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Abstract: Precipitation rate from various products of the integrated multisatellite retrievals for
GPM (IMERG) and passive microwave (PMW) sensors are assessed with respect to near-surface
wet-bulb temperature (Tw), precipitation intensity, and surface type (i.e., with and without snow
and ice on the surface) over the contiguous United States (CONUS) and using ground radar product
as reference precipitation. IMERG products include precipitation estimates from infrared (IR),
combined PMW, and combination of PMW and IR. It was found that precipitation estimates from
PMW products generally have higher skills than IR over snow- and ice-free surfaces. Over snow-
and ice-covered surfaces: (1) most PMW products show higher correlation coefficients than IR, (2) at
cold temperatures (e.g., Tw < −10 ◦C), PMW products tend to underestimate and IR product shows
large overestimations, and (3) PMW sensors show higher overall skill in detecting precipitation
occurrence, but not necessarily at very cold Tw. The results suggest that the current approach of
IMERG (i.e., replacing PMW with IR precipitation estimates over snow- and ice-surfaces) may need
to be revised.

Keywords: rainfall; stage IV; infrared; passive microwave; surface type; wet-bulb temperature

1. Introduction

Accurate precipitation estimation with high spatiotemporal resolution is key to many
hydrologic studies. Rain gauges and ground radars have enabled high-quality observation
and estimation of precipitation at a point or at regional scale and satellite observations have
enabled precipitation estimates with global coverage at subdaily temporal sampling, which
is important for hydrologic applications [1]. Advancing the global precipitation estimate is
critical to better understand the current state of Earth’s climate and future changes [2,3]
and to help society through its various applications [3]. Accordingly, efforts have been
devoted to evaluate satellite precipitation products over different regions to determine
their errors and identify areas for future improvements [4–8].

The high temporal sampling from satellite observations comes through the use of
infrared images from geostationary satellites, multiple PMW sensors on low-earth-orbiting
satellites, or a combination of both. PMW sensors often provide more information about
the hydrometeors, thus tend to result in more accurate precipitation estimates than pre-
cipitation retrieval based on IR data. However, PMW-based precipitation estimation may
also face large uncertainties due to several factors including errors related to the poor
understanding of precipitation microphysics, difficulties in distinguishing between light
rain and cloud [9–11], and challenges in determining surface emissivity, especially over
snow and ice [12,13].

The methods for blending IR- and PMW-based precipitation estimates have been differ-
ent across different merged precipitation products. Precipitation estimation from remotely
sensed information using artificial neural networks (PERSIANN) [14] and PERSIANN
cloud classification system (PERSIANN-CCS) [15] are mainly based on IR brightness
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temperature-precipitation rate relationships established using geostationary IR observa-
tions and PMW precipitation estimates as reference precipitation. Similar to most IR based
methods, grids with colder cloud-top brightness temperatures are assigned to produce
higher precipitation intensity. PERSIANN-CCS is different from PERSIANN because the
IR-precipitation relationship is determined for different cloud classes, each determined
based on features of groups of connected-grids called clusters [7]. On the other hand,
products such as the integrated multisatellite retrievals for GPM (IMERG) [16], Climate
Prediction Center’s morphing technique (CMORPH) [17], and JAXA’s global satellite map-
ping of precipitation (GSMaP) [18] use PMW precipitation as their main input and IR
precipitation might be used to fill gaps in time. For example, if the time interval from the
nearest PMW observation is longer than 30 min, IMERG tends to use a combination of
IR and PMW estimates and, for time intervals of more than 90 min, the precipitation rate
mainly comes from IR-estimate. This is because by about ± 90 min the IR precipitation has
shown a higher correlation with reference precipitation than the propagated microwave
precipitation estimates [16].

IMERG also uses IR precipitation estimate over snow and ice surfaces, regardless of the
time distance from PMW observations and type of PMW sensors [16]. This is because PMW
precipitation estimates are perceived as unreliable over snow and ice surfaces. However,
the performance of IR precipitation over snow and ice surfaces has also not been well
investigated. Furthermore, it has been found that different PMW sensors have dissimilar
skills for precipitation retrieval over land and ocean [19]. It is important to assess how
precipitation estimates from different PMW sensors (or a combination of them as used in
IMERG) are compared with IR precipitation over surfaces with and without snow and ice.
IMERG prefers precipitation estimates from PMW imagers over PMW sounders, which
may not always be the best choice over land [19]. Examples of recent PMW imagers used
in IMERG are the special sensor microwave imager/sounder (SSMIS) on the Defense
Meteorological Satellite Program (DMSP) platforms, the GPM microwave imager (GMI) on
the GPM Core Observatory satellite, and the advanced microwave scanning radiometer
earth observing system (AMSR-E) on the Aqua satellite; and its follow-on satellite (AMSR2)
on board the GCOM-W1 satellite. Among the main PMW sounders used in IMERG are the
advanced technology microwave sounder (ATMS) on board Suomi National Polar-Orbiting
Partnership (Suomi-NPP) and NOAA-20 satellites; the microwave humidity sounder (MHS)
on board NOAA-18, NOAA-19, MetOp-A, MetOp-B, and MetOp-C satellites. In IMERG,
IR precipitation is obtained from PERSIANN-CCS.

