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Abstract: The existing Synthetic Aperture Radar (SAR) image target detection methods based on
convolutional neural networks (CNNs) have achieved remarkable performance, but these methods
require a large number of target-level labeled training samples to train the network. Moreover, some
clutter is very similar to targets in SAR images with complex scenes, making the target detection task
very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and
attention mechanism is proposed in this paper. Since the image-level label simply marks whether
the image contains the target of interest or not, which is easier to be labeled than the target-level
label, the proposed method uses a small number of target-level labeled training samples and a large
number of image-level labeled training samples to train the network with a semi-supervised learning
algorithm. The proposed network consists of a detection branch and a scene recognition branch
with a feature extraction module and an attention module shared between these two branches. The
feature extraction module can extract the deep features of the input SAR images, and the attention
module can guide the network to focus on the target of interest while suppressing the clutter. During
the semi-supervised learning process, the target-level labeled training samples will pass through
the detection branch, while the image-level labeled training samples will pass through the scene
recognition branch. During the test process, considering the help of global scene information in
SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse
scene recognition determining whether the input SAR image contains the target of interest or not,
the fine target detection is performed on the image that may contain the target. The experimental
results based on the measured SAR dataset demonstrate that the proposed method can achieve better
performance than the existing methods.

Keywords: synthetic aperture radar (SAR); target detection; convolutional neural network (CNN);
semi-supervised learning; attention mechanism

1. Introduction

Synthetic aperture radar (SAR) is an active microwave remote sensor, which has the
advantage of providing high-resolution and super-wide coverage remote sensing images
in all-day and all-weather conditions. In recent years, with the vigorous development
of SAR-related technologies, the rapid and accurate target detection of SAR images has
become a very challenging task, and research into this topic is very valuable.

In the traditional SAR target detection methods, the constant false alarm rate (CFAR)
detection method [1] is widely studied because of its simple model and fast detection
speed. The CFAR detection method first calculates the detection threshold based on the
statistical characteristics of the clutter and the given false alarm rate and then compares the
current pixel with the threshold to determine whether it is a target. The two-parameter
CFAR [1], also known as Gaussian CFAR, is a widely used CFAR detection method, which
assumes that the background clutter of the SAR image obeys Gaussian distribution. The
two-parameter CFAR can achieve excellent detection performance in some simple scenes,
but detection performance will be reduced in complex scenes.
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In recent years, with the development of deep learning technology, convolutional
neural networks (CNNs) have achieved remarkable success in the fields of computer vision,
speech processing, and so on [2]. CNN can extract the most suitable features for the current
task using a data-driven method. Because of the powerful feature extraction capability,
CNN-based target detection methods can achieve superior performance compared to many
traditional methods. There are two types of target detection methods based on CNN.
One is the two-stage target detector, including region-based CNN (R-CNN) [3], Faster
R-CNN [4], and FPN [5], etc. The two-stage detector first extracts candidate regions from
the input image and then performs further classification and bounding box regression
on the candidate regions. The detection performance of this method is excellent, but
the detection speed is slow. The other is the single-stage target detector, including you
only look once (YOLO) [6] and single shot multibox detector (SSD) [7], etc. Without the
candidate region extraction step, the detection speed of the single-stage detector is faster
than the two-stage detector. Compared with YOLO, SSD can achieve higher detection
performance by applying default boxes and multi-scale prediction [8]. Besides optical
images, CNN-based target detection methods also achieve good detection performance
in SAR images [9–13]. Wang et al. [11] proposed a SAR target detection method based
on SSD and achieved good detection performance. Du et al. [12] proposed S-SSD target
detection method, which integrates the saliency information into SSD and improves the
detection performance.

Although the existing CNN-based SAR target detection methods can achieve good
performance, most of them are fully supervised learning algorithms. The training of
these networks requires a large number of target-level labeled training samples, which
must include the targets of interest, and the positions of the targets in the images must
be marked. However, in actual situations, it takes a lot of labor and material resources to
label the SAR images at target-level. Semi-supervised learning target detection methods
are effective to solve this problem. They require only a small number of target-level labeled
training samples and an additional set of unlabeled or weakly labeled training samples.
The image-level labeled training samples are the weakly-level labeled training samples.
Compared with target-level labeling, image-level labeling is easier and requires less labor
and material resources, which simply marks whether the image contains the target of
interest or not and does not need to mark the specific location of the target. Therefore,
the target detection network can be trained by a semi-supervised learning method using
a small number of target-level labeled training samples and a large number of image-
level labeled training samples. Rosenberg et al. [14] proposed a target detection method
based on semi-supervised self-training. In this method, the self-training method is simply
applied to an existing target detector, which improves the performance of target detection.
Zhang et al. [15] proposed a target detection network based on a self-training method.
In this method, negative slices are obtained from image-level labeled training samples
and given pseudo-labels by the prediction results of the classifier, and then those negative
slices are used to update the dataset and train the network. This method can achieve
good detection performance for optical remote sensing images. The above methods can
reduce the demand for the number of target-level labeled training samples in the network
training process. However, those methods only use a simple target detection method as
the basic framework for semi-supervised learning, and thus the detection performance will
be degraded when the SAR image scene is complex in practice. Further, since some clutter
and the targets are relatively similar in SAR images with complex scenes, there is a risk
that the clutter could be wrongly selected as the target during the sample selection process
of the self-training method.

