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Abstract: Fusarium head blight (FHB) is a major winter wheat disease in China. The accurate and
timely detection of wheat FHB is vital to scientific field management. By combining three types
of spectral features, namely, spectral bands (SBs), vegetation indices (VIs), and wavelet features
(WFs), in this study, we explore the potential of using hyperspectral imagery obtained from an
unmanned aerial vehicle (UAV), to detect wheat FHB. First, during the wheat filling period, two
UAV-based hyperspectral images were acquired. SBs, VIs, and WFs that were sensitive to wheat
FHB were extracted and optimized from the two images. Subsequently, a field-scale wheat FHB
detection model was formulated, based on the optimal spectral feature combination of SBs, VIs, and
WFs (SBs + VIs + WFs), using a support vector machine. Two commonly used data normalization
algorithms were utilized before the construction of the model. The single WFs, and the spectral
feature combination of optimal SBs and VIs (SBs + VIs), were respectively used to formulate models
for comparison and testing. The results showed that the detection model based on the normalized
SBs + VIs + WFs, using min–max normalization algorithm, achieved the highest R2 of 0.88 and the
lowest RMSE of 2.68% among the three models. Our results suggest that UAV-based hyperspectral
imaging technology is promising for the field-scale detection of wheat FHB. Combining traditional
SBs and VIs with WFs can improve the detection accuracy of wheat FHB effectively.

Keywords: crop disease; remote sensing detection; hyperspectral imaging; spectral feature combina-
tion; data normalization

1. Introduction

Fusarium head blight (FHB) is a devastating winter wheat disease, caused by the
fungal pathogen Fusarium graminearum [1], which results in severe food production loss
and food quality degradation [2]. Moreover, it also causes contamination of the grains
with mycotoxins that are produced by Fusarium graminearum, which results in a severe
threat to the health of humans and animals [3]. In recent years, affected by factors such as
climate change and changes in farming systems, the wheat FHB in China exhibits regional
expansion, and increased prevalence frequency and disease index. It has thus become
one of the most important crop diseases that limit the safety of wheat production and
wheat food quality in China [4]. On 15 September 2020, the Ministry of Agriculture and
Rural Affairs of the People’s Republic of China has listed wheat FHB as a “class-I crop
disease and pest” [5]. Therefore, the timely detection of wheat FHB is very important for
improving the management of diseased fields.

In recent years, remote sensing technology has been widely applied in the detection
and monitoring of crop diseases [6]. For remote monitoring of wheat FHB, most studies are
carried out at spikelet or ear scale, and there is a lack of disease monitoring solutions at field-
scale and higher [7–9]. Although these studies are of great significance for clarifying the
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disease spectral response mechanism and identifying remote monitoring mechanisms, they
do not meet the current development needs of smart agriculture and precision agriculture.
In addition, although some scholars have developed remote monitoring methods for field
wheat FHB by relying on specific large machines (such as tractors or tool carriers) [10,11], if
comprehensive and continuous field disease monitoring is required, these methods may be
complicated and destructive to crops. As a technology that can flexibly, non-destructively,
and efficiently obtain farmland environmental information and crop growth information,
the rapidly developing unmanned aerial vehicle (UAV) remote sensing solutions play
an important role in smart agriculture and precision agriculture [12]. Specifically, UAV
remote sensing technology has been widely used in soil salinity assessment [13], vegetation
classification [14], crop growth parameter estimation [15], yield prediction [16,17], crop
disease monitoring [18,19], and many other applications. In addition, some scholars have
tried to apply UAV-based hyperspectral imagery to monitor wheat FHB at field scale [20,21].
These results motivate us to continue to explore the detection methods of wheat FHB with
UAV-based hyperspectral imagery.