Besides considering surface conditions (e.g., surfaces with and without snow and
ice) in comparison of PMW and IR precipitation, it is important to perform the analysis
as a function of surface temperature, as surface temperature is used to discriminate the
precipitation phase. Behrangi et al. [20] compared AMSR-E and CloudSat precipitation
detection as a function of surface air temperature at 2 m (T2m) and showed that AMSR-E
significantly underestimates CloudSat precipitation for T2m below the freezing tempera-
ture. Zhang et al. [21] also used T2m to evaluate high-resolution (0.1◦/hourly) precipitation
estimates from the weather research and forecasting (WRF) model and IMERG over the
central United States. Results show that the WRF estimates exhibit higher correlations
with the reference data when the temperature falls below 280 K, while IMERG estimates
show higher correlation than WRF for T2m greater than 280 K. They also showed that the
complementary behavior of the WRF and the IMERG products conditioned on T2m does
not vary with either season or location. However, their study did not provide information
on the performance of PMW and IR precipitation estimates (that are used in IMERG) and
did not consider surface condition (i.e., surfaces with and without snow and ice) that
determines the use of IR or PMW precipitation components in IMERG.

In the present study, we focus on evaluating the performance of IMERG and its
precipitation components over surfaces with and without sea and ice cover and as a
function of Tw. In addition, analysis as a function of precipitation rate provides insights
into the performance of the precipitation products under light, moderate, and intense
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precipitation events. This investigation adds insights to refine strategies for combining IR
and PMW precipitation estimates in the merged products such as IMERG. Therefore, this
study is different from previous studies in which the final products of IMERG is assessed
using ground reference [5–7,22]. Results of this study can improve future versions of
satellite-based precipitation products and provide insight for new sensors’ design and their
performance over different conditions and regions.

2. Materials and Methods
2.1. Comparison Approach and Metrics

Using three years of stage IV data (2015–2017) as a reference over the CONUS, the
performance of each product is assessed within each one-degree Tw bin, separately over
surfaces with and without snow and ice cover. Precipitation thresholds of 0, 0.1, 0.3, 1, and
2 mm/h are used to separate precipitation from nonprecipitation. For example, by using
a threshold of 2 mm/h, only grids with precipitation rates of greater than 2 mm/h are
considered as precipitating and anything less than that is considered as nonprecipitating,
so the emphasis will be more on intense precipitation events. The calculation of Tw is
described in [23] and uses 2 m air temperature, 2 m dewpoint temperature, and surface
pressure that are obtained from reanalysis. The score metrics used in this study are:
probability of detection (POD), false alarm ratio (FAR), bias, and Heidke skill score (HSS)
for assessment of precipitation occurrence as well as correlation coefficient (CC) and volume
bias (VBias) for assessment of precipitation rate. HSS provides a more generalized skill
score for assessing the accuracy of the predictions relative to the random chance. In other
words, HSS shows the fraction of correct predictions by excluding correct predictions due
to random chance. The range of the HSS is −∞ to 1. Negative values indicate that the
forecast by chance is better, 0 means no skill, and 1 means a perfect forecast. The ideal score
for Bias and VBias is 1. Bias is calculated by dividing the number of estimated precipitation
occurrences from each product by the corresponding value from the reference product (here
Stage IV). VBias is similar to bias, but is calculated by dividing the amount of estimated
precipitation by the corresponding value from observation. It should be noted that bias
of 1 alone does not necessarily indicate a perfect prediction, because bias of 1 means that
the number of grids identified as precipitation is the same for the two products being
compared. However, a product might miss of falsely determine precipitation occurrence
as can be inferred from POD and FAR. Details for calculation of the above metrics are
provided in [24].

Note that it is known that most satellite products underestimate orographic precipita-
tion enhancement and are not able to capture that accurately [25]. Therefore, to separate
this effect from our analysis, using maps of mountains (see Section 2.2), regions susceptible
to orographic precipitation enhancement were removed from the analysis.

2.2. Dataset

A brief description of the products used in this study is provided below:

• IMERG Products

The latest version of the IMERG products (V06) is used in this study. IMERG provides
gridded precipitation maps with high spatiotemporal resolution (0.1 × 0.1 deg. every 1

