
remote sensing  

Article

The Development of a Combined Satellite-Based Precipitation
Dataset across Bolivia from 2000 to 2015

Jhonatan Ureña 1, Oliver Saavedra 1,* and Takuji Kubota 2

����������
�������

Citation: Ureña, J.; Saavedra, O.;

Kubota, T. The Development of a

Combined Satellite-Based

Precipitation Dataset across Bolivia

from 2000 to 2015. Remote Sens. 2021,

13, 2931. https://doi.org/10.3390/

rs13152931

Academic Editor: Silas Michaelides

Received: 26 June 2021

Accepted: 14 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Investigaciones en Ingeniería Civil y Ambiental, Universidad Privada Boliviana,
Cochabamba 3967 UPB, Bolivia; jhonatanurena@upb.edu

2 Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan;
kubota.takuji@jaxa.jp

* Correspondence: oliversaavedra@upb.edu

Abstract: This study proposes the use of satellite-based precipitation (SBP) products in combination
with local rain gauges in Bolivia. Using this approach, the country was divided into three major
hydrographic basins: the Altiplano, La Plata, and Amazon. The selected SBP products were Global
Satellite Mapping of Precipitation (GSMaP) and Climate Hazards Group Infrared Precipitations
with Stations (CHIRPS). The correlation coefficients of SBP were found to be from 0.94 to 0.98 at
monthly temporal scale. The applied methodology iterates correction factors, taking advantage
of surface measurements from the national rain gauge network; five iterations showed stability
in the convergence. Once the improved SBP product was obtained, validation was performed by
reducing ten percent the number of rain gauges randomly. After applying the correction factors, the
combined products improved their correlation coefficient values by up to 0.99. The validation of the
methodology showed that with a combination of products using 90% of the rain gauges, correlation
coefficients ranged from 0.98 to 0.99. Among the three basins, the Amazon basin presented the
poorest results; this fact may be related to low rain gauge density compared to the other two basins.
The validation approach shows that the methodology has an acceptable performance. The database
generated in this study, now open to the public, is ready to be used for different hydrological
applications such as precipitation time-series analysis, water balance, and water assessment at the
sub-basin scale within Bolivia.

Keywords: precipitation; satellite-based products; rain gauges; Bolivia; GSMaP; CHIRPS

1. Introduction

The implementation of hydrological models has become common practice in the
prediction of river discharge flow and volume at basin scale. These models can be employed
in analyses of land use and climate change scenarios [1], flood prediction [2], and rainfall-
runoff processes [3]. For these types of analysis, one of the most important variables is
precipitation. Based on precipitation data availability, it is important to select a proper
hydrological model to take advantage of precipitation accuracy.

Distributed and semi-distributed hydrological models are the most popular model
types. These models require aerial precipitation datasets, meaning that the spatial vari-
ability within the basin is important. In this regard, an alternative option is the use of
rain gauges as precipitation input data [4]. Prior to the usage of rain gauge data, data
pre-processing (i.e., gridding) is required to change its spatial distribution from isolated
points to a distributed grid. Many previous studies have attempted to determine the
optimal interpolation method to use with point rain gauges [5–7]; unfortunately, the rain
gauges can be affected by atmospheric effects [8] and the possibility of instrument failure,
among other issues. When applying interpolation methods, the number and location of
rain gauges in some basins are often insufficient and, in some instances, may be extremely
poor. According to the World Meteorological Organization (WMO), the installation density
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of rain gauges is determined by the type of surface topography [9]. For example, the
density in Mexico is 804 km2 per station, which is an acceptable value according to the
WMO. In the case of Bolivia, however, the density is much sparser at about 2922 km2 per
station. For this reason, an alternative approach employed in hydrological models is the
use of satellite-based products to obtain precipitation data.

Satellite-based precipitation (SBP) data is obtained by using different sensors onboard
satellites. These sensors can scan or retrieve water molecules in different phases, such as
vapor. Algorithms are then used on the retrieved signals to generate gridded precipitation
information at different spatial and temporal resolutions. Popular SBP products include
Global Satellite Mapping of Precipitation (GSMaP) [10–12] and Climate Hazards Group
Infrared Precipitations with Stations (CHIRPS) [13,14].

Previous studies comparing the accuracy of these products to rain gauges and radar
have shown acceptable results in favor of SBP [15]. Despite the advantages of using
these measurements, SBP products have difficulty in generating precipitation data due
to the geographic and geomorphological conditions in some regions of the planet [16].
For example, the Integrated Multi-satellite Retrievals for GPM (IMERG) product presents
acceptable results in arid regions, however, this product requires calibration to improve
rainfall data [17]. Due to the need to improve precipitation data, new generations of
satellite-based products with better accuracy are required. These new versions have been
evaluated to verify the improvement in data quality in relation to previous versions.
For example, a study of the Global Precipitation Measurement (GPM) mission’s new
generation was presented in Malaysia [18], an analysis of two versions of the Tropical
Rainfall Measuring Mission (TRMM) v7 was conducted in China [19], and the evolution of
TRMM to IMERG [20].

