣∣> ∣∣ej

∣∣ . We can
infer that: (1) gθ(0) is global maximum of gθ and ϕθ(0) is the global minimum of ϕθ ;
(2) ϕθ(ei) = ϕθ(−ei); (3) ϕθ(ei) > ϕθ

(
ej
)

if
∣∣ei
∣∣> ∣∣ej

∣∣ . For simplicity, we assume ϕθ(0) = 0.
Define Dθ(e) = ∑M

i=1 ϕθ(ei). According to the first-order Taylor expansion around e0, Dθ(e)
can be approximated as [24]:

D̃θ(e) = Dθ(e0) + (e− e0)
T D′θ(e0) +

1
2
(e− e0)

TW(e− e0), (10)

where D′θ(e0) is the first order derivative of Dθ(e) at e0, and W is the Hessian matrix. We

can get the mixed partial derivatives ∂2Dθ
∂ei∂ej

= 0 (ei 6= ej) as the error residuals ei and ej

are assumed i.i.d., and hence W is a diagonal matrix. Taking the derivative of D̃θ(e) with
respect to e, it gets

D̃′θ(e) = D′θ(e0) + W(e− e0). (11)

As ϕθ(0) = 0 is the global minimum of ϕθ , the minimum of Dθ(e) is Dθ(0). D̃θ(e)
should also reach its minimum at e = 0 for it is an approximation of Dθ(e), so D̃′θ(0) = 0
and then we can derive the following formulas from Equation (11):

D′θ(e0)−We0 = 0 (12)

Wi,i =
ϕ′θ(e0,i)

e0,i
(13)

where Wi,i is the i-th diagonal element of W. Denote wi = Wi,i, Equation (13) can be
written as

ϕ′θ(ei) = wiei (14)

As ϕθ(x) is a nonlinear and nonconvex function, it is difficult to solve the model (9)
directly. Inspired by the above Formula (14), we can get:

ϕθ(ei) = wie2
i , (15)
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and then the Model (9) can be expressed as a weighted NMF model:

min
Z,S

M

∑
i=1

wie2
i + λ‖S‖1/2, s.t., Z ≥ 0, S ≥ 0, (16)

The objective function of Model (16) can be rewritten as:

M
∑

i=1
wie2

i + λ‖S‖1/2 =
M
∑

i=1
wi‖Hi − (ZS)i‖

2
2 + λ‖S‖1/2

=
M
∑

i=1
‖√wiHi −

(√
wiZS

)i‖
2

2 + λ‖S‖1/2

= ‖H̃− Z̃S‖2
F + λ‖S‖1/2,

(17)

where H̃ =
√

WH, Z̃ =
√

WZ. Then, the Model (16) can be expressed as:

min
Z,S

M

∑
i=1
‖H̃− Z̃S‖2

F + λ‖S‖1/2, s.t., Z ≥ 0, S ≥ 0. (18)

It is easy to see that model (18) is also an l1/2-NMF algorithm, and can be solved by
the multiplication update iteration rule as follows [9,13]:

Z̃← Z̃. ∗
(

H̃ST
)

./
(

Z̃SST
)

(19)

S← S. ∗
(

Z̃
T

H̃
)

./
(

Z̃
T

Z̃S +
λ

2
S−

1
2

)
(20)

The final endmember matrix is Z = W−
1
2 Z̃.

In the model (18), a key factor is the weight. In this paper, the weight function is set as
the logistic function [23,24,26]:

wi , w(ei) =
1

1 + exp
(
−γ
(
τ − e2

i
)) =

exp
(
γ
(
τ − e2

i
))

1 + exp
(
γ
(
τ − e2

i
)) , (21)

where γ, τ are positive scalars. Parameter γ controls the decreasing rate from 1 to 0, and τ
controls the location of demarcation point [24]. It is clear that the value of weight function
decreases rapidly with the increase of residual ei.