2 h)
within 90◦ S-N by blending precipitation estimates from two sources: (1) IR images using
PERSIANN-CCS, and (2) GPM microwave imager (GMI) and a constellation of GPM PMW
sensors. IMERG uses the latest version of PMW precipitation products (V05) retrieval
based on the 2017 version of the Goddard profiling algorithm (GPROF2017) [26]. Details
of the IMERG algorithm are described in Huffman, Bolvin [27] and in brief includes four
main steps: (1) precipitation estimates from the GPM constellation radiometers are gridded,
intercalibrated to the radar-microwave combined product (2BCMB), and combined into
half-hourly 0.1◦ × 0.1◦ fields (variable name: “HQprecipitaiton”), hereafter referred to as
IMERG-HQ, (2) maps of half-hourly IR precipitation rate (“IRprecipitation”) are calculated
using PERSIANN-CCS, hereafter referred to as IMERG-IR, (3) MW and IR estimates
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are used to create half-hourly estimates (“precipitationUncal”) by utilizing the Climate
Prediction Center morphing Kalman filter (CMORPH-KF) Lagrangian time interpolation
scheme, and (4) the multisatellite half-hour estimates are adjusted so that they sum to a
monthly satellite-gauge combination (“precipitationCal”). This bias-adjusted product is
referred to as IMERG-Final which is available ~3.5 months after observation for accurate
estimation with monthly gauge adjustments to reduce bias. IMERG also reports sources of
PMW sensors “HQprecipSource”, but it does not specify the platform names. Note that
IMERG provides users with two other runs. The early run is available ~4 h after observation
for real-time applications such as flood prediction and includes only forward morphing
and may not benefit from all PMW sensors. The late run (IMERG-Late) is available ~14 h
after observation, implementing forward and backward morphing. The current version of
IMERG-Late (V6) does not apply climatology bias adjustment, but the future versions will.

In this study, we use IMERG-Late, IMERG-Final, IMERG-HQ (PMW-only), and
IMERG-IR (IR-only) products available at half-hour at 0.1 × 0.1 degree resolution (i.e.,
about 11 km × 11 km at equator). As discussed in Section 1, in IMERG, IR is used over
snow and ice surfaces or when the time distance from PMW observations is large. For the
period of this study, IMERG-HQ uses imagers (AMSR-2 and GMI), sounders (ATMS, and
MHS), and combined imager and sounder (SSMIS) sensors. All of these sensors, regardless
of their platform, are used in our analysis. When there are available data from sounders
and imagers, IMERG prioritizes imagers over sounders with consideration of observation
time closest to the center of the half-hour (Huffman et al., 2020).

• National Centers for Environment Prediction (NCEP) Stage IV

The hourly Stage IV product is used in this study as reference data to analyze IMERG
products’ performance over CONUS. Since 2002, the hourly Stage IV product provides
hourly estimates using Z-R relationship from over 150 Doppler Next Generation Weather
Radars (NEXRAD), and a combination of 5500 hourly rain gauge measurements to produce
hourly 4 × 4 km resolution data [28,29]. As of April 2017, this dataset includes Alaska
and Puerto Rico stations. Stage IV benefits from manual quality control (QC) on stage III
data gathered at each river forecast center (RFC) unlike stage II, which does not include
manual QC (https://data.eol.ucar.edu/dataset/21.093 (accessed on 15 February 2021)).
Including quality control, gauge measurements give assurance of the quality of the data.
This becomes more important in the case of snowfall measurements when the temperature
is below the freezing point because most of the radar-based estimations under freezing
conditions are controversial [30]. Cocks and Martinaitis [31] shows the value of nine
winter precipitation events over the Rocky Mountains is in good agreement with gauge
measurements. Altogether we found out NCEP stage IV data are the most suitable and
convenient for our study with fairly reliable accuracy [30].

• ERA5-Land

This dataset is a replay of ECMWF original land component ERA5 climate reanalysis
with a finer resolution at ~9 km grid spacing with an hourly time interval. This dataset
provides surface variable data from 1981 to 2–3 months before the present. In this study to
calculate wet-bulb temperature, three different variables were obtained from ERA5-Land
including 2 m air temperature, 2 m dewpoint temperature, and surface pressure for 2015 to
2017 over CONUS. We used wet-bulb temperature to distinguish rainfall from snowfall
following as it is a better separator than air temperature [23,32,33].

• NOAA Autosnow Product

The NOAA autosnow product provides daily surface ice and snow map with global
coverage. It is a gridded product with 0.04◦ lat/lon resolution. It uses data gathered
from different sensors on various satellites. For details of sensors used in this product
see Romanov [34]. IMERG uses autosnow in two stages: (1) mask snow- and ice-covered
surfaces for Kalman statistics computation and, (2) mask IMERG precipitation estimates.
In this study, we use autosnow to delineate surfaces with and without snow and ice cover.

https://data.eol.ucar.edu/dataset/21.093
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• K3 Mountain Map

In this study to detach the issues related to the underestimation of orographic precipi-
tation by satellite products from our analysis, K3 mountain mask was used. K3 provides a
GIS-based, global map of mountains derived from digital elevation models (DEM) with a
250 m resolution. It has been developed after K1 and K2 mountains raster with a coarser
resolution [35–37]. For comparison of different K mountain maps see Roger and Char-
lie [38]. K3 characterizes mountains into four different groups: high and high-scattered
mountains with elevation exceeding 900 m and low and low-scattered mountains with
elevation ranging between 301–900 m. K3 maps are found useful to identify regions that
might contain orographic precipitation (personal communication with Dr. Paula Brow of
Colorado State University). Since in this study we are not focusing on orographic precipita-
tion and radar precipitation estimates over mountainous regions may not be accurate [39],
we removed all high and high-scattered mountains (see Supplementary Figure S1) from
our analysis.

