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Abstract: The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei
caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical exam-
ple of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases
(bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation
period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005
to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera
unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia vol-
canoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed
the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area.
With the aim of improving the research on volcano dynamics and hazard assessment, the full dataset
of the GPS time series from the Neapolitan volcanic area from January 2000 to December 2019 is
presented and made available to the scientific community.

Keywords: GPS time series; Campi Flegrei caldera; Vesuvius; Ischia island; ground deformation
monitoring

1. Introduction

Two of the most famous and high-risk volcanoes in the world, the Somma–Vesuvius
and the Campi Flegrei caldera, overlook the Gulfs of Naples and Pozzuoli. Ischia island,
the third active volcano of the Neapolitan volcanic area, is located at the north of the Gulf
of Naples and a short distance from the Procida island.

The Campi Flegrei caldera (CFc) is an active volcanic system located to the west of the
city of Naples. This whole area, with about 1.5 million inhabitants, is considered to have a
very high volcanic risk [1].

The caldera is thought to have been formed during two large ignimbrite eruptions, the
Campania Ignimbrite (CI, 39 ka) and the Neapolitan Yellow Tuff (NYT, 15 ka) [2–4]. Follow-
ing the NYT eruption, the volcanic activity became restricted to within the caldera [5–8].
The last eruptive event was the 1538 A.D. Mt. Nuovo eruption [9].

CFc is known for the occurrence of slow vertical ground movements (bradyseism).
Subsidence has been the dominant process in the last 2000 years, but a fast uplift preceded
the Mt. Nuovo eruption (1538), and episodes of uplift are also documented by the well-
known evidence on the columns of the Roman Temple of Serapis [10–14] located near the
Pozzuoli harbor.
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The last important uplift episodes, accompanied by seismic crises, occurred in 1950–1952,
1969–1972, and 1982–1984 (Figure 1), resulting in a total vertical displacement of about
4.3 m in the town of Pozzuoli [15].
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In 1985, an almost continuous subsidence phase started, interrupted only by mini-
uplift in 1989, 1994, and 2000 (Figure 1), with small displacements ranging between 1 and
7 cm [15].

A new uplift phase started in late 2005 [16] and is ongoing. It is accompanied
by increased seismicity, degassing activity, and compositional changes in the emitted
fluids [17–21].

The island of Ischia has undergone a large resurgence process since about 56 ka, after a
caldera forming eruption (Green Tuff eruption) [22]. The maximum uplift was of the order
of 900 m with a rate of a few centimeters per year [23], forming the structural uplifted block
of Mt. Epomeo. Effusive and explosive eruptions and avalanche processes accompanied
the resurgence processes, and destructive earthquakes have characterized the most recent
history of Ischia island [24–27]. The last eruption took place in 1302 AD. The southwestern
part of the island is characterized by the presence of a high-temperature hydrothermal
system, with geothermal gradients >150 ◦C [28]. The largest earthquakes occurred on
4 March 1881 and on 28 July 1883. The event of 1883 was characterized by an intensity
Imax of XI MCS degree and a magnitude of 4.8 ≤ M ≤ 5.2 [26–28]. On 21 August 2017, an
earthquake occurred in the area of Casamicciola Terme with a 2 km deep hypocenter and a
magnitude of Md = 4.0 (Mw = 3.9) [29–31].

Somma–Vesuvius is a medium-sized strato-volcano located in the center of Campanian
Plain. It consists of Mount Somma, an older volcano, whose summit part sank, generating
a caldera, and the more recent Vesuvius, which grew inside this caldera. It is practically
a symmetrical cone, whose maximum height is 1281 m a.s.l. In summary, the eruptive
history of Somma–Vesuvius can be described as follows. About 37,000 years ago, the
Phlegraean eruption of Ignimbrite Campana covered most of Campania with a layer of tuff.
The stratigraphy of the Trecase 1 geothermal well shows [32] that on these deposits, due
to effusive and explosive eruptions, the Somma volcano began to grow. This activity was
interrupted around 22 ky BP by the Plinian eruption of the Pomici di Base [33]. After this
event, the Somma caldera began to form [34]. Then, 3 ky later, there was the subplinian
eruption of the Verdoline Pomici [35]. The following 15 ky were characterized by two
Plinian eruptions, Mercato Pumice and Avellino Pumice, then at least eight explosive
eruptions followed [36]. This period of activity ended in 217 BC [37], preceding the 79 AD
Plinian eruption.