MLE weight function in Equation (21) can approximate the weight of commonly used
loss functions, such as l2,1, maximum correntropy and Huber weights.

When γ = 2 and τ → 0 , the MLE weight function is:

w(ei) =
1

1 + exp
(
2e2

i
) f or small ei−−−−−−→ 1

2
(
1 + e2

i
) (22)

which is close to l2,1 weight: 1
1+e2

i
. The corresponding weights are shown as red and blue

lines in Figure 1a.
When γ = 1

σ2 and τ → 0 , the MLE weight function is:

w(ei) =
1(

1 + exp
(

e2
i

σ2

)) (23)

which is close to the weight of maximum correntropy criterion: exp
(
− e2

i
σ2

)
(σ is a parame-

ter). The corresponding weights are shown in Figure 1b.
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Figure 1. MLE weights fit l2,1 weight (a), maximum correntropy weight (b), Huber weight (c).

By choosing appropriate parameters, the MLE weight can also approximate the Hu-
ber weight:

wHuber(ei) =

{
1, |ei| ≤ c
c
|ei |

, |ei| > c (24)

as shown in Figure 1c.
Based on Equations (14) and (21), the objective function of MLE can be obtained as:

ϕθ(ei) =
∫ ei

0 ϕ′θ(ei)dei =
∫ ei

0 eiw(ei)dei

=
∫ ei

0 ei
exp(γ(τ−e2

i ))
1+exp(γ(τ−e2

i ))
dei

= −1
2γ ln

(
1 + exp

(
γ
(
τ − e2

i
) ))
|ei
0

= −1
2γ ln

1+exp(γ(τ−e2
i ))

1+exp(γτ)

(25)

From Equations (8) and (25), we can see that the probability distribution function
gθ(ei) has the form:

gθ(ei) =

(
1 + exp

(
γ
(
τ − e2

i
))

1 + exp(γτ)

) 1
2γ

(26)

If τ = 0, γ→ 0 , the probability distribution function gθ(ei) is actually a Gaus-
sian distribution:

ln gθ(ei) =
ln

1+exp(−γe2
i )

2
2γ

γ→0→
exp

(
−γe2

i
)
·
(
−e2

i
)

1 + exp
(
−γe2

i
) γ→0→ −

e2
i
2

(27)

gθ(ei)
γ→0→ exp

(
−

e2
i
2

)
(28)

In this case, the weight defined in Equation (21) is: ωi = 1/2, which is the LS case.
In Figure 2a, we compare the MLE objective function with the LS loss function. MLE

objective function is controlled by the parameters γ, τ, and is truncated to a constant for
large residuals (e.g., |ei| > 2). As the constant has no effect on the optimization model,
the negative effect of noise (points with large residuals) can be automatically diminished.
Compared with the MLE function, LS loss function is global and increases quadratically as
the increase of residual. When there has heavy noise, the objective function of LS model will
be dominated by the points with heavy noise. Figure 2b shows the influence function [22,27]
of MLE and LS. The influence function of a loss ϕ(e) is defined as: ψ(e) = ∂ϕ(e)/∂e, which
measures the robustness of loss function as the increase of error residual. For residual
ei > 0, the influence function of MLE increases first, then decreases and finally reaches
the zero value. It means that larger errors finally have no effect on the MLE-based model.



Remote Sens. 2021, 13, 2637 7 of 19

However, the influence function of LS continues to grow linearly. So, the LS loss function is
seriously affected by noise. In the presence of noise, MLE is obviously more robust than LS.
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Figure 2. Comparison of objective function (a) and influence function (b) between MLE and LS.

The procedure of the proposed MLENMF is shown in Algorithm 1.

Algorithm 1 MLENMF.

Input: hyperspectral matrix H, the parameter γ, τ

Initialization: endmember Z0 and abundance S0,
Output: estimated endmember and abundance matrices.