An alternative to employing distributed precipitation data is the generation of new
products that combine rain gauges and SBP. For example, using several satellite-based
products with inverse distance weighting (IDW) interpolation generated a new gridded
product for Java Island, Indonesia [21]. However, a robust approach is needed to validate
these new improved products.

The objective of this study was to evaluate satellite-based precipitation products and
generate combined products for different hydrological applications. The SBP products
selected were GSMaP and CHIRPS. To generate combined products, an iterative method
was proposed at the sub-basin scale using local rain gauges. The obtained products were
then evaluated, randomly reducing 10% of available gauges. Finally, an estimation of river
discharge flow at three major basins in Bolivia was carried out.

2. Materials and Methods
2.1. Study Area

The country of Bolivia has an onshore area of 1,098,006 km2, with elevation values
principally in the range of 200 to 5000 m above sea level (m.a.s.l.). This can be divided into
three ecological regions: highlands (west and southwest of the country), valleys (middle
region of the country), and lowlands (north and east of the country); these can be seen in
Figure 1a.

Hydrographically, the country is formed by three major basins: the Altiplano, Amazon,
and La Plata (Figure 1b). The Altiplano basin covers the southwest of La Paz and Oruro,
and the eastern part of the Potosi department. The Amazon basin comprises Pando,
Beni, Cochabamba, the northeast of La Paz, north of Potosi and Chuquisaca, and the
northwestern part of the Santa Cruz department. The La Plata basin comprises Tarija,
the eastern part of Potosi, the south of Chuquisaca, and the southeast of the Santa Cruz
departments.
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Figure 1. (a) Hydrological and orographic map of Bolivia; (b) three major basins in Bolivia.

The Altiplano basin covers an area of 151,722 km2, making it the smallest major basin
in the country. This basin is endorheic and contains an ecological region of highlands in
almost all areas. The basin has precipitation of around 70 to 750 mm per year (Figure 2a)
with an average runoff of 79% [22]. In this study, 84 rain gauges from the Altiplano basin
were used (Figure 2b).

The Amazon basin covers 720,792 km2, the largest basin out of the three mentioned
in this study. The basin presents three ecological regions: highlands in the southeast of
the basin, valleys in the middle region of Cochabamba and Chuquisaca departments, and
lowlands in the northeast of the basin. The Amazon basin discharges into the Atlantic
Ocean, and the precipitation in this basin represents the highest values in the country. The
mean precipitation in much of the basin is around 500 to 3000 mm/year and the region with
the highest precipitation has around 3000 to 4700 mm/year (Figure 2a) with an average
runoff of 65% [22]. In this study, 179 nine rain gauges were used in this area (Figure 2b).

The La Plata basin covers 225,492 km2. Like the Amazon basin, the La Plata basin
discharges into the Atlantic Ocean and has three ecological regions: highlands in the west
zone, valleys in the middle of the Chuquisaca and Tarija departments, and lowlands in the
east zone of the basin. The mean precipitation is around 400 to 2500 mm/year (Figure 2a)
with an average runoff around 73% to 78% [22]. In this study, 112 rain gauges were used
from the La Plata Basin (Figure 2b).
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Figure 2. (a) Mean multi-year precipitation map of Bolivia for 2001–2015 interpolation; (b) available rain gauges’ location in
Bolivia during 1980–2016.

2.2. Data Set

CHIRPS is an SBP product that was developed at the Climate Hazards Center at
the University of California, Santa Barbara, to support a global early warning system for
drought [14]. This product has a spatial resolution of 0.05◦ (approximately 5 km) and
three different temporal resolutions (daily, fortnightly, and monthly). CHIRPS implements
three phases to generate the dataset: namely the Climate Hazards Group Precipitation
Climatology (CHPclim), CHIRP and CHIRPS. In the case of the first, an algorithm uses
the satellite means, normal stations, and geographic conditions (i.e., elevation, latitude,
and longitude) to generate CHPclim. This data is a necessary aspect for calculating the
precipitation percentage; this percentage is obtained by dividing the cold cloud duration
(CCD) precipitation estimates and the mean CCD precipitation estimates (the CCD employs
an infrared sensor). By combining the CHPclim and precipitation percentage data, the
CHIRP dataset is obtained. To integrate data from the gauge stations to generate CHIRPS,
data from many public and private institutions are used. With this information, the Climate
Hazards Group generates an IDW interpolation map and calculates the percentage bias
compared to CHIRP. Subsequently, using another algorithm, the generation of CHIRPS
is complete [13]. CHIRPS employs around 40 rain gauges in Bolivia to perform ground
validation.