SAR images with complex scenes contain significant amounts of clutter, and some
man-made clutter is very similar to the target of interest in shape contour and the dis-
tribution of scattering intensity, making them difficult to discriminate. As a result, there
may be many false alarms in the detection results. The attention mechanism is one of the
most effective methods to solve this problem. The idea of the attention mechanism is to
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automatically focus on important regions and suppressing unnecessary ones by learning
from the data [16], therefore, the performance of the CNN can be improved by using
attention mechanisms. Woo et al. [16] proposed a convolutional block attention module
(CBAM), a channel and spatial attention module that can be easily integrated into CNN
architectures, which improved the performance of target detection and classification. Jet-
ley et al. [17] proposed an end-to-end attention module for CNN architectures built for
image classification. This method generates attention maps using global features and
local features to enhance the targets and suppress the background, and its classification
performance is better than other traditional CNN-based methods. Li et al. [18] proposed a
deep learning-based model named the point-wise discriminative auto-encoder for target
recognition. With the attention mechanism of this method, the features of the target area
are automatically selected for target recognition, and the performance of target recognition
has been improved.

In this paper, a SAR target detection network based on semi-supervised learning
and attention mechanism is proposed with regard to the analysis above. The proposed
semi-supervised learning method takes SSD as the detection branch and constructs an
auxiliary scene recognition branch, where these two branches share a feature extraction
module and an attention module. In the feature extraction module, the deep features of the
input SAR image will be extracted. In the attention module, the network can generate the
attention map automatically, and then the feature maps and attention map are multiplied
to focus on the target area and suppress the background clutter area. The detection branch
can output the bounding boxes of the targets in the SAR image, and the scene recognition
branch outputs the binary classification result indicating whether the input SAR image
contains targets. During the training stage, the target-level labeled training samples will
pass through the detection branch, and the image-level labeled training samples will
pass through the scene recognition branch. During the test stage, a novel coarse-to-fine
detection procedure is used to reduce the false alarms. Considering the help of global scene
information in SAR images, we first apply the coarse scene recognition branch to the input
SAR image, and the scene recognition results of the coarse scene recognition branch are
binary classification results indicating if the input SAR images contain the targets or not.
According to the scene recognition results, the fine target detection branch is performed on
the input SAR images which may contain the targets, and the final detection results of the
fine target detection branch are the predicted specific locations of the targets. In this way,
the proposed method can reduce the number of false alarms.

The experimental results based on the measured SAR dataset demonstrate that the
proposed method outperforms the existing SAR target detection method in terms of
detection performance. More specifically, the main contributions of the proposed target
detection method are as follows:

(1) We propose a semi-supervised SAR target detection framework with a detection
branch and a scene recognition branch. The proposed method can use a small number
of target-level labeled training samples and a large number of image-level labeled
training samples simultaneously to learn the network, and the entire network is
end-to-end jointly optimized. The feature extraction module is shared across the
two branches, and the learning of image-level labeled training samples by the newly
added scene recognition branch will enhance the feature extraction capability of the
shared feature extraction module, which is helpful for the detection task. Thus, the
proposed method can reduce the dependence of network training on target-level
labeled training samples which are difficult to obtain.

(2) We introduce an attention mechanism into the SAR image target detection network.
In contrast to the attention mechanisms commonly used in the existing detection
networks, we introduce global descriptor into the attention mechanism to guide local
features to calculate the attention map. With the fusion of global descriptors and local
features, the attention mechanism can not only consider local information but also
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consider global information, thus the attention mechanism can learn a more accurate
attention map.

The remainder of this paper is organized as follows. Sections 2 and 3 introduce
the network structure and the algorithm flow of the proposed SAR target detection
method in detail, respectively. Section 4 shows the experimental results and analysis
based on the miniSAR real data. Finally, the discussion and conclusion are presented in
Sections 5 and 6, respectively.

2. Network Structure of the Proposed Method

Figure 1 shows the whole flowchart of the proposed SAR target detection network
based on semi-supervised learning and attention mechanism.
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Figure 1. Flowchart of the proposed SAR target detection network.

As shown in Figure 1, the proposed SAR target detection network consists of four
modules, including the feature extraction module, attention module, scene recognition
module, and detection module. The input of the feature extraction module is the input
SAR image Xinput ∈ RH×W×C, where H, W, C denotes the height of the input SAR images,
the width of the input SAR images, the number of channels of the input SAR images,
respectively. We take H, W, C as 300, 300, 1, respectively, to describe the flow of the
proposed method. Given an input SAR image Xinput ∈ R300×300×1, the feature extraction
module is first employed to extract the deep features L ∈ R38×38×512 of Xinput by the
deep convolutional network. Then the attention module takes L as input. By fusing the
deep features and the global descriptor and applying the softmax activation function, the
attention module can obtain the attention map A ∈ R38×38×1. In the scene recognition
module, the inputs are the deep features L and the attention map A. They are multiplied
to obtain the global feature g ∈ R512, then a fully connected layer and softmax function
are used to get the output of the scene recognition module outSR ∈ R2, it denotes whether
the input SAR image Xinput contains targets or not. In the detection module, the inputs are
also the deep features L and the attention map A. By performing a series of convolution
operations and pooling operations on L, the multi-scale feature maps L ∈ R38×38×512,
L2 ∈ R19×19×1024, L3 ∈ R10×10×512, L4 ∈ R5×5×256, L5 ∈ R3×3×256, are obtained, then
these multi-scale feature maps are multiplied by attention map A. Finally, the convolution
predictors composed of some convolution layers are used to predict the targets, and the
details about the convolution predictors can be traced in [7]. After the non-maximum
suppression (NMS) [19], the outputs of the detection module can be obtained, which are
the predicted specific locations of the targets.
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In the following sections, the structure of each module is introduced in detail.