After the Plinian eruption of 79 AD, which destroyed Herculaneum and Pompei, a
subplinian eruption occurred (472 AD). It was followed by a persistent activity of about
700 years [38,39]. From the 12th century, a period of low activity began, which ended with
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the subplinian eruption of 1631. Medium and small eruptions characterized the activity
of Somma–Vesuvius until 1944, when the last eruption took place. Over the past eight
decades, Somma–Vesuvius activity has been characterized by subsidence, low-temperature
fumaroles, and hundreds of low-energy earthquakes per year. The seismic event of greatest
energy occurred in October 1999 [40–42].

This paper presents and makes available to the scientific community the GPS time
series of the north, east, and vertical components of the 41 stations monitoring ground
deformation in the whole Neapolitan volcanic area. The time series of the CFc cover the
period 2000–2019, and those of Ischia and Procida cover the period 2001–2019. These data
provide a continuous and accurate history of the recent CFc unrest (Figure 1) and are a
useful tool for the study of ground deformation patterns of the Somma–Vesuvius and
Ischia volcanoes.

2. The Neapolitan Volcanoes Continuous GPS Network

The Neapolitan Volcanoes Continuous GPS (NeVoCGPS) network, operated by the
Istituto Nazionale di Geofisica e Vulcanologia–Osservatorio Vesuviano (INGV-OV), was
developed to monitor and quantify ground deformation due to volcanic and seismic activity
at CFc, the Somma–Vesuvius volcano, and Ischia–Procida Islands [16,43,44]. The network
comprises 37 continuous GPS (cGPS) stations (black dots in Figure 2a–c).
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For further details on NeVoCGPS network design, instrumentation, and data manage-
ment, the reader is referred to [16,43].

At present, 21 stations of the NeVoCGPS network are operating on land in the Campi
Flegrei area, seven stations on Ischia and Procida islands, and nine stations on the Somma–
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Vesuvius volcanic complex (black dots in Figure 2a–c and Table 1). Some stations started
operating as early as 2000.

Table 1. Station name, location, first observation, and time span interval (to December 2019) of the
cGPS stations of the NeVoCGPS network and MEDUSA marine infrastructure (*).

Station Lat N
(◦)

Long E
(◦)

First Observation
(Decimal Year)

Time Span
(Years)

Campi Flegrei Caldera

ACAE 40.820 14.141 2000.1 19.9
ARFE 40.832 14.099 2000.6 19.4
ASTR 40.840 14.159 2016.5 3.5
BAGN 40.804 14.174 2013.0 7.0
BAIA 40.809 14.080 2000.1 19.9
CMIS 40.778 14.089 2015.8 4.2

CUMA 40.848 14.058 2017.2 2.8
FRUL 40.877 14.225 2008.1 11.9
IPPO 40.837 14.167 2000.0 20.0
ISMO 40.826 14.191 2016.5 3.5
LICO 40.876 14.049 2003.2 16.8
MAFE 40.847 14.258 2010.0 10.0
MORU 40.859 14.082 2000.6 19.4
NAMM 40.836 14.254 2016.2 3.8

NISI 40.797 14.163 2009.3 10.7
PIS1 40.830 14.145 2015.3 4.7

QUAR 40.877 14.143 2000.0 20.0
RITE 40.823 14.126 2000.4 19.6
SOLO 40.830 14.135 2009.2 10.8
STRZ 40.835 14.111 2006.9 13.1
VICA 40.855 14.120 2008.3 11.7

* CFBA 40.810 14.121 2016.3 3.7
* CFBB 40.804 14.134 2016.3 3.7
* CFBC 40.809 14.144 2016.3 3.7
* CFSB 40.798 14.120 2016.5 3.5