1. Initialize Z(0) = Z0, S(0) = S0, v = 1, W = I
2. Run the following steps until convergence: (a) Compute the errors:

(
e2

i

)(v)
= ‖Hi −

(
Z(v−1)S(v−1)

)i
‖

2

2

(b) Calculate the weight of each entry:

w(v)(ei) =
exp

(
γτ − γ

(
e2

i
)(v))

1 + exp
(
γτ − γ

(
e2

i
)(v))

(c) Compute the weighted matrices:

H̃ =
(

W(v)
) 1

2 H

Z̃
(v−1)

=
(

W(v)
) 1

2 Z(v−1)

(d) Updating endmember matrix and weighted abundance matrix:(
Z̃
(v)

, S(v)
)
= L1/2NMF

(
H̃, Z̃

(v−1)
, S(v−1)

)
Z(v) =

(
W(v)

)− 1
2 Z̃

(v)

(e) v = v + 1
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Remark. In the current method, it assumes that different bands are independent and then an MLE
solution can be deduced. The band independence assumption is only used in the derivation of MLE
estimator. By means of this assumption, it can finally generate a weighted NMF model where the
weight function can be used to reduce the effect of noisy bands. Although hyperspectral bands are
not independent from each other in practice, the final weighted NMF model (i.e., MLENMF) can
still alleviate negative effects of noise.

4. Results

In this section, we perform experiments on a simulated and two real hyperspectral data
sets to test the performance of MLENMF model and compare the results with l1/2-NMF [13],
l21-NMF [21], CENMF [19], CIMNMF [18], and HuberNMF (HubNMF for short) [18].

4.1. Evaluation Metrics

Spectral angular distance (SAD) and root mean square error (RMSE) are used to
quantitatively evaluate the accuracy of estimated endmembers and abundances.

The formula of SAD is:

SADk = arccos

(
zT

k ẑk

‖zk‖·‖ẑk‖

)
, (29)

where SADk represents the similarity between the k-th real endmember zk and estimated
endmember ẑk.

The RMSE is:

RMSEk =

(
1
N
‖sk − ŝk‖2

) 1
2
, (30)

where sk and ŝk are the k-th real and estimated abundance maps (i.e., the k-th row vector in
S and Ŝ), respectively. N is the number of pixels in HSI.

4.2. Implementation Details

The vertex component analysis (VCA) and fully constrained least squares (FCLS)
methods are used to generate the initial endmember Z0 and abundance S0 for different
unmixing methods [11–19]. The regularization parameter λ in l1/2-NMF and CENMF
is dependent on the sparsity of the material abundances and is estimated based on the
sparseness criterion in Ref. [13]. The parameter of CIMNMF and Huber-NMF are set to be
the recommended values in Ref. [18]. The proposed MLENMF contains two parameters γ
and τ as shown in Equation (21). It is clear that τ is related to the amplitude of residual
e2

i . For different data sets, the amplitude of residuals may be different. So, it is difficult to
determine a specific value of τ. Here, we set τ in a data-dependent way: τ is the (100ξ)-th
percentile of residual vector ẽ =

[
e2

1, . . . , e2
M
]T , where ξ ∈ (0, 1] controls the ratio of inliers.

Following Reference [24], parameter γ is set as γ = c/τ, c ∈ (0, 10]. So, in the experiments,
we only need to tune the parameters ξ and c.

4.3. Experiments on Simulated Data

Seven spectral signatures (i.e., “Carnallite NMNH98011”, “Actinolite NMNHR16485”,
“Andradite WS487”, “Diaspore HS416.3B”, “Erionite+Merlinoit GDS144”, “Halloysite
NMNH106236”, “Hypersthene NMNHC2368”) from the USGS spectral library (https:
//www.usgs.gov/labs/spec-lab, accessed on 2 July 2019) are selected to construct the
endmember matrix Z ∈ R224×7. Then, these seven spectra are mixed according to the
method described in Ref. [28] to form the corresponding abundance matrix S ∈ R7×4096.
The hyperspectral data matrix is obtained by the product of endmember and abundance
matrices, i.e., H = ZS. To simulate the real situations, Gaussian noise is added into the
data matrix H such that the signal noise ratio (SNR) of different bands follow the Gaussian
distribution, i.e., SNR ∼ N