2.1. Feature Extraction Module

The feature extraction module is the basic part of the entire network, which is em-
ployed to extract the deep features of the input SAR image. Similar to SSD, the feature
extraction module is a modified VGGNet. VGGNet has been widely used in the field of
SAR target detection [11–13] and has excellent performance. It has a deep architecture
to achieve good feature representation. According to the 6 ConvNet configurations of
VGGNet in [20], and under the premise of comprehensive consideration of accuracy and
speed, our feature extraction module is designed to contain four convolution stages. There
are two convolutional layers in the first two convolutional stages, and three convolutional
layers in the last two convolutional stages.

The size of the convolutional kernels of the convolutional layers in the feature extrac-
tion module is all 3 × 3, and each convolutional stage is composed of multiple cascaded
convolutional layers. Compared with using one convolutional layer with a larger convo-
lution kernel directly, the advantage of the cascade of multiple convolutional layers with
a smaller convolution kernel size is that a large receptive field can be achieved with a
small number of parameters. For example, a stack of two convolutional layers with 3 × 3
convolutional kernels has the same effective receptive field with one convolutional layer
with 5 × 5 convolutional kernels. However, the stack of two convolutional layers with
3 × 3 convolutional kernels increases the non-linearity and decreases the number of param-
eters compared with the single convolutional layers with 5 × 5 convolutional kernels. The
ReLU [21] activation function has the advantages of overcoming the problems of gradient
disappearance and gradient explosion, and it can speed up the training process. Therefore,
in the proposed method, each convolutional layer is followed by a ReLU activation function
layer to improve the non-linear representation capability of the network. At the end of
each convolutional stage is the pooling layer, which is used to decrease computational cost,
reduce the risk of overfitting and increase the speed of network operations.

2.2. Attention Module

The attention module is one of the core parts of the proposed SAR target detection
method. The attention module can automatically generate the attention map, and then
the attention map and the feature map are multiplied by the spatial position, so that the
network automatically enhances the target area and suppresses the clutter area. Figure 2
shows the flowchart of the attention module.
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As shown in Figure 2, the input of the attention module is the deep features
L ∈ RM×M×Nc obtained by the feature extraction module, where M and Nc are the spatial
size and the channel dimension of L. The local feature of L at the spatial position (i, j) can
be represented by a vector li,j ∈ RNc . First, the deep features L are fed into a convolutional
layer, and then we use a max pooling layer with a pixel window of 2× 2 and a stride of 2 to
down-sample the feature maps. Finally, a fully connected layer is adopted after the max
pooling layer to obtain the global descriptor f ∈ RNc , which can be regarded as a global
representation of the input SAR image. In the fusion module, the local feature li,j and the
global descriptor f are fused by a compatibility measure. Specifically, each local feature li,j

is added to the global descriptor f, and then multiplied by the learnable weight W ∈ RNc

to obtain the compatibility score Si,j ∈ R:

Si,j = WT(li,j + f
)

, i, j ∈ {1, 2, . . . , M} (1)

Finally, the compatibility scores S = {S1,1, S1,2, . . . , SM,M} are normalized by softmax
operation to acquire the attention map A ∈ RM×M:

A(i, j) =
Si,j

∑M,M
m,n Sm,n

, i, j ∈ {1, 2, . . . , M} (2)

The attention map and the feature map are dot-multiplied according to the spatial
position, which can enhance the target area and suppress the clutter area.

The global information represents the overall feature information of the input SAR
image, and the local information represents the information of a certain area of the input
SAR image, which contains more detailed information. It is beneficial to fuse these two
kinds of information when calculating the spatial attention map. However, the attention
mechanisms [16,22,23] commonly used in existing detection networks don’t do this. In
contrast, we fuse the global descriptor and local features in our attention module. In this
way, the fusion features used to calculate the attention map will be richer, which will make
the attention module not only consider the local information but also consider the global
information, thus our attention module can learn a more accurate attention map. Since
our attention module can automatically enhance the target area and suppress the clutter
area, the false alarm and missed alarm of the detection results can be reduced, and the
performance of target detection can be improved.

2.3. Scene Recognition Module

The scene recognition module is also one of the core parts of the proposed SAR target
detection method, which is used to classify the input SAR image. The input of the scene
recognition module is the deep features and attention map of the SAR image, and the
output is the scene classification result of the SAR image.

First, the attention map and the deep features are dot-multiplied according to the
spatial position, and then the vector corresponding to each spatial position of the feature
maps are added to obtain the global feature:

g = ∑
i,j

A(i, j) · li,j, i, j ∈ {1, 2, . . . , M} (3)

where A(i, j) ∈ (0, 1) is the value of the attention map at position (i, j), li,j ∈ RNc is the local
feature of the deep features L at position (i, j), and g ∈ RNc is the output global feature
vector. In other words, the global feature g is obtained by the weighted summation of all
local features, where the weight is attention map. Then, the global feature g is used to
obtain scene classification results by fully connected layers and softmax classifiers. The
loss function of the scene recognition module is the cross-entropy loss function.
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2.4. Detection Module

The detection module is an important part of the proposed SAR target detection
method, whose task is to predict the bounding boxes of targets. As shown in Figure 1, in
the detection module, the deep features are passed through multiple convolution layers
to extract multi-scale feature maps. In SSD, the multi-scale feature maps are directly
fed into the convolution predictors for target detection. However, in our method, the
multi-scale feature maps are first multiplied by the attention map and then fed into the
convolution predictors. Since the sizes of multi-scale feature maps are different, they
cannot be directly multiplied by a fixed-size attention map. Therefore, we down-sample
the attention map many times to generate multiple attention maps with different sizes,
which are matched with the sizes of multi-scale feature maps respectively. Compared
with methods which require learning attention maps for each relevant feature map size,
our method only needs to learn one attention map. The advantage of our method is that
it increases less computational complexity while having a high detection performance.
Then, the multi-scale feature maps after multiplication are fed into convolutional predictors
to predict targets and their bounding boxes. Finally, the NMS algorithm is employed to
remove redundant targets to obtain the final detection results.