The Global Satellite Mapping of Precipitation (GSMaP) is an SBP product that was
developed by the Japan Aerospace Exploration Agency (JAXA). The current version of this
precipitation product has a spatial resolution of 0.1◦ (approximately 10 km) and a temporal
resolution of an hour. The calculation method of this product includes precipitation
data from the TRMM Microwave Imager, data from the Advanced Microwave Scanning
Radiometer for the Earth Observation System (AMSR-E) of NASA, data from the AMSR
of JAXA, and information from three special sensor microwave/imagers (SSM/I) [10,11].
By integrating constraints from moving vector by Kalman-filter (MVK) data, GSMaP map
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products were generated with the aforementioned spatial and temporal resolutions [12]
and distributed as GSMaP_MVK version 6.

On evaluation, GSMaP MVK presented difficulties in measuring the level of real
precipitation that arrived on the surface. For this reason, adjustments to this product
were needed to include more surface information and gauge stations. With an adjustment
method using the NOAA Climate Prediction Center (CPC) global rain gauge data set [23],
the GSMaP_Gauge version 6 has been available since 2014. This version of GSMAP uses
about 32 rain gauges in Bolivia to perform ground validation.

The rain gauge-adjustment algorithm of the GSMaP_Gauge product was modified
in 2019, and after this modification, the alternative GSMaP_GREV precipitation product
became available. Both the GSMaP_Gauge and the GSMaP_GREV datasets are available
with three days of data latency [11].

2.3. Development Method

The method of generation is based on the approach that was previously used in the
Katari, Pilcomayo, and Rio Grande basins [24]. It was therefore necessary to pre-process
the rain gauge precipitation data and SBP products to be able to combine the data sets.

In the case of the rain gauges, it was necessary to use ordinary kriging interpolation to
produce gridded data. Using the rain gauges employed in the “Balance Hídrico Superficial
de Bolivia” (BHSB) [22], the precipitation maps for Bolivia were generated.

The SBP products require that the spatial and temporal resolution values should be
the same between different datasets. The SBP products used in this study had a maximum
spatial resolution of 0.05◦; some datasets had coarser resolution. For this study, a resolution
of 0.05◦ was selected for the data processing. In terms of temporal resolution, the generation
approach requires this to be monthly.

This method performs iteration at a sub-basin scale. For this reason, the official
subdivision of basins in Bolivia was used, which is based on the Pfafstetter coding system,
as shown in Figure 3. In this study, we use the third level of this classification scheme.

Figure 3. Sub-basins using Pfafstetter coding system (level 3): (a) Altiplano, (b) Amazon and (c) La Plata basins.

After preparation of the rain gauge and SBP datasets at monthly temporal resolution,
the relative error was calculated, and the mean relative error was obtained for the sub-
basins of the three main study basins. With this, the adjustment factor was calculated using
the following equation:

FA = 1 − R.E.
100%

(1)



Remote Sens. 2021, 13, 2931 6 of 19

where FA is the adjustment factor and R.E. is the relative error.
With the adjustment factor calculated per sub-basin and the pre-processed SBP data,

the combined products were generated. The combined products then needed to be vali-
dated with a new average relative error per sub-basin. For this study, a relative error of
±5% was considered acceptable in all sub-basins. Where this condition was not met, the
process continued with further iteration steps. In the case of the three basins in this study,
the final combined product was the fifth iteration.

Figure 4 shows a flow chart with a resume of this process.

Figure 4. Flow chart process to obtain the combined product using satellite-based precipitation (SBP) and the rain gauge
network. Source: Adapted from Ureña and Saavedra [2].

2.4. Validation Approach

This method combines satellite-based precipitation products with the national rain
gauge network through a series of iterations. To analyze the generation method,
10 scenarios were randomly selected that use 90% of the rain gauges in the country. With
these 10 new rain gauge data sets, 10 new kriging precipitation maps were generated. In
total, 20 combined products were generated: 10 products combined 90% of rain gauges and
CHIRPS products, and 10 products combined 90% of rain gauges with GSMaP products.

Afterward, these 20 new combined products were analyzed. Figure 5 shows a selection
of rain gauges used to generate the kriging precipitation map.
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In this study, the sub-basins were considered to be the units of analysis; these were
chosen because the priority was to generate a product that could be employed in hydro-
logical models. The statistical indicators selected for data evaluation purposes were the
determination coefficient (R2), the correlation coefficient (R), the average ratio (%), the
average bias (mm), the mean absolute error (MAE), the root mean square error (RMSE),
and the Nash and Sutcliffe efficiency (NSE). These indicators were selected because this
proves the validity of the approach; moreover, they have been previously calculated in
other studies of sub-basins in Bolivia [25].

2.5. Applicability of Combined Products in Distributed Hydrological Modeling

Combined precipitation products can be used for different types of application. For
example, the combined precipitation dataset can be useful for calculating water budgets
using hydrological models based on sub-basin or hydrological units’ analysis.