Different forms of spectral features have been proposed and adopted in order to
capture critical information on the crop disease, using hyperspectral remote sensing data,
of which the vegetation indices (VIs) are the most representative [6]. Alisaac et al. [22] found
that fifteen verified VIs related to physiological parameters were highly correlated with the
severity of wheat FHB. Huang et al. [23] successfully detected wheat FHB by integrating
VIs, first-order derivative features, and continuum-removed features. Using the spectral
differences in the wavelength ranges 665–675 nm and 550–560 nm, Bauriegel et al. [24]
proposed a head blight index that was suitable for the recognition of wheat FHB outdoors.
Apart from conventional VIs, continuous wavelet analysis (CWA) has been introduced into
crop pest and disease monitoring, as a new method that can capture some imperceptible
spectral shape changes. Using CWA, Cheng et al. [25] successfully detected attack damage
in pine forests, which was caused by mountain pine beetle infestations. Shi et al. [26]
proposed a novel wavelet-based rust spectral feature set for determining host–pathogen
interaction progression and tracking yellow rust development in wheat. Ma et al. [27]
investigated the spectroscopic detection of FHB in wheat ears by applying CWA, and their
results suggested that the wavelet features (WFs) derived using CWA show significant
potential as a method for detecting FHB. Zhang et al. [28] found that CWA-based WFs
outperformed conventional VIs when detecting wheat yellow rust. Furthermore, texture
features (TFs) that reflect crop spatial patterns have also been considered for crop disease
monitoring [20,21,29]. These studies indicate the effectiveness of VIs, WFs and TFs in crop
diseases detection and monitoring applications. In previous studies, the effectiveness of a
combination of VIs and TFs for crop disease monitoring has been confirmed. However, VIs
and WFs were used separately, and there was no investigation of the performance of VI
and WF combinations in disease monitoring.

In the present study, we focus on the performance evaluation of a combination of
spectral bands (SBs), VIs and WFs extracted from UAV hyperspectral imagery, for the
detection of wheat FHB at field scale. The aims are as follows: (1) determine the optimal
SB, VI, and WF combinations for wheat FHB detection from UAV-based hyperspectral
imagery; (2) evaluate and compare the performance of the optimal combination of SBs and
VIs, single WFs, and combination of optimal SBs, VIs, and WFs in wheat FHB detection;
and (3) map wheat FHB damage at the field scale using the optimal detection model.

2. Materials and Methods
2.1. Experimental Site and Data Collection

The UAV observation experiment of wheat FHB was carried out at the Anhui Agricul-
tural University Production Base (31◦29′N, 117◦13′E). The base is located in Lujiang county,
Hefei City, Anhui Province, China (Figure 1). In this area, the average annual temperature
is 16.2 ◦C, rainfall is 1262.9 mm, evaporation is 1648.9 mm, sunshine is 1794.3 h, and the
frost-free period is 301 days. Owing to the susceptible main wheat variety (Yangmai 25),
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the abundant fungus sources and favorable climatic conditions in the study area, FHB
occurred naturally in the experiment region.
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Figure 1. Experimental area location and field survey sampling positions.

The field survey experiment was conducted during the wheat filling stage on 3 and
8 May 2019. This is a stable stage of wheat growth and a rapid development stage for
wheat FHB. During the field survey, 46 quadrats (each of 1 m2 area) were selected, and
each was marked for subsequent investigation of FHB severity and accurate locating in
UAV-based hyperspectral imagery using red flags. In each quadrat, disease infestation in
50 randomly selected wheat plants was recorded. Then, according to the national rules
for monitoring and forecast of wheat head blight (GB/T 15796-2011), the diseased ear
ratio (DER) in each quadrat was calculated. The DER ranges from 0 to 100%, where 0%
corresponds to a healthy crop and 100% corresponds to full FHB infection.

Hyperspectral imaging was obtained on the two dates using a DJI S1000 UAV system
(SZ DJI Technology Co. Ltd., Guangdong, China). The UAV was equipped with a UHD
185 hyperspectral imaging system (Cubert GmbH, Ulm, Baden-Württemberg, Germany).
The hyperspectral sensor can collect reflected radiation in the spectral wavelength region
from 450 to 950 nm, with a spectral resolution of 4 nm across 125 bands. The flight was
conducted from 11:00 a.m. to 13:00 p.m. (local time), and during the period, the sky was
clear, cloudless and windless. The hyperspectral images were collected at a flight altitude
of 60 m, with a ground sample distance of about 4 cm. The mosaicked and orthorectified
hyperspectral imagery was then used for subsequent analyses.

2.2. Determination of Optimal Spectral Features for Wheat FHB Detection

In this study, our aim is to determine the optimal combination of SBs, VIs, and WFs
based on UAV-based hyperspectral imagery, to realize the detection of wheat FHB at
field scale. Figure 2 shows the main implementation steps. First, three types of spectral
features sensitive to wheat FHB were extracted and optimized. Then, the combination of
the optimal SBs, VIs, and WFs was used to construct a wheat FHB detection model through
the support vector machine (SVM) method. Meanwhile, for evaluation and comparison,
the combination of the optimal SBs and VIs, and the optimal WFs alone, were also used.
Finally, the FHB damage under different infection levels on the two dates was mapped
using the optimal detection model. Using this approach, the performance of a combination
of SBs, VIs, and WFs was evaluated, and the potential of UAV-based hyperspectral imagery
for detecting wheat FHB was explored.
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Figure 2. Methodological framework of wheat FHB detection model.