In the detection module, the multi-scale feature maps and the attention map are
multiplied to automatically enhance the features of the target area and suppress the clutter
area, thus the performance of the detection results can be improved.

3. Algorithm Flow of the Proposed Method

In this section, the algorithm flow of the proposed method is introduced, including
the training process, which is the semi-supervised learning process, and the test process,
which is the coarse-to-fine SAR target detection procedure.

3.1. Semi-Supervised Learning

Figure 3 shows the flowchart of the proposed semi-supervised learning method.
The entire network can be divided into detection branch and scene recognition branch.
The detection branch includes feature extraction module, attention module, and detection
module; the scene recognition branch includes feature extraction module, attention module,
and scene recognition module. The feature extraction module and attention module are
shared across the two branches. During training, the input of the detection branch is the
target-level labeled SAR images, and the output is the detection results of these images.
The detection loss function is calculated by the detection results and the ground truth
bounding boxes. Specifically, the detection loss function is defined as follows:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (4)

where i is the index of an example in a minibatch, pi and p∗i are predicted probability and
ground truth label, respectively. Similarly, ti and t∗i are the predicted bounding box and
ground truth bounding box, respectively. The classification loss and regression loss are
represented by Lcls and Lreg, and the two terms are normalized by Ncls and Nreg.

The classification loss Lcls is the cross-entropy loss. The definition is as follows:

Lcls(pi, p∗i ) = −[pi log(p∗i ) + (1− pi) log(1− p∗i )] (5)

The regression loss is Lreg is defined as:

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ) (6)

where:

smoothL1(x) =

{
0.5x2 i f |x|< 1
|x|−0.5 otherwise

(7)
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The scene recognition branch takes the image-level labeled SAR images as input and
outputs the classification results of these images. The scene recognition loss function is a
binary classification cross-entropy loss function, which is calculated by the classification
results and the ground truth category. The overall loss function of the network is the sum
of the loss function of the two branches.

The two branches are jointly trained with SAR images of different label types, and
the entire network can achieve end-to-end semi-supervised learning. The proposed semi-
supervised method can reduce the demand for the number of target-level labeled SAR
images in the network training process.

3.2. Coarse-to-Fine SAR Target Detection

During the test, in order to take advantage of the global feature of the SAR image, a
coarse-to-fine SAR target detection procedure is proposed. For the SAR image, it is difficult
to predict the target very accurately only by the features of the target area itself. By using
the global feature of SAR image, the global context information of SAR image can be fully
considered during prediction, which can allow better detection resultsto be obtained. Since
the scene recognition module uses global features to classify the input SAR image, this
module can be used to classify the SAR image coarsely before fine target detection.

Figure 4 shows the proposed coarse-to-fine SAR target detection procedure. First,
we apply the coarse scene recognition to the test SAR image. The test SAR image is fed
into the feature extraction module and the attention module to extract deep features and
attention map, and the scene recognition result of the test SAR image is obtained by the
scene recognition module. Then, we apply the fine target detection to the image based on
the scene recognition result. If the scene recognition result is the target class, indicating
that the test SAR image may contain the target of interest, we use the detection module to
further predict the specific location of the targets. If the scene recognition result is a clutter
background class, it means that the SAR image does not contain targets.

Using coarse-to-fine SAR target detection, the scene recognition module may incor-
rectly recognize the test SAR images that have the targets as no targets, so then the few
missing alarms may be added. However, due to the fact that the large number of test
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SAR images that do not have the targets can be removed, the false alarms of the detection
results can be greatly reduced. Therefore, the comprehensive detection performance will
be improved.
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4. Experimental Results and Analysis
4.1. Description of the Dataset and Experimental Settings

The proposed method was verified with the measured miniSAR dataset [24], which
was acquired by U.S. Sandia National Laboratories in 2005. The image size in the miniSAR
dataset is 1638× 2510 and the resolution is 0.1 m× 0.1 m. Nine SAR images in the miniSAR
dataset were selected for the experiment, seven of which were used for training and two
for test. Please note that, for the split of training and test data, our method was consistent
with that in [11–13]. Figure 5 shows two SAR images of miniSAR dataset. From Figure 5
we can see that the SAR images contain many vehicle targets and complex background,
including man-made clutter such as buildings and roads, and natural clutter such as trees
and grasslands.
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The original SAR image had a large size, which was not suitable for being the input
in the network. Therefore, when training, the original training SAR images were cropped
into many SAR sub-images with a fixed size of 300 × 300, according to the input size of the
network. These sub-images consist of sub-images that contain the targets and sub-images
that do not contain the targets and only contain background clutter. Then these sub-images
were used as training images for the network. When used in the test, the original test SAR
images were also cropped into many test SAR sub-images with the size of 300 × 300 using
a sliding window. There was overlap when moving one sliding window to the next, which
was 100. Then, all of the test SAR sub-images were input to the target detection network,
and the prediction results of all sub-images were restored to the original SAR image. Finally,
the NMS deduplication algorithm was employed to obtain the final detection results.