(
µ, δ2) with δ = 5. In the experiment, µ ∈ {5, 10, 15, 20} are

https://www.usgs.gov/labs/spec-lab
https://www.usgs.gov/labs/spec-lab
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considered. A large µ corresponds to small noise. In the MLENMF, parameter ξ is set as
0.4, and parameter c = 10 is used for µ ≤ 10 and c = 1 is used for µ ≥ 10.

Tables 1 and 2 show the average results of 20 random experiments under different
degrees of noise. Each SAD (RMSE) value is the mean of SAD (RMSE) over seven endmem-
bers. It is clear that the performance of different methods are improved as the increase of
SNR or µ, and MLENMF shows better results in different degrees of noise.

Table 1. The SAD results of different unmixing methods for simulated data.

µ NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

5 0.4972 0.4754 0.4324 0.4088 0.4732 0.4718 0.3895
10 0.3513 0.3146 0.2901 0.2813 0.3093 0.3086 0.2537
15 0.1997 0.1749 0.1764 0.1626 0.1781 0.1772 0.1134
20 0.0988 0.0950 0.0936 0.0865 0.0985 0.0946 0.0689

Table 2. The RMSE results of different unmixing methods for simulated data.

µ NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

5 0.2679 0.2763 0.2737 0.2586 0.2653 0.2650 0.2459
10 0.2491 0.2554 0.2497 0.2345 0.2435 0.2448 0.2114
15 0.1951 0.1956 0.1983 0.1811 0.1954 0.1920 0.1440
20 0.1137 0.1219 0.1233 0.1145 0.1208 0.1203 0.0599

To visualize the results of different methods, the real and estimated spectra for the
endmember 1 (i.e., “Carnallite NMNH98011”) at µ = 20 are shown in Figure 3. Here, we
only show the results for the endmember 1 due to space limitations. Similar good results
are obtained for the other endmembers. It can be seen that the spectral curve estimated by
the MLENMF can well approximate the reference one while the curve of other methods
exhibit deviations in amplitude from the reference spectral. As the reference spectral and
estimated spectral by different methods have similar shape, the SAD of different methods
show small differences as shown in Table 1. Notwithstanding, the estimated abundance
map of different methods show large differences as shown in Figure 4. Taking into account
both SAD and RMSE results, we can see that our MLENMF method is more robust than
other NMF methods when the data contains noise.
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4.4. Experiments on Real Data

Two real hyperspectral unmixing data sets, i.e., Urban and Japser are used to evalu-
ate the performance of different NMF unmixing methods (Available at https://rslab.ut.
ac.ir/data, https://sites.google.com/site/feiyunzhuhomepage/datasets-ground-truths,
accessed on 2 July 2019). The Urban data was obtained by the HYDICE sensor. This scene
has the size of 307× 307 pixels and each pixel corresponds to an 2× 2 m2 area. The original
data has 210 bands, where band 1–4, 76, 87, 101–111, 136–153, 198–210 are severely affected
by dense water vapor and atmosphere. After removing these noisy bands, 162 bands are
kept. This scene contains four reference materials: Asphalt road, Grass, Tree and Roof,
which are also available at the https://rslab.ut.ac.ir/data, accessed on 2 July 2019.

We first perform experiments on the Urban data with 162 bands. The parameters of
MLENMF are set as: ξ = 0.8 and c = 1. The estimated endmembers and abundances by
different unmixing methods are compared with the groundtruth references and then the
SAD and RMSE results are computed, as shown in Tables 3 and 4, respectively. Compared
with other NMF methods, the proposed MLENMF shows better overall results. Figure 5
shows the estimated endmembers by different methods. It can be seen that the other
methods cannot well estimate the endmember ‘Roof’, while our MLENMF generates
spectral curve that is similar to the reference signature. From the abundance maps in
Figure 6, we can see that the maps of MLENMF are more consistent with the reference
maps than comparison methods.