Ischia–Procida Islands

AQMO 40.736 13.935 2001.1 18.9
FORI 40.737 13.856 2005.4 14.6
IPRO 40.765 14.024 2004.2 15.8

MEPO 40.731 13.902 2017.1 2.9
OSCM 40.747 13.901 2011.0 9.0
SANT 40.723 13.946 2013.4 6.6
SERR 40.712 13.895 2001.1 18.9

Somma–Vesuvius Volcano

AGR1 40.811 14.343 2003.4 16.6
BKE1 40.819 14.439 2006.6 13.4

BKNO 40.830 14.430 2010.5 9.5
ONPI 40.779 14.411 2001.0 19.0
OSVE 40.828 14.397 2005.5 14.5
PRET 40.849 14.477 2001.0 19.0
SANA 40.869 14.412 2001.0 19.0
TERZ 40.808 14.475 2003.0 17.0
VOLL 40.883 14.348 2017.4 2.6

The seafloor sector of the caldera is monitored by the MEDUSA (Multiparametric
Elastic-beacon Devices and Underwater Sensor Acquisition system) marine infrastructure
consisting of four instrumented buoys deployed in early 2016 in the Gulf of Pozzuoli [45].
A cGPS station was installed on top (blue dots in Figure 2a and Table 1) of each of the
four elastic-beacon buoys, which in turn are rigidly connected by a steel cable or pole
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to the ballast on the sea bottom. This methodology is suitable for seafloor deformation
measurements in shallow water (less than 100 m in depth) [45–47]. For more details
on MEDUSA infrastructure, buoy design, and seafloor module equipment the reader is
referred to [45,47].

3. Data Processing

The cGPS data of the NeVocGPS network were processed using the Bernese GPS
software v. 5.0 [48] on a daily basis with the IGS final orbits and Earth rotation parameters
(ERPs) [49].

The principal parameters and models used in GPS data processing strategy are re-
ported in Table 2.

Table 2. GPS data processing parameters and models.

Observations Double differences

Antenna model IGS absolute phase center corrections
Cut-off 15◦

Ambiguities Quasi Ionosphere Free (QIF) strategy [50]
Ionosphere Iono-free L3 solution

Troposphere
Dry-Niell a priori model for the hydrostatic troposphere and
estimating the troposphere zenith delay parameters every hour at
each site using the wet-Niell mapping function [51]

Reference system IGb14
Ocean tidal loading FES2004 model [52]

Since 2000, important updates in the processing strategies have been adopted by the
IGS Analysis Centers and different reference frames have been realized [53–55]. Due to
these changes, the resulting time series parameters and the combined IGS products are
highly inhomogeneous and inconsistent over time [56].

Two reprocessing campaigns (repro1 and repro2) were performed by the IGS in
2008 [56,57] and in 2015 [53], respectively, to obtain homogeneous products.

To obtain high-precision results, all the cGPS data collected by the NeVoCGPS network
during the full time period (2000–2019) were processed using the same processing strategies,
the updated products, and the most recent models.

Station discontinuities due to antenna calibration file updates or associated with
equipment changes were estimated and corrected in the time series. The geodetic datum
was realized by three No-Net Translation conditions imposed on a set of eight IGb14
reference stations (Minimum Constraint Solution), which were included in the processing.

To highlight the volcanic deformation and remove the background regional tectonic
pattern, the processing results (time series and velocity fields) were transformed into a local
reference frame defined by six stations of the INGV RING (Rete Integrata Nazionale GNSS)
network [58] located outside the Neapolitan volcanic area (purple triangles in Figure 2a)
and also included in the cGPS data processing. The velocities of the selected RING stations
reflect the tectonic motion of the area. The velocities, uncertainties, and noise properties of
the six RING station were estimated using the Hector software package [59], based on the
maximum likelihood estimation algorithm (MLE). A power law plus white noise model
was assumed to take into account the temporal correlated noise in the time series and to
compute more realistic uncertainties for the velocities [60,61]. An annual and semiannual
seasonal signal were estimated and removed. The results of the RING time series analysis
are presented in Table 3.
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Table 3. RING station name; location; north, east and up component velocity and uncertainty.