In our experiment, for each image-level labeled training sample, we only marked
whether it contains the targets, while for each target-level labeled training sample, it must
contain the targets, and the positions of the targets must be marked. The image-level labeled
training samples are composed of all training sub-images, and they were only marked at
image-level. The target-level labeled training samples are only composed of the training
sub-images that contain the targets, and they were marked at target-level. The proposed
method uses only 30% target-level labeled training samples (except for the Section 4.4.2)
and all image-level labeled training samples, in which the 30% target-level labeled training
samples were randomly selected from all the target-level labeled training samples ten
times, and their results were averaged over the ten different choices as the final test result.
Please note that the 30% here is relative to the target-level labeled training samples, but
not relative to all the training samples. For Section 4.4.2, which analyzes the variations of
detection performance with the percentage of target-level labeled training samples, the
percentage of target-level labeled training samples increased from 10% to 100%.

The experiments are implemented with the Caffe [25] deep learning framework, using
a personal computer with Intel Xeon E5-2630 v4 CPU of 2.2 GHz, NVIDIA GeForce GTX
1080 Ti GPU, and 128 GB of memory on Ubuntu 18.04 Linux system.

4.2. Evaluation Criteria

We quantitatively evaluated different detection methods via precision, recall, and
F1-score. The calculation formulas are as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP
NP

(9)
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F1− score =
2× Precision× Recall

Precision + Recall
(10)

where TP is the number of correctly detected vehicle targets, FP is the number of false
alarms, and NP is the number of ground truth vehicle targets. The precision measures
the fraction of true positives over all detected results. The recall measures the frac-
tion of true positives over the ground truths. The F1-score is the harmonic mean be-
tween precision and recall, which is the main reference index to evaluate the detection
performance comprehensively.

4.3. Comparison with Other Detection Methods

In order to demonstrate the excellent performance of the proposed method, we com-
pared it with other famous target detection methods. Figure 6 and Table 1 exhibit the target
detection results of the proposed method and other detection methods on test SAR images
in miniSAR dataset. In Figure 6 and Table 1, Gaussian-CFAR denotes the conventional
unsupervised detection method in [1]; Faster R-CNN [3], FPN [4], SSD1, and SSD2 are
the fully supervised methods based on deep learning. SSD1 denotes SSD trained with all
target-level labeled training samples; SSD2 denotes SSD trained with only 30% target-level
labeled training samples, which is the same as the number of target-level labeled training
samples used in the proposed method; Rosenberg’s method and Zhang’s method denotes
the semi-supervised method in [14,15], respectively; Rosenberg’s method, Zhang’s method,
and the proposed method were trained with 30% target-level labeled training samples and
all image-level labeled training samples.
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was low, and the method couldn’t accurately locate the targets. There were a few missing 
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Figure 6. The target detection results compared with other methods for two test SAR images, where green rectangles
represent the correctly detected target chips, red rectangles represent false alarms, and blue rectangles represent the missing
alarms. (a) and (b) Gaussian-CFAR. (c) and (d) Faster R-CNN. (e) and (f) FPN. (g) and (h) SSD1. (i) and (j) SSD2. (k) and (l)
Rosenberg’s method. (m) and (n) Zhang’s method. (o) and (p) proposed method.

Table 1. Overall evaluation of different target detection methods.

Method Supervision Mode Precision Recall F1-Score

Gaussian-CFAR Unsupervised 0.3789 0.7966 0.5135

Faster R-CNN

Fully supervised

0.8370 0.9106 0.8723

FPN 0.8651 0.8862 0.8755

SSD1 0.8629 0.8862 0.8744

SSD2 0.8559 0.8537 0.8548

Rosenberg’s method

Semi-supervised

0.5814 0.9268 0.7145

Zhang’s method 0.4699 0.7480 0.5772

Proposed method 0.9076 0.9106 0.9091

Figure 6 exhibits the intuitional target detection results of the proposed method and
other detection methods on two test SAR images. As shown in Figure 6, there were many
false alarms in the detection results of Gaussian-CFAR, the number of correct detections
was low, and the method couldn’t accurately locate the targets. There were a few missing
alarms and false alarms in the detection results of Faster R-CNN, FPN and SSD1. The
detection result of SSD2 had more false alarms than SSD1, because SSD2 uses fewer training
samples than SSD1. Both Rosenberg’s method and Zhang’s method had a large number of
false alarms, but Rosenberg’s method had fewer missing alarms. The proposed method
had fewer of missing alarms and false alarms, and its detection result was the best.
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For quantitative analysis, we counted the missing alarms and false alarms of the
detection results of different methods and evaluated the overall target detection results
in terms of precision, recall, and F1-score in Table 1. From Table 1 we can see that the
proposed method had the fewest false alarms, and the number of false alarms was less.
The precision, recall, and comprehensive criterion F1-score of Gaussian-CFAR were very
low, at only 0.3789, 0.7966, and 0.5135, respectively. This is because Gaussian-CFAR is
an unsupervised detection method, and its detection performance would be reduced in
complex scenes. Faster R-CNN, FPN, and SSD have higher precision, recall, and F1-score,
and those criteria of SSD2 were lower than SSD1 because SSD2 used fewer training samples.
Although the recall of Rosenberg’s method was very high, its precision was very low, and
its comprehensive criterion F1-score was low. The precision, recall, and comprehensive
criterion F1-score of Zhang’s method were also low. The proposed method had the highest
precision and F1-score. Among all CNN-based methods, namely the proposed method,
Zhang’s method, SSD1, and SSD2, the proposed method had the highest precision, recall,
and F1-score. In the case of a small number of target-level labeled training samples, the
proposed method was 5.17% higher in terms of precision, 5.69% higher in terms of recall,
and 5.43% higher in terms of F1-score than SSD2. Therefore, under the premise of using
fewer target-level labeled training samples, the performance of the proposed method still
outperformed the other detection methods.