3. Results

The results of this study are presented under three main sections: (1) general charac-
teristics and differences of IMERG and stage IV products including spatial distribution
and seasonality accompanied by a case study, (2) analysis of IMERG components versus
stage IV data over snow-and ice-covered and snow- and ice-free surfaces with different
intensities and, (3) investigating the performance of individual PMW sensor types.

3.1. General Characterization

Figure 1 shows seasonal mean precipitation maps from stage IV (Figure 1a–d), IMERG-
Final (Figure 1e–h), IMERG-HQ (Figure 1i–l), IMERG-IR (Figure 1m–p), and IMERG-Late
(Figure 1q–t) using three years (2015–2017) of data over CONUS, and annual averages of
these products are shown in Figure S2. For a more detailed assessment, maps of seasonal
differences in mean precipitation rate between IMERG products and stage IV are also
plotted in Figure 2. From these two figures, few points can be highlighted: (1) because
IMERG-Final is bias-adjusted with gauges at monthly scale, it is closest to stage IV in terms
of both magnitude and pattern, (2) over mountainous regions, mainly in the west, IMERG
products tend to underestimate precipitation rates during winter (DJF) where snow and
ice are on the surface. This is also observed in spring (MAM) and fall (SON), but not
in summer (JJA), although the underestimation is more noticeable for IMERG-HQ than
IMERG-IR that is consistent with previous studies [40,41], (3) IMERG products (except
IMERG-Final, which is bias-adjusted) show larger precipitation amount than stage IV over
the central and eastern parts of the CONUS, especially during DJF and MAM. It is not
clear if this overestimation, especially during the DJF, is due to overestimation of rainfall,
snowfall, or due to surface conditions (e.g., snow and ice on the surface). Therefore, to
better understand the performance of the satellite products, a more detailed analysis as a
function of surface type and precipitation phase is needed.

The observed underestimation over the mountainous west can be due to poor skill of
satellite products in capturing orographic enhancement [25,42] and the fact that most of the
annual precipitation over this region occurs in wintertime [43] and a large fraction of the
that is through the atmospheric rivers [44,45]. However, it is important to note that radar
beam blockage may also contribute to the lower quality of stage IV product in mountainous
regions. Most of these regions are masked out using the K3 mask applied in this study.
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Figure 3 shows a precipitation event on 29 December 2017, over the Washington and
Oregon states (Figure 3a). This event contains both rain and snowfall, rainfall mainly occurs
over the western and southern parts and snowfall occurs over the northeastern part of the
study area as can be seen from the liquid probability (Figure 3h) and wet-bulb temperature
(Figure 3g) maps. The snow- and ice-covered surfaces are also shown in Figure 3i using
the autosnow product. Stage IV precipitation map (Figure 3b) is used as a comparison
reference. The white areas in Figure 3b represent regions with no data either because it is
over the ocean located in the western part of the region (stage IV has no coverage over the
ocean) or missing radar data inland (Figure 3a). As discussed in Section 2, IMERG-Final
and IMERG-Late are produced by combining the IR-based and PMW-based precipitation
estimates. IMERG-Final bias-adjusts IMERG-Late using rain gauges at a monthly scale.
While the bias adjustment is often effective at a monthly scale, it does not necessarily
improve the product at a submonthly scale, which could be a reason for the considerable
difference between the IMERG-Final and stage IV products. Furthermore, the area includes
different climate regions (e.g., based on the Köppen-Geiger climate classification; see
Figure S3) and topographic complexity that may affect the retrievals and contribute to
the observed differences. IMERG-Late uses IR-based precipitation over snow and ice
surfaces and when PMW overpasses are far in time from each other. Therefore, over the
northeast, IR-precipitation is directly used in IMERG-Late products as can be inferred from
Figure 3d,f. Over the rainfall area, IMERG-Late is produced by combining the IMERG-IR
and IMERG-HQ products as can be inferred from Figure 3e,f.
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As discussed in the introduction section, there is a need for a more detailed analysis of
the performance of IR (represented by IMERG-IR) and PMW (represented by IMERG-HQ)
precipitation estimates over snow and ice surfaces that is investigated in the next section.

3.2. Assessment of the IMERG Products as a Function of Precipitation Rate, Surface, and
Environmental Conditions

This section compares different IMERG products (e.g., IMERG-Final, IMERG-HQ,
IMERG-IR and, IMERG-Late) with the stage IV precipitation estimates by considering
precipitation intensity, temperature effects (Tw; also related to the precipitation phase),
and surface type (i.e., surface with or without snow and ice cover). To investigate how
the performance of the precipitation products varies with precipitation rate, five different
thresholds (e.g., 0, 0.1, 0.3, 1 and, 2 mm/h) were used and statistical scores were calculated
for precipitation events identified by these thresholds (Figures 4 and 5). In other words,
precipitation rates smaller than the thresholds were set to nonprecipitating events and pre-
cipitation rates equal or greater than the threshold were considered as precipitation events.