STAZ
Lat N

(◦)
Lon E

(◦)
North vel
(mm/yr)

North err
(mm/yr)

East vel
(mm/yr)

East err
(mm/yr)

Up vel
(mm/yr)

Up err
(mm/yr)

ENAV 40.582 14.335 16.6 0.1 21.8 0.1 −0.5 0.2
MODR 41.146 13.881 17.1 0.1 21.0 0.1 0.3 0.2
PACA 40.870 14.556 16.9 0.1 21.3 0.1 −1.3 0.1
PAOL 41.032 14.567 17.4 0.1 21.9 0.1 0.1 0.2
PIGN 41.200 14.180 18.0 0.1 21.8 0.1 0.3 0.2
VENT 40.795 13.422 16.8 0.1 21.4 0.1 −0.9 0.1

Mean 17.1 Mean 21.5

The local reference frame was realized by subtracting a mean horizontal velocity
(17.1 mm/y and 21.5 mm/y, in the north and east component, respectively) of the six RING
stations (Table 3) from the time series of the NeVoCGPS network. The tectonic contribution
to the vertical component was assumed to be negligible and no correction was applied.

To take into account the motion of the buoys, the MEDUSA cGPS data were pro-
cessed in kinematic mode with the RTKLIB ver. 2.4.2 software [62] to obtain positions of
the buoys every 30 s. The cGPS station LICO (see Figure 2a) was the reference in data
processing [45–47].

To reduce the noise due to weather and sea conditions on the horizontal compo-
nents [45–47], we applied cleaning algorithms to outlier detection and removal, and weekly
average to produce less frequent but more accurate positions (a full description of kinematic
GPS time series analysis is reported in [47]).

4. Results

The positioning time series of all of the cGPS stations operating in the Neapolitan
volcanic area from January 2000 to December 2019 are shown in Figures 3–8. The data
archive of values in ASCII format is available in the Supplementary Materials.
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Figure 6. Weekly filtered GPS time series of MEDUSA stations CFBA, CFBB, and CFBC (north, east, and up components)
and CFSB (up component only) from January 2016 to December 2019. The error bars represent the interquartile range (IQR)
of each weekly median solution [47]. See Figure 2a for the location of the stations (blue dots).

It is known that software-derived formal positioning errors are overly optimistic, and
they should be rescaled by a scaling factor [63]. The mean values of the formal errors for
the horizontal and vertical positions are 0.3 and 1 mm, respectively. We used a scaling
factor of 10 to obtain a mean, and more realistic accuracies of 3 and 10 mm for the daily
horizontal and vertical components, respectively, of the NeVoCGPS stations. For clarity,
the rescaled errors are not shown in Figures 3–5, Figures 7 and 8, but are reported in data
files in the Supplementary Materials.

4.1. Campi Flegrei Caldera

The final daily position time series of the 21 stations of the NeVoCGPS network
operating in the CF area are shown in Figures 3–5, displaying the ground deformation
history of the recent volcanic caldera unrest.

The first cGPS stations installed in the CF area detected the 2000 mini-uplift, recording
a maximum vertical displacement of about 4 cm [64].

After this episode, the subsidence following the 1982–1984 unrest continued until
2005. Then, the uplift restarted and is ongoing, with different rates in time [16,65,66].

Starting from November 2005, the RITE cGPS station (Figure 2a) located at Rione
Terra–Pozzuoli recorded the largest uplift, measuring about 65 cm (Figures 1 and 5). The
other cGPS stations show a decrease in the uplift displacement from the caldera center
outwards (Figure 5). The horizontal displacements show a radial symmetry centered on
Pozzuoli (Figures 3 and 4).

Figure 6 shows the weekly filtered MEDUSA GPS time series that highlight the vertical
and horizontal displacements of the CF marine sector since 2016 [47].

The seafloor deformation pattern is consistent with that observed by the on-land Ne-
VoCGPS stations. The uplift ranges between 8 and 20 cm and the horizontal displacements
show a radial trend, despite the data being affected by noise associated with meteorological
conditions [47].
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4.2. Ischia and Procida Islands

The final daily position time series of the seven stations of the NeVoCGPS network
operating at Ischia and Procida islands are presented in Figure 7.

The vertical and horizontal components of the time series are characterized by constant
trends. Following the Ischia earthquake, which occurred on 21 August 2017, some cGPS sta-
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tions (MEPO and OSCM in Figure 2b) recorded detectable coseismic deformations [44,67].
The offsets in time series in Figure 7 have been corrected.