In this study, an exercise was carried out to show the usage of combined precipitation
products. Initially, it is possible to estimate the river discharge flow (Q) for each sub-basin
using the reported runoff coefficients (c), the extent of precipitation (P), and the basin
surface area (A). In this case, the selected equation was:

Q = c × P × A (2)

As a result, the generated discharge flow for the three study basins was obtained
and compared with values from the BHSB datasets of 2012 [26] and 2018 [22]. The BHSB
monthly mean precipitation was used for comparison with the SBP products and the
combined products.

Equation (2) is a simple way to obtain river discharge. In the case of the BHSB datasets,
the Temez model was used for calculation of the 2012 version [26] and the WEAP model
for the 2018 version [22]. The objective of the comparison between datasets is to show the
potential of the combined products generated in this study.

3. Results
3.1. Global Satellite Mapping of Precipitation (GSMaP) Product Analysis

For this study, JAXA provided access to their database of precipitation products. The
version with the most precipitation information (i.e., 6th version) was selected; this version
of GSMaP presents three products with different characteristics for the period 2000–2016.

GSMaP_MVK (Figure 6a) shows significant value overestimates in the southern part of
the Amazon basin and the northeastern part of La Plata Basin. With precipitation in excess
of 3500 mm/year, this product presents more zones with high precipitation. GSMaP_Gauge
(Figure 6b) also shows an overestimate in the northern part of the Amazon Basin; another
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characteristic of this product is a regular distribution of precipitation in the study basins.
By contrast, GSMaP_GREV (Figure 6c) shows only a small area with high precipitation
values in the eastern part of the Amazon basin. This product does not present the high
precipitation values seen in areas of the other GSMaP products.

Figure 6. Average annual precipitation maps for the period 2001–2015 of: (a) Global Satellite Mapping of Precipitation
(GSMaP) moving vector by Kalman-filter (MVK), (b)GSMaP Gauge and (c) GSMaP GREV.

To understand the differences between the GSMaP products, we used statistical
indicators in combination with scatter plots in relation to rain gauge data.

In Figure 7, GSMaP_MVK presents the poorest results in the study basins. This
product shows a slight overestimation of values less than 40 mm/month. Furthermore, this
product presents an underestimation of values higher than 41 mm/month in the Altiplano
basin. In the Amazon and La Plata basins, GSMaP_MVK shows overestimates with varying
intensities. In Figure 7b, the product presents a slight overestimation in comparison to
rain gauges; however, in Figure 7c, the overestimation is much higher. These results may
be explained by the presence of rain gauges as the Amazon basin has a lower rain gauge
density than the La Plata basin.

In the case of GSMaP_Gauge, the product shows better results in two of the three
basins: Altiplano (Figure 7a) and La Plata (Figure 7c). In the Altiplano basin, the product
exhibits deviations in values less than 40 mm/month and tends to underestimate higher
values, similar to GSMaP_MVK. In the Amazon and La Plata basins, the variations show
similar characteristics to those of GSMaP_MVK; these variations are higher in the La Plata
basin than in the Amazon basin.

By comparison, the GSMaP_GREV product shows varied accuracy. In terms of its low
values, the product presents slight variability in the three basins. Precipitation estimates
for the Altiplano basin (Figure 7a) show a greater underestimation compared to the value
of the rain gauges, a characteristic similar to the other products. In the case of the Amazon
basin (Figure 7b), the variation of this product is similar to GSMaP_Gauge, however, the
underestimation values of GSMaP_MVK are slightly less than the previous product. The
Amazon basin is the only one in which this product shows better results. In the La Plata
basin (Figure 7c), the GSMaP_GREV represents a greater underestimation than the other
products.
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Figure 7. Monthly scatter plots data for the period 2000–2015 for: (a) Altiplano basin, (b) Amazon basin and (c) La Plata
basin.

To choose the best GSMaP product group, monthly statistical indicators were selected,
as shown in Table 1. The R2 and R values of the Altiplano and La Plata basins show better
results with the GSMaP_Gauge, however, in the case of the Amazon basin the superior
product is GSMaP_GREV. In terms of average ratios and accumulated bias, the Altiplano
and Amazon basins favor the same GSMaP products as the previous metrics. In the La
Plata basin, however, the GSMaP products show different values of ratio and bias. In
the case of ratio values, the GSMaP_Gauge has an average underestimation of 16.8%,
but GSMaP_GREV has the lowest accumulated bias of 137.3 mm. Finally, the indicators
relating to data variations show the same superior products in the case of the Altiplano
and Amazon basins (GSMaP_Gauge and GSMaP_GREV respectively).

Overall, the GSMaP_Gauge product shows better results in 11 out of 21 indicators,
compared to GSMaP_GREV with 10 out of 21.