4.4. Model Analysis
4.4.1. Analysis of Attention Map

In order to analyze the attention map of the proposed method more intuitively, the
original sub-images, the corresponding attention maps, and detection results are presented
here. Figure 7 shows four sub-images, their attention maps, and detection results. The
red color in the attention map indicates that the value is higher, and the feature at the
corresponding location will be enhanced. On the contrary, the blue color in the attention
map indicates that the value is lower, and the feature at the corresponding location will
be suppressed.

We can see in Figure 7 that the highlights in the attention maps can correspond to
the actual vehicle target area in the SAR images, and the areas with lower values can
correspond to the background clutter area, including buildings and grass areas. The
detection results of the sub-images are also excellent. Therefore, the attention maps of the
proposed method can highlight the target of interest area and suppress the background
clutter area.

4.4.2. Analysis of the Variations of Detection Performance with the Percentage of
Target-Level Labeled Training Samples

In order to illustrate the performance of our proposed detection method, we compare
the proposed method with SSD trained only by target-level labeled training samples in
different percentages of target-level labeled training samples. Figure 8 shows the variations
of F1-score with the percentage of target-level labeled training samples. In Figure 8, “all
target-level labeled training samples + SSD” denotes that all the target-level labeled training
samples are used to train the SSD, “part of target-level labeled training samples + SSD”
denotes that only part of target-level labeled training samples, same as those used in the
proposed method, are used to train the SSD. The proposed method is trained with part of
the target-level labeled training samples and all image-level labeled training samples. The
x-axis denotes the percentage of target-level labeled training samples. Please note that the
proposed method uses all image-level training samples in all of the percentage values of
x-axis, and the percentage here is relative to the target-level labeled training samples, but
not relative to all of the training samples.
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It can be seen in Figure 8 that the performance of the proposed method is higher
than the SSD in all percentage values. The proposed method yields at least 5% higher in
terms of F1-score than SSD trained with part of target-level labeled training samples in all
percentage values. When the percentage of target-level labeled training samples is only
10%, the detection results of the proposed method are already equivalent to the SSD trained
with all the target-level labeled training samples via the fully supervised learning method.
When the percentage is 100%, the proposed method is extended to a fully supervised
algorithm. At this time, the proposed method is 6.89% higher in terms of F1-score than
SSD. Therefore, we can conclude that SSD requires a larger number of target-level labeled
training samples to obtain high detection performance, and the proposed method can
reduce the demand for the number of target-level labeled training samples and can achieve
better detection performance.

4.4.3. Ablation Study

In order to analyze the different modules of the proposed method, we designed and
implemented an ablation study using the miniSAR dataset. By analyzing the results of the
ablation study, we can understand the impact of different modules on the detection perfor-
mance more comprehensively. The results of the ablation study are shown in Table 2, where
scene recognition, attention, and coarse-to-fine denote whether to use the scene recognition
module, attention mechanism, and the coarse-to-fine detection procedure, respectively.

Table 2. Ablation study.

Components

Scene Recognition 5 5 3 3 3 3

Attention 5 3 5 5 3 3

Coarse-to-fine 5 5 5 3 5 3

Quantitative Evaluation

Precision 0.8559 0.8644 0.8346 0.8678 0.8462 0.9076

Recall 0.8537 0.8618 0.9024 0.8943 0.9187 0.9106

F1-score 0.8548 0.8631 0.8672 0.8809 0.8810 0.9091
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From analysis of the information in Table 2, we can conclude that the scene recognition
module, the attention module, the coarse-to-fine detection can all improve the detection
performance. Specifically, from the comparison of columns 3 and 5 (or columns 4 and 7)
of Table 2, we can conclude that the F1-score can be increased by about 1% and 2% when
only adding the scene recognition module in two experiments, respectively. From the
comparison of columns 3 and 4 (or columns 5 and 7, or columns 6 and 8), we can conclude
that the number of false alarms and missed alarms are both decreased, and the F1-score can
be increased by at least 1% when only adding the attention module. From the comparison
of columns 5 and 6 (or columns 7 and 8), we can conclude that although few missing alarms
are added, the false alarms can be greatly reduced, and the F1-score can be increased
by an average of 2% when only adding the coarse-to-fine detection procedure. From all
of the information in Table 2 we can conclude that the detection results of the proposed
method can achieve the best detection performance by using the scene recognition module,
attention module, and coarse to fine detection procedure at the same time.

4.4.4. Analysis of Randomly Splitting Training and Test Data

In order to analyze the generality of the proposed method we repeated the experiments
with randomized training and test splits of the miniSAR dataset four more times and
verified the detection performance of the proposed method. For each split, we randomly
selected two large SAR images for the test, and the remaining seven large SAR images for
training. Figure 9 shows the detection performance of the proposed method and SSD2
for each split, and we can conclude that for these five splits, the F1-score of the proposed
method fluctuates within 5%, and it is always higher than the F1-score of SSD2. It shows
that the proposed method is not only applicable to a particular split of training and test
data. Therefore, the proposed method is not sensitive to the split of training and test data,
which proves the generality of the proposed method.
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4.4.5. Computational Complexity and Runtime Analysis

By analyzing the calculation principle of CNN [26], the computational complexity of
CNN is:

O

(
S

(
LC

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc +
LF

∑
l f=1

Nin.l f Nout,l f

))
(11)
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where
LC
∑

lc=1
Cin,lcCout,lcK2

lc M2
lc denotes the computational complexity of all convolutional

layers in the network, LC is the total number of convolutional layers, lc is the index of the
current convolutional layer, Cin,lc and Cout,lc are the number of channels in the input and
output feature map of layer lc. The size of the convolution kernel of the lc layer is Klc × Klc,

and the size of the output feature map of the lc layer is Mlc ×Mlc.
LF
∑

l f=1
Nin.l f Nout,l f denotes

the computational complexity of all fully connected layers in the network, where LF is
the total number of fully connected layers, l f is the index of the current fully connected
layer, Nin.l f and Nout.l f are the number of input and output nodes of layer l f . S is the total
number of test samples entered in the network, while it denotes the number of sliding
windows on the original test SAR images in our experiment.