Table 4 shows the results in terms of horizontal and vertical velocities and uncertainties
derived from the Ischia–Procida time series analysis with the Hector software package [59].
A power law plus white noise model was used to take into account the temporal correlated
noise in the time series. An annual and semiannual seasonal signal were estimated and
removed.

Table 4. Ischia–Procida cGPS station name; north, east, and up component velocity and uncertainty.

STAZ
North vel
(mm/yr)

North err
(mm/yr)

East vel
(mm/yr)

East err
(mm/yr)

Up vel
(mm/yr)

Up err
(mm/yr)

AQMO −1.6 0.1 −2.4 0.1 −3.1 0.2
FORI −1.1 0.1 −0.2 0.1 −1.3 0.2
IPRO −1.7 0.1 −3.3 0.1 0.0 0.1

MEPO 2.3 0.2 −1.3 0.2 −11.2 1.0
OSCM −2.9 0.1 −1.1 0.1 −3.6 0.1
SANT −0.2 0.1 −2.8 0.1 −3.2 0.2
SERR 3.6 0.1 −0.2 0.1 −6.1 0.1

Regarding the north component (Figure 7a), the displacements of the SERR and MEPO
stations are northward. The FORI, IPRO, OSCM, and AQMO stations have displacements
southward, and SANT shows a negligible N–S trend.

Moreover, it is evident that for the east component (Figure 7b), the AQMO, SANT,
and IPRO stations move westward. The displacements of OSCM, MEPO, and SERR are
also westward, but at smaller rates. Only the FORI station seems to show a negligible
E–W trend.

Regarding the vertical component (Figure 7c), all stations, except IPRO, show subsi-
dence. In particular, the MEPO and SERR stations display a significant subsidence. The
other sites also experience subsidence, but at a smaller rate.

4.3. Somma–Vesuvius Volcano

The final daily position time series of the nine stations of the NeVoCGPS network
operating at the Somma–Vesuvius volcano are shown in Figure 8. Additionally, these cGPS
stations are characterized by constant and linear trends.

Table 5 shows station velocities and uncertainties derived from the Somma–Vesuvius
time series analysis with the Hector software package [59]. A power law plus white noise
model was used, and an annual and semiannual seasonal signal were estimated and
removed.

Table 5. Somma–Vesuvius cGPS station name; north, east, and up component velocity
and uncertainty.

STAZ
North vel
(mm/yr)

North err
(mm/yr)

East vel
(mm/yr)

East err
(mm/yr)

Up vel
(mm/yr)

Up err
(mm/yr)

AGR1 0.4 0.1 0.7 0.1 −0.8 0.1
BKE1 0.0 0.1 −1.6 0.1 −6.2 0.3

BKNO −3.3 0.1 −1.0 0.1 −7.2 0.2
ONPI 0.3 0.1 0.1 0.1 −1.7 0.1
OSVE −0.7 0.1 1.0 0.1 −1.7 0.1
PRET 0.2 0.1 −0.4 0.1 −1.2 0.1
SANA −0.1 0.1 0.1 0.1 −1.0 0.1
TERZ 0.1 0.2 0.1 0.2 −2.3 0.5
VOLL 0.0 0.1 0.3 0.1 −1.8 0.3
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All stations display a general subsidence, with higher values on the summit volcano
edifice [43,68]. Only the BKNO, BKE1, and OSVE stations have significant horizontal
displacements; the other stations show negligible horizontal trends.

5. Discussion and Conclusions

The ground and seafloor deformation pattern highlighted by the GPS time series
at CFc in the last 20 years is characterized by the invariance of the uplifted area with
the persistence of a bell-shaped geometry (Figure 9). The horizontal displacements show
a radial pattern (i.e., axial symmetry) from the zone of maximum vertical deformation
(Figure 9a) located at Pozzuoli town in the central part of the caldera (Figure 2a).
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The shape of the vertical and horizontal ground deformation pattern is remarkably con-
stant (Figure 9), and independent from the total amount of displacement, as noted in several
papers referring to both uplift and subsidence episodes during the past 50 years ([69,70],
and references therein).
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This characteristic pattern seems to suggest a stable source location during the time
interval from 2000 to 2019.