Figure 4 shows the performance of different IMERG products over snow- and ice-
covered surfaces as a function of Tw, plotted in the X-axis. Five different intensity thresholds
are used to assess how products perform under events with higher precipitation rates.
The top row shows the number of samples used in the analysis (Figure 4a–d), followed
by CC, POD, FAR, bias, volume bias (VBias), and HSS in the lower rows. Note that the
ideal score for bias and VBias is one as discussed in Section 2. In general, IMERG-Late
and IMERG-Final are similar to IMERG-IR, because by design IMERG uses IMERG-IR
over snow and ice surfaces. IMERG-Final can be slightly different from IMERG-Late due
to the monthly bias adjustment utilized in IMERG-Final. Comparison of IMERG-IR with
IMERG-HQ, as a function of Tw and precipitation intensity, enables us to assess whether
the use of IR instead of PMW precipitation in IMERG is effective or not, especially at
cold temperatures and over snow- and ice-covered regions. Figure 4 shows that as Tw
decreases CCs tend to decrease for all the products. While IMERG-HQ is more sensitive
than IMERG-IR to changes in Tw, IMERG-HQ has higher CC than IMERG-IR at all Tw bins
(Figure 4e–h). This is the case for all precipitation intensities, but note that CC is generally
lower once we focus on higher precipitation rates.

IMERG-HQ has a higher POD than IMERG-IR at Tw greater than ~ −10 ◦C, but at
colder temperatures POD of IMERG-HQ is generally lower than IMERG-IR (Figure 4i–l).
Overall, both IMERG-IR and IMERG-HQ show reduction in POD at colder temperatures,
although this is not necessarily the case for precipitation rates greater than 1 mm/h, in
which both IMERG-IR and IMERG-HQ show a slight increase in POD as Tw decreases. Note
that precipitation is well detected (i.e., POD is about 1) by both products for precipitation
intensities greater than 1 mm/h. Figure 4m–p shows that FAR tends to be higher at colder
Tw and lower at higher precipitation rates for both IMERG-IR and IMERG-HQ. IMERG-HQ,
however, has a slightly lower FAR than IMERG-IR overall. This results in IMERG-HQ
having generally higher HSS than IMERG-IR, almost at all Tw ranges, except at very cold
temperatures (e.g., Tw < −15 ◦C) where the two products are comparable (Figure 4z–aa).
With respect to bias (Figure 4q–t), both IMERG-IR and IMERG-HQ show values around
1 for precipitation intensities greater than 0.1 mm/h, but at colder temperatures (e.g., Tw
less than −10 ◦C) IMERG-HQ tends to under detect (bias < 1) and IMERG-IR tends to
over detect (bias > 1) precipitation occurrences. When precipitation intensities lower than
0.1 mm/h are included in the analysis, both IMERG-IR and IMERG-HQ show larger bias
values, suggesting that the products tend to have large false detection of light precipitation
as can also be noticed from the FAR plots. This is not necessarily the case for IMERG-HQ
for Tw < −10 ◦C where the products tend to under detect precipitation incidences. VBias
plots (Figure 4u–x) show that over snow- and ice-covered surfaces both IMERG-HQ and
IMERG-IR tend to overestimate precipitation amount, except for IMERG-HQ for light
precipitation at cold temperatures (e.g., Tw less than −12 ◦C). This is consistent with
previous studies showing that PMW tends to underestimate light precipitation over cold
surfaces [21]. Clearly, the impact of PMW underestimation is larger in high latitude regions,
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where light precipitation is dominant [46,47]. Note that for precipitation rates higher than
1 mm/h, there are large overestimations by both IMERG-HQ and IMERG-IR at colder
temperatures that might be related to the confusion of the retrieval methods over snow- and
ice-covered surfaces. As can be seen, the bias adjustment employed in IMERG-Final can
only slightly improve the IMERG-Late product, likely because the adjustment is performed
at a monthly scale, while statistical scores shown in Figure 4 are based on the instantaneous
matchups. Overall, results show that IMERG-HQ may outperform IMERG-IR over snow
and ice surfaces, at least over the CONUS, suggesting that unconditional use of IR as a
replacement for IMERG-HQ over snow and ice surfaces needs to be revisited.
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Figure 5 is similar to Figure 4, but it is over snow- and ice-free surfaces. Here IMERG-
Late and IMERG-Final mainly follow IMERG-HQ scores rather than IMERG-IR. However,
the impact of IMERG-IR on IMERG-Late (thus IMERG-Final) can be seen (at least in the
CC plot), as IR is still used in IMERG-Late when the time-distance between successive
PMW overpasses is large. It can be seen that both IR and PMW products tend to have
better scores over snow- and ice-free than over snow-and ice-covered surfaces and both
show worse skill scores as Tw decreases. Furthermore, IMERG-HQ tends to outperform
IMERG-IR almost regardless of the Tw and intensity ranges. Both products also show
higher skill scores when light precipitation is removed from the analysis, except for CC and
VBias. Both IMERG-IR and IMERG-HQ show large VBias when precipitation intensities
greater than 1 mm/h are assessed at lower temperatures, but VBias is clearly larger for
IR at Tw less than 5 ◦C. At Tw less than 0 ◦C, IMERG-HQ shows slight underestimation
for events that include light precipitation. Overall, it appears that the use of IMERG-IR
performs worse than IMERG-HQ over snow- and ice-free surfaces. Note that IMERG-HQ
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does not include morphed PMW estimates, so the outcomes of this analysis do not apply
to the morphed PMW estimates that may show less skill at a longer time distance from the
time of PMW observations [48].
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Figure 6 facilitates comparing IMERG-IR with IMERG-HQ as a function of Tw over
snow- and ice-covered (left-column) and snow- and ice-free (right-column) surfaces. Here,
a fixed threshold of 0.3 mm/h is used for precipitation delineation. It can be seen that
IMERG-HQ outperforms IMERG-IR over snow- and ice-free surfaces across all temper-
atures, although it shows slightly worse bias and VBias than IMERG-IR for Tw< ~5 ◦C
(Figure 6h) and Tw between 10 ◦C and 20 ◦C (Figure 6j), respectively. Over snow- and
ice-covered surfaces IMERG-HQ outperforms IMERG-IR in terms of CC (Figure 6a) and
FAR (Figure 6e), regardless of Tw. However, IMERG-IR shows higher POD and HSS than
IMERG-HQ for Tw < ~−12 ◦C (Figure 6c,k), but this is along with higher FAR and bias
(Figure 6e,g). Figure 6i shows a significantly large VBias for IMERG-IR, especially for Tw
< −8 ◦C. Other indices can also be used for comparison. Figure S4 compares the IMERG
products using the Kling–Gupta efficiency coefficient (KGC) [49] which is a quantitative
score and considers the distance between mean and variance of observed and estimated
time series and their correlation. As can be seen, the overall conclusion from KGC plots
is that IMERG-HQ outperforms IMERG-IR for most Tw bins, especially for colder bins
regardless of the surface type. This suggests that replacement of precipitation estimate
from PMW with IR over snow and ice surfaces may not be effective. The analysis can also
be extended by calculating systematic error (SE) and random error (RE) for each IMERG
product over two surface covers and for different Tw ranges. SE and RE are absolute mean
relative error and normalized root mean square error, respectively, and are described in the
supplementary file as well as in [50]. Table S1 suggests that over snow- and ice-covered
surfaces IMERG HQ has smaller RE than SE over all Tw ranges. In contrast, IMERG-IR
shows larger RE than SE over all Tw ranges. As reduction of SE is easier than RE [51],
efforts such as bias correction may further improve the PMW precipitation estimates.