With the above analysis, we proceeded to analyze methods of generation in the
GSMaP_Gauge and CHIRPS products. These products include some kind of rain-gauge
adjustment.
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Table 1. Statistics indicators for GSMaP product in the study basins.

Altiplano Basin Amazon Basin La Plata Basin

Statistics
Indicators MVK Gauge GREV MVK Gauge GREV MVK Gauge GREV

Determination Coefficient (R2) 0.533 0.888 0.879 0.906 0.932 0.959 0.657 0.927 0.895

Correlation
Coefficient (R) 0.730 0.943 0.938 0.952 0.966 0.979 0.811 0.963 0.946

Average Ratio (%) 166.8 130.3 137.7 112.6 94.0 95.4 253.9 83.2 119.7

Accumulate Bias (mm) 157.8 97.2 191.7 185.8 229.0 183.2 461.7 177.4 137.3

Mean Absolute Error (MAE) 15.7 9.5 10.1 20.6 21.6 18.5 44.0 15.6 16.0

Root Mean Square Error (RMSE) 26.6 16.1 16.8 27.3 30.2 24.0 50.2 23.7 19.9

Nash and Sutcliffe Efficiency (NSE) 0.45 0.80 0.78 0.88 0.85 0.91 0.17 0.81 0.87

3.2. Results of the Validation of Combination Methodology

An analysis of the combined methodology was carried out to determine the possibility
of generating products with the fewest rain gauges. This study attempted to generate
new precipitation products with 90% of rain gauges. The remaining 10% were selected
randomly and removed; ten cases were generated with this characteristic using sub-basins
as a unit of analysis.

Figures 8 and 9 introduce three examples of GS and CH bias maps using 90% of rain
gauges in relation to a rainfall map. In Figures 8a and 9a, the basins show an overestimation
of up to 30 mm/year, in particular in the east of the Amazon basin and the south of La
Plata basin. The western area of the Amazon basin exhibits a slight underestimation of
15 mm/year. Figures 8b and 9b show an overestimation in the central region of the Amazon
basin, with values around 30 to 45 mm/year, and underestimation values in the western
region of the Amazon basin increased. Figures 8c and 9c display a large underestimation in
the western zone of the Amazon basin, with values of around 60 mm/year, with an overall
underestimation trend across the Amazon basin. The difference between the GS and CH
products is mainly in terms of precipitation patterns.

Figure 8. Average annual bias maps of combined products employed 90% for three cases in the period 2001–2015 of GS
products: (a) Case1, (b) Case 2 and (c) Case 3.
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Figure 9. Average annual bias maps of combined products employed 90% for three cases in the period 2001–2015 of CH
products: (a) Case1, (b) Case 2 and (c) Case 3.

Table 2 shows a summary of the statistical indicators for the GS product and an
average of the generated products using 90% of the rain gauges. In this example, the GS
products present better results compared to the average products. The determination and
correlation coefficients are similar in the Altiplano and Amazon basins. The accumulated
bias, MAE, and RMSE in Amazon basin show the highest values compared to the other
basins. However, the NSE value in Amazon basin presents the lowest value for this group.

Table 2. Statistics Indicators for products based in GSMaP_Gauge in the study.

Altiplano Basin Amazon Basin La Plata Basin

Statistics
Indicators GS Average 90% GS Average 90% GS Average 90%

Determination Coefficient (R2) 0.9979 0.9958 0.9805 0.9802 0.9903 0.9862

Correlation
Coefficient (R) 0.9990 0.9979 0.9902 0.9901 0.9951 0.9931

Average Ratio (%) 88.2 88.0 86.6 85.8 95.5 95.3

Accumulate Bias (mm) 12.4 11.9 77.4 90.7 21.3 24.2

Mean Absolute Error (MAE) 1.2 1.6 7.5 8.7 1.8 2.9

Root Mean Square Error (RMSE) 2.0 2.6 13.3 13.8 5.7 6.7

Nash and Sutcliffe Efficiency (NSE) 0.9970 0.9950 0.9709 0.9687 0.9892 0.9848

Table 3 shows similar values compared to the previous table. The differences between
the values of these products are slight; the three basins present similar determination
and correlation coefficients between GS and the average products. The average products’
accumulated bias, MAE, RMSE, and NSE also have similar values to the GS statistical
indicators.

Our results validate that the generation methodology can be successfully used with
90% of the rain gauges in the country. Furthermore, these results suggest that the Amazon
basin shows some peculiarities concerning precipitation data.
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Table 3. Statistics indicators for products based on Climate Hazards Group Infrared Precipitations with Stations (CHIRPS)
in the study.