According to the above, we can get the computational complexity of the three CNN-
based methods, i.e., Zhang’s method, SSD, and the proposed method. The computational
complexity of Zhang’s method is:

O

(
S1

(
LC1

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc +
LF1

∑
l f=1

Nin.l f Nout,l f

))
(12)

In the network of Zhang’s method, there are 5 convolutional layers and 2 fully con-
nected layers. The convolutional kernel sizes in convolutional layers are 3× 3, 3× 3, 3× 3,
8× 8, and 1× 1, the output channels of the convolutional layer are 128, 192, 192, 420, and 2
respectively, and the nodes in fully connected layers are 420 and 2. Since Zhang’s method
transforms the detection task into a sliding window area classification task, and in order to
cover all targets as much as possible, the number of sliding windows of Zhang’s method
on one test SAR image is much large. In our experiments, the number of sliding windows
is 41,164, i.e., S1 = 41, 164. By substituting the number of sliding windows and the relevant
parameters of the model into the formula of computational complexity, we can get that the
floating-point operations (FLOPs) of Zhang’s method are 2.52× 1013. The computational
complexity of SSD is:

O

(
S2

(
LC2

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc

))
(13)

According to the details of its network structure from [8] and the number of slid-
ing windows, i.e., S2 = 52, in our experiments, the FLOPs of SSD are 3.15× 1012. The
computational complexity of the proposed method is:

O

(
S3

(
LC2

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc +
LC3

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc +
LF3

∑
l f=1

Nin.l f Nout,l f

))
(14)

Compared with SSD, the proposed method adds attention module and scene recogni-
tion module. The computational complexity of the additional attention module and scene
recognition module is:

O

(
S3

(
LC3

∑
lc=1

Cin,lcCout,lcK2
lc M2

lc +
LF3

∑
l f=1

Nin.l f Nout,l f

))
(15)

According to the details of its network structure in Section 2 and the number of sliding
windows, i.e., S3 = 52, in our experiments, the corresponding FLOPs of the proposed
method are 3.16× 1012. In Table 3, we list the computational complexity, the FLOPs, and
the runtime on per test SAR image of the three CNN-based methods.
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Table 3. Complexities of the proposed method and other CNN-based detection methods.

Method Computational Complexity FLOPs Runtime (Seconds/Per
Test Image)

Zhang’s method O

(
S1

(
LC1
∑

lc=1
Cin,lcCout,lcK2

lc M2
lc +

LF1
∑

l f=1
Nin.l f Nout,l f

))
2.52× 1013 38.12

SSD O
(

S2

(
LC2
∑

lc=1
Cin,lcCout,lcK2

lc M2
lc

))
3.15× 1012 1.55

Proposed method O

(
S3

(
LC2
∑

lc=1
Cin,lcCout,lcK2

lc M2
lc +

LC3
∑

lc=1
Cin,lcCout,lcK2

lc M2
lc +

LF3
∑

l f=1
Nin.l f Nout,l f

))
3.16× 1012 2.04

In Table 3, we can see that Zhang’s method has the largest FLOPs and it has a long
runtime. Compared with SSD, the proposed method has two more summation terms in
the formula of computational complexity, and we can see that the FLOPs of the proposed
method is a little larger than that of SSD, and its runtime is a little longer. In conclusion,
the proposed method can greatly improve the detection performance, by adding a little
FLOPs and runtime.

5. Discussions

The experimental results shown in Section 4 illustrate that the proposed method
achieves better detection performance for SAR images than compared state-of-the-art
methods. The reasons include three main points. First, although we used part of target-
level labeled training samples, only 30%, the designed scene recognition module can use all
image-level labeled training samples. The weakly supervision information brought by the
image-level labeled training samples is conducive to improving the detection performance.
Second, for SAR images with more complex scenes, the attention module designed can
generate an attention map to suppress the clutter area and highlight the target area, and
the attention map will act on the scene recognition module and the detection module
simultaneously, which will help to improve the accuracy of scene recognition and detection
performance. Third, the coarse-to-fine SAR target detection procedure can significantly
reduce the number of false alarms. Although a few missing alarms may be added, the
comprehensive detection performance can be improved.

From the experimental results of multiple random splits of training and test data
in Section 4.4.4, we can conclude that how the training and test data are split has little
impact on the proposed method. This shows the generality of the proposed method. In
addition to the measured miniSAR data, we can also generalize the proposed method
to other datasets, as long as the following conditions are met: the images in the dataset
must be the SAR images with large scenes, and the images should include both the targets
of interest and the background clutter. The reasons are as follows. We need to crop the
SAR sub-images in the SAR images with large scenes to make the target-level labeled and
image-level labeled training samples, in which the target-level labeled training samples
must include the targets, and the positions of the targets must be labeled, and as for the
image-level labeled training samples, they are composed of the samples that contain the
targets and the samples that do not contain the targets and only contain the background
clutter. Therefore, the images in the dataset must be the large scene SAR images including
both targets of interest and background clutter. As long as the dataset satisfies the above
conditions, our method is applicable, and it is reasonable to generalize the performance of
the proposed method to it.