Table 3. The SAD results of different methods for Urban data with 162 bands.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Asphalt 0.1587 0.1079 0.1576 0.1575 0.1634 0.1601 0.1127
Grass 0.2954 0.2477 0.2983 0.2857 0.2922 0.2826 0.0543
Tree 0.1919 0.1058 0.1917 0.1943 0.1938 0.1923 0.1011
Roof 0.6709 0.5748 0.6841 0.6501 0.6727 0.6534 0.0914
Mean 0.3292 0.2591 0.3329 0.3219 0.3305 0.3221 0.0899

Table 4. The RMSE results of different methods for Urban data with 162 bands.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Asphalt 0.2126 0.2843 0.2123 0.2114 0.2126 0.2127 0.1383
Grass 0.2386 0.2683 0.2395 0.2391 0.2394 0.2385 0.1318
Tree 0.1692 0.1387 0.1693 0.1699 0.1693 0.1691 0.0605
Roof 0.1574 0.1718 0.1568 0.1574 0.1569 0.1574 0.0538
Mean 0.1945 0.2158 0.1945 0.1945 0.1945 0.1944 0.0961

https://rslab.ut.ac.ir/data
https://rslab.ut.ac.ir/data
https://sites.google.com/site/feiyunzhuhomepage/datasets-ground-truths
https://rslab.ut.ac.ir/data
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To test the unmixing performance of different methods in the case of noisy bands, we
also calculate the SAD and RMSE for the Urban data with the whole 210 bands and show
the results in Tables 5 and 6, respectively. The parameters of MLENMF in this case are set
as: ξ = 0.4 and c = 10. Even with some known bad bands, our MLENMF also provides the
best results.

Table 5. The SAD results of different methods for Urban data with 210 bands.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Asphalt 0.1229 0.1234 0.1295 0.1271 0.1345 0.1312 0.1481
Grass 0.4703 0.3544 0.4607 0.4854 0.4637 0.4618 0.1436
Tree 0.3197 0.2057 0.3139 0.3401 0.3035 0.3048 0.1979
Roof 0.4446 0.3048 0.4083 0.4705 0.4466 0.4348 0.3039
Mean 0.3394 0.2471 0.3281 0.3558 0.3371 0.3332 0.1984

Table 6. The RMSE results of different methods for Urban data with 210 bands.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Asphalt 0.2443 0.3204 0.2453 0.2391 0.2428 0.2441 0.2659
Grass 0.3763 0.4655 0.3770 0.3761 0.3770 0.3769 0.2985
Tree 0.3374 0.3711 0.3381 0.3373 0.3380 0.3380 0.2679
Roof 0.2213 0.2377 0.2217 0.2155 0.2197 0.2208 0.2616
Mean 0.2948 0.3487 0.2955 0.2920 0.2944 0.2949 0.2735

The Japser data is collected by the AVIRIS sensor, covering a spectral range of 380
to 2500 nm, with a total of 224 spectral bands, including 26 noisy bands. The spectral
resolution is 9.46 nm, and the image size is 100 × 100. The image mainly contains four
materials: Tree, Water, Soil, and Road. The parameters of MLENMF are set as: ξ = 0.4
and c = 1. The SAD and RMSE results of different unmixing methods on this data set are
shown in Tables 7 and 8, respectively. Figures 7 and 8 show the estimated endmembers and
abundance maps of different methods. It can be seen from these results that the proposed
MLENMF can provide more accurate estimation on the endmembers and abundances.