Altiplano Basin Amazon Basin La Plata Basin

Statistics
Indicators CH Average 90% CH Average 90% CH Average 90%

Determination Coefficient (R2) 0.9989 0.9962 0.9821 0.9812 0.9994 0.9926

Correlation
Coefficient (R) 0.9994 0.9981 0.9910 0.9905 0.9997 0.9963

Average Ratio (%) 85.8 86.4 84.2 84.1 95.5 95.4

Accumulate Bias (mm) 13.4 12.2 98.4 106.6 15.8 20.1

Mean Absolute Error (MAE) 1.2 1.6 8.6 9.6 1.4 2.6

Root Mean Square Error (RMSE) 1.6 2.5 13.9 14.4 1.9 4.6

Nash and Sutcliffe Efficiency (NSE) 0.9979 0.9952 0.9680 0.9671 0.9988 0.9915

3.3. Generated Products

Following a comparison of the GSMaP data and combination method, we then consid-
ered the analysis of SBP products and combined products. Figure 10 shows the precipitation
map of initial precipitation products and the combined products in Bolivia. The GSMaP
product (Figure 10b) shows an overestimation in the northern zone of the Amazon basin
in relation to the rain gauges and CHIRPS precipitation maps, with an overestimated
precipitation value of around 3500 to 4000 mm/year. CHIRPS also presents a slight over-
estimation in the central part of the same basin (Figure 10c), with a value of around
2800 to 3025 mm/year. GS and CH were the products generated in this study, based on
GSMaP_Gauge and CHIRPS respectively. The GS and the CH products (Figure 10d,e) show
a similar spatial distribution to the map of rain gauges (Figure 10a), but these products
retain the characteristics of the initial SBPs.

The combined products appear to show a similar spatial resolution compared to
the rain gauges’ map; however, this aspect of the data needs to be analyzed statistically.
The scatter plots in Figure 11 show an improvement in the SBP data after combining the
products. In all cases, the satellite products present variations; however, the combined
products present a closer approximation to the rain gauge data. The values of the combined
products are higher, at 0.99, with a slight difference between GS and CH. However, the
Amazon basin shows varied value underestimates in the case of the combined products. In
the three study basins, CHIRPS presents better results than GSMaP, which may account for
the slight difference between the GS and CH products.
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Figure 10. Average annual precipitation maps for the period 2001–2015 of: (a) rain gauges, (b) GSMaP_Gauge, (c) CHIRPS,
(d) GS and (e) CH.

In the case of the Altiplano basin, the CH product shows coefficient values closer to
1, meaning that the precipitation data of this product is closest to the values of the rain
gauges (see Table 4 below). However, the average ratio shows CH as an underestimating
product with a value of 14.2%. For this indicator, CHIRPS presents a better result with a
0.6% underestimation value. In terms of their accumulated bias, GS and CH both present
similar values. Based on the variation indicators (MAE, RMSE, and NSE), the generated
products from this study show better results than the original SBPs.
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Figure 11. Monthly scatter plots of the SBP products (left) and combined products (right) for: (a) Altiplano, (b) Amazon
and (c) La Plata basins.
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Table 4. Statistics Indicators for SBP products and combined products.

Altiplano Basin Amazon Basin La Plata Basin

Statistics
Indicators GSMaP GS CHIRPS CH GSMaP GS CHIRPS CH GSMaP GS CHIRPS CH

Determination
Coefficient (R2) 0.8885 0.9979 0.9652 0.9989 0.9324 0.9805 0.9770 0.9821 0.9273 0.9903 0.9414 0.9994

Correlation
Coefficient (R) 0.9426 0.9990 0.9824 0.9994 0.9656 0.9902 0.9884 0.9910 0.9629 0.9951 0.9703 0.9997

Average Ratio (%) 130.3 88.2 99.4 85.8 94.0 86.6 101.1 84.2 83.2 95.5 103.2 95.5

Accumulated Bias (mm) 97.2 12.4 36.9 13.4 229.0 77.4 43.5 98.4 177.4 21.3 56.6 15.8

Mean Absolute Error (MAE) 9.5 1.2 5.1 1.2 21.6 7.5 9.3 8.6 15.6 1.8 8.9 1.4

Root Mean Square Error
(RMSE) 16.1 2.0 7.3 1.6 30.2 13.3 12.2 13.9 23.7 5.7 13.7 1.9

Nash and Sutcliffe Efficiency
(NSE) 0.8002 0.9970 0.9589 0.9979 0.8503 0.9709 0.9755 0.9680 0.8148 0.9892 0.9377 0.9988

The Amazon basin coefficients show similar characteristics to the Altiplano basin. In
the examples of ratio and bias, CHIRPS is shown as the better product with an overesti-
mation of 1.1% of average ratio and a difference of 43.5 mm accumulated bias over the
selected period, and it can be seen in Table 4. GS presents an accumulated bias of 77.4 mm
while CH presents an accumulated bias of 98.4 mm. In the case of NSE, the CHIRPS dataset
presents a better result.

In the La Plata basin, the determination and correlation coefficients show better results
in the CH product. The bias of CH is the least in this basin with a 15.8 mm accumulation
value, whereas CHIRPS has a better ratio with a 3.2% overestimation value. In terms of the
variation indicators, CH is the better product.