6. Conclusions

In this paper, a SAR target detection network based on semi-supervised learning and
attention mechanism is proposed. The proposed method takes SSD as a detection branch
and constructs an auxiliary scene recognition branch for semi-supervised learning. Using
the attention mechanism, the network can automatically highlight the target of interest and
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suppress the background clutter. By the coarse-to-fine SAR target detection procedure, the
global scene information of SAR images can be considered during the test process, and the
comprehensive detection performance can be improved. The experimental results based
on the measured miniSAR dataset demonstrate that the proposed method can achieve
better performance than other semi-supervised methods and even the fully supervised
learning methods.

Although the proposed method can significantly improve the performance of target
detection, the computational complexity and runtime are increased. In the future, we will
explore a lightweight network structure to reduce the computational complexity of the
network and increase the detection speed.

Author Contributions: Conceptualization, D.W.; methodology, D.W.; software, D.W.; validation,
D.W.; data curation, D.W.; writing—original draft preparation, D.W.; writing—review and editing,
Y.D., L.D. and L.L.; supervision, L.D.; All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded in part by the National Science Foundation of China, grant number
61771362, in part by the 111 Project, grant number B18039.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare there is no conflict of interest.

References
1. Novak, L.; Burl, M.; Irving, W. Optimal polarimetric processing for enhanced target detection. IEEE Trans. Aerosp. Electron. Syst.

1993, 29, 234–244. [CrossRef]
2. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications.

Neurocomputing 2017, 234, 11–26. [CrossRef]
3. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmen-tation.

In Proceedings of the EEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

5. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

7. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [CrossRef]

8. Li, L.; Du, L.; Wang, Z. Target Detection Based on Dual-Domain Sparse Reconstruction Saliency in SAR Images. IEEE J. Sel. Top.
Appl. Earth Obs. Remote. Sens. 2018, 11, 4230–4243. [CrossRef]

9. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big
Data Era: Models Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6.

10. Chen, Z.; Gao, X. An Improved Algorithm for Ship Target Detection in SAR Images Based on Faster R-CNN. In Proceedings
of the 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11
November 2018; pp. 39–43.

11. Wang, Z.; Du, L.; Mao, J.; Liu, B.; Yang, D. SAR Target Detection Based on SSD With Data Augmentation and Transfer Learning.
IEEE Geosci. Remote. Sens. Lett. 2018, 16, 150–154. [CrossRef]

12. Du, L.; Li, L.; Wei, D.; Mao, J. Saliency-Guided Single Shot Multibox Detector for Target Detection in SAR Images. IEEE Trans.
Geosci. Remote. Sens. 2020, 58, 3366–3376. [CrossRef]

13. Du, L.; Liu, B.; Wang, Y.; Liu, H.; Dai, H. Target Detection Method Based on Convolutional Neural Network for SAR Image.
J. Electron. Inf. Technol. 2016, 38, 3018–3025.

14. Rosenberg, C.; Hebert, M.; Schneiderman, H. Semi-Supervised Self-Training of Object Detection Models. In Proceedings of the
Seventh IEEE Workshops on Applications of Computer Vision (WACV), Washington, DC, USA, 5–7 January 2005; pp. 29–36.

15. Zhang, F.; Du, B.; Zhang, L.; Xu, M. Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft
Detection. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 5553–5563. [CrossRef]

http://doi.org/10.1109/7.249129
http://doi.org/10.1016/j.neucom.2016.12.038
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1109/JSTARS.2018.2874128
http://doi.org/10.1109/LGRS.2018.2867242
http://doi.org/10.1109/TGRS.2019.2953936
http://doi.org/10.1109/TGRS.2016.2569141


Remote Sens. 2021, 13, 2686 21 of 21

16. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the 15th European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

17. Jetley, S.; Lord, N.; Lee, N.; Torr, P.H.S. Learn to pay attention. arXiv 2018, arXiv:1804.02391.
18. Li, C.; Du, L.; Deng, S.; Sun, Y.; Liu, H. Point-wise discriminative auto-encoder with application on robust radar automatic target

recogni-tion. Signal Process. 2020, 169, 107385. [CrossRef]
19. Neubeck, A.; Van Gool, L. Efficient non-maximum suppression. In Proceeding of the 18th International Conference on Pattern

Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 850–855.
20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
22. Liu, J.-J.; Hou, Q.; Cheng, M.-M.; Wang, C.; Feng, J. Improving Convolutional Networks with Self-Calibrated Convolu-tions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–20 June 2020;
pp. 10093–10102.

23. Hou, Q.; Zhang, L.; Cheng, M.-M.; Feng, J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–20 June 2020; pp. 4002–4011.

24. SANDIA Mini SAR Complex Imagery. Available online: http://www.sandia.gov/radar/complex-data/index.html (accessed on
15 April 2021).

25. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA,
3–7 November 2014; pp. 675–678.

26. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.

http://doi.org/10.1016/j.sigpro.2019.107385
http://doi.org/10.1145/3065386
http://www.sandia.gov/radar/complex-data/index.html

	Introduction 
	Network Structure of the Proposed Method 
	Feature Extraction Module 
	Attention Module 
	Scene Recognition Module 
	Detection Module 

	Algorithm Flow of the Proposed Method 
	Semi-Supervised Learning 
	Coarse-to-Fine SAR Target Detection 

	Experimental Results and Analysis 
	Description of the Dataset and Experimental Settings 
	Evaluation Criteria 
	Comparison with Other Detection Methods 
	Model Analysis 
	Analysis of Attention Map 
	Analysis of the Variations of Detection Performance with the Percentage of Target-Level Labeled Training Samples 
	Ablation Study 
	Analysis of Randomly Splitting Training and Test Data 
	Computational Complexity and Runtime Analysis 


	Discussions 
	Conclusions 
	References