Remote Sens. 2021, 13, 2726 11 of 16

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 16 
 

 

Figure 6 facilitates comparing IMERG-IR with IMERG-HQ as a function of Tw over 
snow- and ice-covered (left-column) and snow- and ice-free (right-column) surfaces. Here, 
a fixed threshold of 0.3 mm/h is used for precipitation delineation. It can be seen that 
IMERG-HQ outperforms IMERG-IR over snow- and ice-free surfaces across all tempera-
tures, although it shows slightly worse bias and VBias than IMERG-IR for Tw< ~5 °C (Fig-
ure 6h) and Tw between 10 °C and 20 °C (Figure 6j), respectively. Over snow- and ice-
covered surfaces IMERG-HQ outperforms IMERG-IR in terms of CC (Figure 6a) and FAR 
(Figure 6e), regardless of Tw. However, IMERG-IR shows higher POD and HSS than 
IMERG-HQ for Tw < ~−12 °C (Figure 6c,k), but this is along with higher FAR and bias 
(Figure 6e,g). Figure 6i shows a significantly large VBias for IMERG-IR, especially for Tw 
< −8 °C. Other indices can also be used for comparison. Figure S4 compares the IMERG 
products using the Kling–Gupta efficiency coefficient (KGC) [49] which is a quantitative 
score and considers the distance between mean and variance of observed and estimated 
time series and their correlation. As can be seen, the overall conclusion from KGC plots is 
that IMERG-HQ outperforms IMERG-IR for most Tw bins, especially for colder bins re-
gardless of the surface type. This suggests that replacement of precipitation estimate from 
PMW with IR over snow and ice surfaces may not be effective. The analysis can also be 
extended by calculating systematic error (SE) and random error (RE) for each IMERG 
product over two surface covers and for different Tw ranges. SE and RE are absolute mean 
relative error and normalized root mean square error, respectively, and are described in 
the supplementary file as well as in [50]. Table S1 suggests that over snow- and ice-cov-
ered surfaces IMERG HQ has smaller RE than SE over all Tw ranges. In contrast, IMERG-
IR shows larger RE than SE over all Tw ranges. As reduction of SE is easier than RE [51], 
efforts such as bias correction may further improve the PMW precipitation estimates. 