In general, it can be seen that the generated products show better results than the
SBPs used in their generation. Table 5 shows the percentage of these improvements; the
generated product based on GSMaP presents better results overall.

Table 5. Improvement percentage of precipitation products.

Relation Altiplano Basin Amazon Basin La Plata Basin Average

GSMaP to GS 10.96 4.91 6.36 7.41

CHIRPS to CH 3.37 0.52 5.80 3.23

SBP to Combined 7.17 2.72 6.08 5.32

The basin with the highest improvement percentage is Altiplano with a 7.17% average.
The basin with the smallest improvement percentage is the Amazon with 2.72%; however,
this result may be affected by the rain gauge density in this basin.

3.4. Applicability of Combined Products in Distributed Hydrological Modeling

Based on the above metrics, the combined products (GS and CH) show a close similar-
ity to the rain gauges’ data. However, to further validate these outputs, it is necessary to
check integration with hydrological models. In this study, we used a simple equation to
define the hydrological flow, see Equation 2 from the methodology section.

For comparison, we used BHSB data from 2012 and 2018. Both BHSB datasets are
based on different precipitation data; in the case of the 2012 version, the study employed
rain gauges and TRMM precipitation data [26], whereas, in the 2018 version, Gridded
Meteorological Ensemble Tool data were used [22].

Figure 12 shows the calculated precipitation flow in the Altiplano basin for rain
gauges, satellite-based products, and combined products. For SBPs (Figure 12b), the
precipitation and the flow values are underestimates compared to rain gauges. In contrast,
the combined products (Figure 12c) show similar precipitation and flow values in general.
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The precipitation data from the combined products show an underestimation during the
months of June to October.

Figure 12. Precipitation time series and river discharge of Altiplano basin for: (a) rain gauge, (b) average satellite-based
product and (c) average combined product.

Table 6 shows some hydrological constants relating to precipitation and flow. The
precipitation products under analysis use data from different time periods; BHSB 2012
has 32 years of data, BHSB 2018 has 36 years, whereas the tools used in this study cover a
period of 16 years.

Table 6. Annual hydrological constant for precipitation products.

Altiplano Basin Amazon Basin La Plata Basin

Pr
(mm)

Q
(m3/s)

QSp

(L/s-km2)
Volume
(hm3)

Pr
(mm)

Q
(m3/s)

QSp

(L/s-km2)
Volume
(hm3)

Pr
(mm)

Q
(m3/s)

QSp

(L/s-km2)
Volume
(hm3)

BHSB 2012 351.9 345.6 2.3 10,899.1 1351.1 13813.3 19.4 435,615.3 696.2 1079.8 4.8 34,053.8
BHSB 2018 496.5 370.3 2.4 11,677.9 1629.0 15367.8 21.3 484,646.1 713.8 1546.3 6.9 48,761.4

Rain Gauges 343.9 256.5 1.7 8089.4 1368.5 12910.3 17.9 407,137.6 810.9 1756.6 7.8 55,395.5
GSMaP 293.0 218.5 1.4 6891.4 1172.7 11063.1 15.3 348,892.4 634.2 1373.8 6.1 43,325.3
CHIRPS 322.3 240.4 1.6 7581.3 1399.3 13200.9 18.3 416,292.3 794.0 1720.0 7.6 54,245.0

GS 331.5 247.3 1.6 7796.3 1291.1 12180.1 16.9 384,119.3 789.6 1710.5 7.6 53,942.6
CH 330.5 246.5 1.6 7773.4 1270.2 11983.0 16.6 377,892.4 795.1 1722.4 7.6 54,319.4

For the generation of constants, the runoff data from BHSB 2018 were used. The basins
in this study show annual runoff coefficient values of 0.16 (Altiplano basin), 0.41 (Amazon
basin), and 0.30 (La Plata basin). For BHBS 2012 and 2018, the hydrological constant was
obtained directly based on the value listed in their documentation.

In the case of the Altiplano basin, BHSB 2012 and 2018 show relatively similar hydro-
logical constant values, however, the selected precipitation products in this study present
lower values. The value for the Amazon basin is somewhat different compared to the
Altiplano basin, which may result from differences in precipitation, runoff, and surface
area. For the La Plata basin, the hydrological constants of the products in this study yield
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an overestimate compared to BHSB 2018 data. This result occurred because the approach
used in terms of implementation and generation of rain gauge maps was different from
that of BHSB; another potential factor was the hydrological model used.

4. Discussion

Bolivia has three major basins: Altiplano (151,722 km2), Amazon (720,792 km2), and
La Plata (225,492 km2). These basins show elevation values between 200 and 5000 m.a.s.l.
In these basins, three main ecological systems are present: highlands, valleys, and low-
lands. For the study, three goals were set: evaluation of GSMaP products, analysis of the
combination approach, and evaluation of generated products using this method.