Acocella et al., 2015 [71], studying unrest episodes at calderas over an interval of
26 years (1988–2014), concluded that many unrest episodes do not lead to eruptions, but
an eruption is always preceded by an unrest episode. Therefore, it is critically important to
understand the source from which the uplift episodes at CFc are produced.

By mainly using leveling, GPS, and InSAR data, several authors have proposed
different models to describe the source of the ground deformations at CFc ([72] and
references therein).

Despite the large amount of deformation, geochemical, and geophysical data acquired
in the last years, the magmatic versus hydrothermal origin of the unrest episodes at Campi
CFc is still a matter of debate ([69,70,72], and references therein).

Several authors have interpreted uplift episodes as induced by a magmatic source [73]
or as driven by hydrothermal system processes as deeper fluids released by the intruding
magma affect the hydrothermal system [74–77].

Figure 10 shows the horizontal and vertical velocity field retrieved from the GPS
time series at Ischia and Procida islands (Table 4). In the eastern part of Ischia island,
the horizontal displacements are mainly westward with rates of 2.9 ± 0.1 mm/y in a SW
direction (AQMO station) and 2.8 ± 0.1 mm/y in a W direction (SANT station). Procida
island shows a horizontal displacement with rate of 3.7 ± 0.1 mm/y in a SW direction
(IPRO station). The FORI station, located in western part of the island, displays a rate of
1.1 ± 0.1 mm/y in a S direction, indicating a condition of greater stability in this part of
the island. The velocity vectors of MEPO station (2.6 ± 0.3 mm/y), located on summit
of Mount Epomeo, and SERR station (3.6 ± 0.1 mm/y) on the central-western part of the
island show velocity pointing towards N–NW, whereas OSCM station, in the north part of
the island, has a rate of 3.1 ± 0.1 mm/y in a SW direction. It seems that the area between
Monte Epomeo and Casamicciola is an area of accumulation of compressive strain [29,30].
This area is precisely the one affected by the earthquake of 21 August 2017 [29,30,44].
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The vertical GPS velocity field (Figure 10) displays a general subsidence, with maxi-
mum rates recorded at the MEPO (−11.2 ± 1 mm/y) and SERR (−6.1 ± 0.1 mm/y) stations.
The AQMO, FORI, and SANT stations also show subsidence, but at smaller rates. The
minimum value is recorded at FORI with −1.3 ± 0.2 mm/y, whereas the IPRO station
shows a negligible vertical trend.
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Therefore, in the period 2001–2019, the vertical velocity field indicates the general
subsidence of the island, whereas the horizontal field shows that the stations in the western
part of island have displacement vectors pointing towards the central part, where the
highest values of subsidence are recorded.

Figure 11 shows the horizontal and vertical GPS velocity field at the Somma–Vesuvius
volcano in the time span of 2001–2019 (Table 5).
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The dynamics of the volcano are characterized by a general subsidence with maximum
rates recorded at the BKNO (7.2 ± 0.2 mm/y) and BKE1 (−6.2 ± 0.3) stations, located on
Vesuvius, the younger part of the volcano. The stations installed on Somma, the oldest part
of the volcano, also display subsidence, but at smaller rates (Table 5). The GPS stations with
the highest rates are those installed at higher altitudes, i.e., those with highest potential
energy [34]. From Vesuvius to Somma, the subsidence rate decreases until reaching the
minimum values on the coast. These values are in agreement with data from the tide gauge
network [78] and from the levelling measurements [68]. These last two considerations show
how the vertical displacements are influenced by the topography of the volcano [79,80].

The presence of the volcano does not appear to affect the horizontal velocities of the
GPS stations (Figure 11). In fact, as already mentioned, only the BKNO (3.4 ± 0.1 SW),
BKE1 (1.6 ± 0.1 W), and OSVE (1.2 ± 0.1 SE) stations have horizontal velocities greater
than 1 mm/y, whereas the other stations show a negligible horizontal trend.

The complete dataset of the GPS time series from January 2000 to December 2019
presented in this study is available in the Supplementary Materials. These data can be
useful for the scientific community to improve the knowledge on volcano dynamics and
volcanic and seismic source models, in addition to possibly discriminating a magmatic
versus a hydrothermal origin of the uplift and subsidence episodes at Campi Flegrei
caldera; the data can also provide useful information for volcanic hazard assessment of the
Neapolitan area.
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