 
Figure 6. Comparison of IMERG-HQ and IMERG-IR over snow- and ice-covered and snow- and ice-free surfaces using 
three years (2015–2017) of data over CONUS. Stage IV is used as a reference. Dashed and solid lines represent IMERG-IR 
and IMERG-HQ in panels (a–l), respectively. Precipitation is delineated from no precipitation using a threshold of 0.3 
mm/h. Orographic effects are excluded using mountains mask. 

Figure 6. Comparison of IMERG-HQ and IMERG-IR over snow- and ice-covered and snow- and ice-free surfaces using
three years (2015–2017) of data over CONUS. Stage IV is used as a reference. Dashed and solid lines represent IMERG-IR
and IMERG-HQ in panels (a–l), respectively. Precipitation is delineated from no precipitation using a threshold of 0.3 mm/h.
Orographic effects are excluded using mountains mask.

3.3. Performance of Individual PMW Precipitation Estimates

In the previous section precipitation estimates from a combination of PMW sensors
(i.e., through IMERG-HQ) were compared with precipitation estimates from geostationary
IR observations. However, IMERG-HQ is composed of precipitation estimates from several
PMW sensors that are identified in the IMERG output fields. Here the performance of
individual PMWs is compared with IMERG-IR as a function of Tw and using stage IV as
reference. Similar to the previous section, analysis is conducted separately on snow- and
ice-covered and snow- and ice-free surfaces. Timespan, study area, and procedure are the
same as in the last section and a threshold of 0.3 mm/h is used to delineate precipitation
from nonprecipitation. Orographic effects are excluded using mountains mask. Note
that the analysis is based on sensor type, not satellite, so if a sensor is available on more
than one platform a combination of the sensors is used. Furthermore, IMERG prefers
PMW imagers over PMW sounders, so if they coincide, precipitation estimates from PMW
imagers are used in IMERG-HQ (Huffman et al. 2020). Based on Figure 7, and over snow-
and ice-covered surfaces, the following observations are highlighted: (1) all PMW sensors,
except AMSR-2, have better CC than IMERG-IR regardless of Tw (Figure 7c), and AMSR-2
shows the lowest CC among all the studied products for Tw < ~−5 ◦C, (2) SSMIS shows the
best and AMSR-2 shows the worst POD among all the PMW sensors, IMERG-IR has better
POD than SSMIS for Tw < −10 ◦C, better POD than GMI, MHS and ATMS for Tw < −3 ◦C,
and better POD than AMSR-2 for Tw < 5 ◦C (Figure 7e).
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POD of AMSR-2 is almost zero for Tw <−10 ◦C, (3) for FAR (Figure 7g), IMERG-IR has
higher FAR than all PMW sensors except AMSR-2 that shows higher FAR than IMERG-IR
for Tw < 2 ◦C or generally snowfall, (4) for bias, PMW and IMERG-IR show good skill
(i.e., bias near 1) for Tw > 0 ◦C, but for Tw < 0 ◦C, IMERG-IR tends to show bias values
greater than one and PMW sensors tend to show bias values smaller than 1. The biases
get worse as Tw decreases. AMSR-2 has Bias values greater than 1 for Tw > −10 ◦C, but
bias values less than one for Tw < −10 ◦C, (5) in terms of volume bias, individual sensors
tend to perform differently, but all of them overestimate stage IV precipitation amount for
Tw> −15 ◦C, except GMI and AMSR-2 that tend to underestimate for Tw < ~−5 ◦C. The
overestimation of IMERG-IR is more significant than all PMW sensors at Tw < −8 ◦C at
which AMSR-2′s VBias reaches almost zero. The increase of AMSR-2 VBias at Tw < −15
could be due to unstable sampling (note that AMSR-2 has the lowest sampling among all
other sensors; Figure 7a), (6) as an overall score for precipitation detection, HSS suggests
that IR is superior to the individual PMW sensors for Tw < −10 ◦C (2 ◦C for AMSR-2),
although SSMIS shows lower HSS than IMERG-IR only for Tw < −15 ◦C, AMSR-2 show
almost no skill at Tw < −15 ◦C. One reason for the relatively poor performance of AMSR-2
compared to other PMW products could be the lack of high frequency (e.g., greater than
90 GHz) and also sounding channels in AMSR-2 compared to other PMW sensors. It has
been shown that high-frequency MW and sounding channels are valuable in retrieving
snowfall and can be used to mask out scattering signals from snow- and ice-covered
surfaces that might otherwise interfere with scattering signals from ice particles in clouds
(e.g., Skofronick-Jackson, Kulie [3]).