The GSMaP products selected for analysis were: GSMaP_MVK (the first version of
the product), GSMaP_Gauge (standard version), and GSMaP_GREV (a revised version of
the previous product). GSMaP_MVK gave significant precipitation overestimates in the
southern part of the Amazon basin and the northeastern part of La Plata basin compared
to GSMaP_Gauge and GSMaP_GREV. In general, the GSMaP products show consistently
close correlation coefficient values between 0.907 and 0.979. The GSMaP products have
an RMSE value of around 15.9 to 35.1. GSMaP_Gauge performed best in the Altiplano
basin, whereas GSMaP_GREV was best in the Amazon Basin. In the La Plata basin, the
GSMaP_Gauge was best in terms of R2, R, and the average ratio, whereas the GSMaP_GREV
performed best for the accumulated bias and RMSE values. As a result, the GSMaP_Gauge
and CHIRPS data were selected subsequently to generate the combined products.

For the scheme proposed here, it was necessary to employ both rain gauge data and
SBP data. Consequently, the analysis considered two aspects: the generation of GSMaP and
CHIRPS’ combined products, and the importance of rain gauge locations. To test the latter
of these metrics, the combined products were tested with 90% of the available rain gauges.
The unused 10% of rain gauges were randomly selected, and this operation was carried
out 10 times. The results of these analyses showed a consistent spatial distribution, with
only slight differences between them. In terms of analyzing their statistical indicators, the
correlation coefficient values were highly consistent, with values between 0.9883 to 0.9990
for GSMaP products and 0.9893 to 0.9994 for CHIRPS products. The combined products,
therefore, showed similar results despite the different locations of rain gauges.

The combined approach used in this study yielded acceptable results, however, the
Amazon basin showed the poorest results of the three basins. This is possibly due to
the density of rain gauges; in the La Plata and Altiplano Basins, the density is around
1806 to 2013 km2 per station, whereas the Amazon basin has a much sparser density of
4027 km2 per station. The presence of rain gauges used in the combination method can
be a factor in obtaining better results. Using 90% of the rain gauges, it was possible to
generate acceptable results with the combined precipitation products. Having validated
the approach in this way, it would be possible in future to continue removing rain gauges
to test the limit at which this methodology can no longer generate acceptable combined
products.

The combined products also show improvements over the SBP. In terms of their
spatial resolution, the combined products of GSMaP (GS) and CHIRPS (CH) show similar
values compared to the rain gauge map. However, these combined products retain some
characteristics of the SBP product used in their generation. In the scatter plots and time
series, the Amazon basin presents the worst results in relation to the other study basins;
in this area, the correlation coefficient is around 0.9902 to 0.9910, compared to 0.9951
to 0.9997 in the other basins. Although the combined products in the Amazon basin
exhibit a considerable underestimate of precipitation, the improvement percentage values
nonetheless indicate that the combined products perform better than the original SBP
products. GS shows better improvement percentages, with values of 10.96%, 4.91%, and
6.36% for Altiplano, Amazon, and La Plata basins respectively. However, CH yields values
of 3.37%, 0.52%, and 5.80% in the same basins. Therefore, it can be concluded that although
the combination methodology presents an acceptable improvement for both datasets, using
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the GSMaP_Gauge product generates a better overall result. Our study also indicates that
the generated products can be employed in semi-distributed hydrological models.

The results of this study present an alternative method for generating distributed
precipitation products in situations where SBP products do not show acceptable values
in comparison with rain gauges. Compared to the initial SBPs employed in this study,
the combined products showed similar precipitation and flow values in comparison to
rain gauge data. In comparison to BHSB, the hydrological constants of the study products
show considerable variations. This can be accounted for by differences in the generation of
precipitation maps, the hydrological model employed, and the period of data used.

5. Conclusions

Among the GSMaP products studied, GSMaP_Gauge showed better results in com-
parison to other versions. This product and CHIRPS were the SBPs selected to generate a
combined product with the rain gauge data of a local network. The methodology employed
was based on a series of iterations.

The combined products GS (based on GSMaP) and CH (based on CHIRPS) demon-
strate better results than the original SBPs, with an average improvement of around 5%.

The proposed validation method showed that the greater the number of local rain
gauges, the better the performance of the combined method. Ten percent of the available
rain gauges in the country were randomly removed and high-quality results were still
obtained.

A water budget exercise demonstrated that hydrographs can be readily obtained, as
well as estimates of water availability in the country. Using the GS product from this study,
the yearly water availability for Bolivia reached 445,858 hm3.

In conclusion, the database generated in this study can be used by the scientific
community and the public for different hydrological applications such as precipitation
time-series analysis, distributed hydrological modeling, and water assessment at a sub-
basin scale within Bolivia.

Finally, the proposed methodology here can be applied in other countries to enhance
spatial and temporal resolution of precipitation datasets.
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