Table 7. The SAD results of different methods for Jasper data.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Tree 0.3040 0.2787 0.2981 0.2503 0.2189 0.3029 0.0851
Water 0.3156 0.1163 0.2799 0.2974 0.2968 0.2969 0.1841
Soil 0.2834 0.1660 0.3186 0.3871 0.2490 0.1872 0.0908

Road 0.6469 0.5341 0.6627 0.6953 0.7052 0.6961 0.2269
Mean 0.3875 0.2738 0.3898 0.4075 0.3675 0.3708 0.1468

Table 8. The RMSE results of different methods for Jasper data.

NMF l1/2-NMF l21-NMF CENMF CIMNMF HubNMF MLENMF

Tree 0.2310 0.3032 0.2711 0.2251 0.2287 0.2350 0.1055
Water 0.1563 0.1726 0.1738 0.1623 0.1502 0.1508 0.1029
Soil 0.3382 0.3789 0.3342 0.3209 0.3045 0.3207 0.2510

Road 0.2385 0.2634 0.2534 0.2639 0.2351 0.2337 0.2350
Mean 0.2410 0.2796 0.2581 0.2430 0.2296 0.2351 0.1736
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5. Discussion

As described in Section 4.2, τ is the (100ξ)-th percentile of residual vector
ẽ =

[
e2

1, . . . , e2
M
]T , and γ = c/τ, c ∈ (0, 10], ξ ∈ (0, 1]. By tuning the parameters c

and ξ, the MLE objective function in Equation (26) can be truncated, as shown in Figure 9.
Parameter c and ξ control the decreasing rate and the location of truncation point, respec-
tively. The larger the value of c, the greater the degree of truncation. The smaller the value
of ξ, the more forward the position of the truncation point. As shown in Figure 9, when the
noise or residual is large, it is better to choose a larger c and a smaller ξ that truncates the
weight of larger residuals to a constant (seeing the red dotted line).
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Figure 9. Comparison of MLE objective function and LS under different parameters.

We take the Urban data set as an example to show the effect of parameters c and ξ.
Figure 10 shows the SAD results of MLENMF on Urban data with 210 bands. The results in
Figure 10a are obtained by fixing ξ = 0.4 and changing c in the set {0.1, 0, 5, 1, 2, 5, 10}.
When ξ is fixed, larger c values correspond to better unmixing results. As shown in
Figure 9, c affects the degree of truncation. If choosing a large c, the weight of large errors
can be truncated to a constant (e.g., the objective function values are constant for errors
larger than 1.5, showing as the red solid line in Figure 9). As their objective function values
are constant, they have no influence on the model. For Urban data with all 210 bands,
MLENMF with a larger c can effectively alleviate the effect of noisy bands. By fixing
c = 10 and changing ξ in the set {0.1, 0.2, 0, 4, 0.6, 0.8, 1}, Figure 10b shows the SAD of
MLENMF versus parameter ξ. It is better to set the parameter ξ in the interval [0.4 0.8]
when c is fixed. Parameter ξ determines the ratio of inliers. As the data contains noisy
bands, the value of ξ should be less than 1.

When the known noisy bands on the Urban data are removed, the experimental results
on Urban data with 162 bands are obtained at fixing ξ = 0.8 and c = 1, respectively. The
results are shown in Figure 11. From Figure 11a, we can see that the proposed MLENMF is
not sensitive to parameter c because different c values generate similar results for small
errors in the case of low noise or no noise data as shown in Figure 9. From Figure 11b, the
best result is achieved at ξ = 1, which means that the data points are almost inliers.