PMW sensors perform generally better over snow- and ice-free than over snow- and
ice-covered surfaces. PMW sensors have higher CC than IMERG-IR for Tw < 15 ◦C, but at
warmer Tw they are relatively comparable (Figure 7d). Over snow- and ice-free surfaces,
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PMW sensors tend to have higher POD than IMERG IR (except for Tw < ~0 ◦C at which
PMW sensors’ POD decreases with reduction in Tw; Figure 7f), IMERG-IR shows higher
FAR than PMW sensors for all temperatures (Figure 7h), and both bias and VBias of PMW
sensors and IMERG-IR are fairly comparable for Tw > 0 ◦C. At Tw < 0 ◦C, IMERG-IR
tends to show a slight overestimation in Bias (Figure 7j) and large overestimation in VBias
(Figure 7l), but PMW sensors tend to underestimate both precipitation occurrence (bias) and
amount (VBias) at colder temperatures. As an overall metric, HSS suggests that IMERG-IR
tends to outperform PMW sensors at Tw < 0 ◦C for AMSR-2 and Tw < −4 ◦C for other
sensors over snow- and ice-free surfaces.

4. Concluding Remarks

Accurate estimation of precipitation is important for water cycle studies and various
hydrologic applications. A long-standing challenge for remote sensing products has
been an estimation of precipitation in cold regions, especially over snow and ice surfaces.
Here, using three years of Stage IV data (2015–2017) over the CONUS, the performance
of various products of IMERG is investigated as a function of near-surface wet-bulb
temperature (used for precipitation phase detection), precipitation intensity, and surface
type (i.e., with and without snow and ice on the surface). The IMERG products include
precipitation estimations from infrared (IR), combined passive microwave (PMW) sensors,
and a combination of the precipitation estimate from IR and PMW sensors, that are either
bias adjusted using in situ data (IMERG-Final) or not (IMERG-Late). In the analysis, steep
mountainous regions were eliminated to reduce complexities that might be due to the
orographic enhancement of precipitation.

Results show that precipitation estimates from PMW products generally have better
statistics than IR over snow- and ice-free surfaces. Over snow- and ice-covered surfaces,
PMW products (except AMSR-2) show a higher correlation coefficient (with stage IV data)
than IR. Both IR and PMW precipitation products tend to overestimate precipitation over
snow and ice surfaces, but, at colder temperatures (e.g., Tw < −10 ◦C), PMW products tend
to underestimate while IR product continues to show large overestimations. With respect
to precipitation occurrence, both PMW and IR products show considerably higher skill in
capturing intense precipitation than light precipitation rates. PMW sensors outperform IR
over snow- and ice-free surfaces and also show higher overall skill in detection precipitation
occurrence over snow- and ice-covered regions, but not necessarily at Tw colder than −5
◦C. Generally, AMSR-2 performs worst and SMMIS performs best among the studied
PMW sensors that also include GMI, MHS, and ATMS. The results suggest that the current
approach of IMERG, replacing PMW with IR precipitation estimates over snow- and
ice-covered surfaces, needs further investigations and might need to be revised.

Previous studies show poor performance of PMW-based precipitation in cold regions,
especially in the presence of the snow or ice on the surface. This study confirms this issue.
It also indicates that the majority of PMW sensors could outperform IR-based precipitation
in cold temperatures over snow- and ice-covered surfaces. It should be mentioned that
assessment of PMW- and IR-based precipitation in higher latitudes might be different
from that over CONUS. This could be due to the differences in environment and type of
precipitation (e.g., atmosphere is generally drier and light precipitation is more frequent
in high latitudes than CONUS). Future studies can include other variables such as total
precipitable water to account for the effect of dry and moist environment in the analysis.
Furthermore, for regions poleward of 60◦ S/N, PERSIANN-CCS is not available (i.e.,
due to the low quality of geostationary IR images), thus precipitation estimates from
other IR sensors such as the atmospheric infrared sounder (AIRS) [41] or the advanced
very-high-resolution radiometer (AVHRR) [5] could be considered. AIRS is used in the
Global Precipitation Climatology Project (GPCP) product [42] in high latitudes. In the
meantime, new algorithms for precipitation retrieval from PMW is being developed that
may outperform the current estimates (e.g., [3,43,44]). Future studies are needed to inter-
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compare these products, so the best product from PMW or IR can be used in IMERG and
other multisensor products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13142726/s1, Figure S1: Mask of high and high-scatter mountains based on K3 mountain
maps. Figure S2: Annual average precipitation for three years (2015–2017) over CONUS for Stage
IV (a), IMERG-Final (b), IMERG-HQ (c) and, IMERG-Late(d). Figure S3: Revised Köppen-Geiger
climate classification maps at 1-km resolution for present condition (1980–2016) by Beck et al. 2018.
For definition of each classification in the legend see Beck et al. 2018 [52]. Figure S4: Comparison of
IMERG products using KGC over snow- and ice-covered (top panel) and snow- and ice-free (bottom
panel) surfaces using three years (2015–2017) of data over CONUS. Stage IV is used as a reference.
Table S1: Percent systematic error (SE) and random error (RE) for different IMERG products for
different Tw ranges and surface types.
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