Remote Sens. 2021, 13, 2637 17 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 19 
 

 

5. Discussion 
As described in Section 4.2, 𝜏 is the (100𝜉)-th percentile of residual vector 𝒆  = [𝑒ଵଶ, . . . , 𝑒ெଶ  ]், and 𝛾 = 𝑐/𝜏, 𝑐 ∈ (0,10], 𝜉 ∈ (0,1]. By tuning the parameters 𝑐 and 𝜉, the 

MLE objective function in Equation (26) can be truncated, as shown in Figure 9. Parameter 𝑐 and 𝜉 control the decreasing rate and the location of truncation point, respectively. The 
larger the value of 𝑐, the greater the degree of truncation. The smaller the value of 𝜉, the 
more forward the position of the truncation point. As shown in Figure 9, when the noise 
or residual is large, it is better to choose a larger 𝑐 and a smaller 𝜉 that truncates the 
weight of larger residuals to a constant (seeing the red dotted line). 

 
Figure 9. Comparison of MLE objective function and LS under different parameters. 

We take the Urban data set as an example to show the effect of parameters 𝑐 and 𝜉. 
Figure 10 shows the SAD results of MLENMF on Urban data with 210 bands. The results 
in Figure 10a are obtained by fixing 𝜉 = 0.4  and changing 𝑐  in the set {0.1, 0,5, 1, 2, 5, 10}. When ξ is fixed, larger 𝑐 values correspond to better unmixing re-
sults. As shown in Figure 9, 𝑐 affects the degree of truncation. If choosing a large 𝑐, the 
weight of large errors can be truncated to a constant (e.g., the objective function values are 
constant for errors larger than 1.5, showing as the red solid line in Figure 9). As their ob-
jective function values are constant, they have no influence on the model. For Urban data 
with all 210 bands, MLENMF with a larger 𝑐 can effectively alleviate the effect of noisy 
bands. By fixing 𝑐 = 10 and changing 𝜉  in the set {0.1, 0.2, 0,4, 0.6, 0.8, 1}, Figure 10b 
shows the SAD of MLENMF versus parameter 𝜉. It is better to set the parameter 𝜉 in the 
interval [0.4 0.8] when 𝑐 is fixed. Parameter 𝜉 determines the ratio of inliers. As the data 
contains noisy bands, the value of 𝜉 should be less than 1. 

  
(a) (b) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Error residual ei

0

0.5

1

1.5

2

2.5

3

O
be

je
ct

iv
e 

fu
nc

tio
n 

va
lu

e

MLE: c=10, ξ=0.8
MLE: c=10, ξ=0.4
MLE: c=1,   ξ=0.8
MLE: c=1,   ξ=0.4
LS

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The value of parameter c

S
AD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The value of parameter ξ

SA
D

Figure 10. The SAD results under different parameter settings on Urban data with 210 bands. (a) SAD versus c at ξ = 0.4.
(b) SAD versus ξ at c = 10.
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The above analysis recommends setting the parameter ξ in the interval [0.4 0.8]. For
data with heavy noise, ξ can be set to be a small value, such as ξ = 0.4. Parameter c is
chosen in the interval [1,10]. For data with heavy noise, it can set c = 10. Otherwise, a
moderate value c = 1 is recommended.

6. Conclusions

This paper proposes a maximum likelihood estimation-based nonnegative matrix
factorization (MLENMF) model for hyperspectral unmixing. The proposed MLENMF
employs an MLE-like loss function that replaces the least-squares loss function in the NMF
model. The MLE-like loss is a robust loss, which can truncate the objective function value
of noise and can reduce their negative effects on the unmixing model. Experimental results
on a simulated data and two real data sets (Urban and Jasper) show that the proposed
MLENMF model has obvious noise suppression effect and can obtain more accurate
unmixing results. In the current model, it assumes that different bands are independent
and then an MLE solution can be deduced. Notwithstanding, in practice the assumption
of band independence is not generally valid. Taking also into account the dependence



Remote Sens. 2021, 13, 2637 18 of 19

between different bands, improved the unmixing performance may result. However, this
issue deserves further research. In addition, parameter selection is a key problem for the
unmixing model. The cross-validation strategy can be considered for parameter selecting,
such as dividing the whole hyperspectral image into two disjoint subimages, one for
training and another for testing, and then performing cross-validation to automatically
select the parameters. This also deserves research in the future.
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