SBs and VIs can be used to evaluate host wheat growth status and physiological
changes, while WFs can capture some imperceptible spectral shape changes caused by
the infection’s progression. For the selection of optimal SBs, the DER sensitivities of all
125 bands were first determined through correlation analysis. The statistically significant
(p-value < 0.05) SBs among the top 10% bands (top thirteen bands included here) ranked in
descending order based on the coefficient of determination (R2) values were then selected as
candidate SBs. To select the optimal VIs, ten commonly used traditional vegetation indices
sensitive to crop growth and physiological conditions were first calculated to characterize
different aspects of the host wheat. Table 1 lists the definitions, equations, applications,
and references of these VIs. The indices that showed significant (p-value < 0.05) correlation
with DER were then selected as candidate VIs. For WFs, the raw reflectance spectrum
was first transformed into a wavelet function set at different scales using the continuous
wavelet transform (CWT) [30]. The Mexican hat wavelet was used as the mother wavelet
base of CWT due to its similar characteristics to vegetation absorption [25,31]. During
the CWT application, only the wavelet powers of the six most effective dyadic scales of
21, 22, . . . , 26 were retained to ensure accuracy and reduce complexity [25]. Then, the
wavelet regions with a significant (p-value < 0.001) correlation between WFs and DER were
considered as sensitive wavelet regions, and the WFs with the highest R2 of each sensitive
wavelet region were then selected as candidate WFs. To further reduce redundancy among
the three candidate feature types, namely, SBs, VIs, and WFs, a threshold segmentation
method based on correlation analysis was used. First, the R2 between each feature type
was calculated. Then, a threshold of R2 < 0.8 [32]was adopted to determine the optimal
SBs, VIs, and WFs for wheat FHB detection.



Remote Sens. 2021, 13, 3024 5 of 16

Table 1. VIs used for detecting wheat FHB in this study.

Definition Equation Application Reference

Anthocyanin reflectance index, ARI (R550)−1 − (R700)−1 Evaluate anthocyanin [33]
Modified chlorophyll absorption reflectance

index, MCAVI
((R701 − R671) − 0.2(R701 −

R549))/(R701/R671)
Sensitive to leaf area index and

chlorophyll [34]

Modified simple ratio index, MSR (R800/R670 −
1)/sqrt(R800/R670 + 1)

Sensitive to chlorophyll content
change and can avoid influence of

environmental factors such as
cloud and soil

[35]

Normalized difference vegetation index,
NDVI (R830 − R670)/(R830 + R670) Related to canopy greenness and

vegetation coverage [36]

Nitrogen reflectance index, NRI (R570 − R670)/(R570 + R670) Evaluate nitrogen status [37]

Photochemical reflectance index, PRI (R570 − R531)/(R570 + R531) Sensitive to photosynthetic
radiation [38]

Physiological reflectance index, PhRI (R550 − R531)/(R550 + R531) Sensitive to light use efficiency [38]
Plant senescence reflectance index, PSRI (R680 − R500)/R750 Sensitive to leaf senescence [39]
Red-edge vegetation stress index, RVSI ((R712 + R752)/2) − R732 Sensitive to vegetation stress [40]

Triangular vegetation index, TVI 0.5(120(R750 − R550) −
200(R670 − R550)) Related to plant status [41]

2.3. Wheat FHB Detection Model Using Support Vector Machine (SVM)

The classic SVM method was adopted to test the performance of UAV-based hy-
perspectral imaging in detecting wheat FHB. SVM is a machine learning algorithm that
maps the input variables to a high-dimensional feature space according to a pre-selected
nonlinear mapping relation, and then performs classification by establishing the optimal
hyperplane in feature space [42]. The method has been widely used for the classification
of crop diseases and pests using remote sensing [26,43–45]. The SVM method converts
the inner product operation in the high-dimensional feature space into a kernel function
operation in the raw space using a kernel function with special properties. Thus, it can
be used to solve difficult problems in high-dimensional space. In this study, the SVM
classification kernel used the radial basis function to map the sample data to a higher
dimensional space. This can be written as follows [46]:

k(x, y) = exp(
−‖x− y‖2

2σ2 ) (1)

where σ controls the decision boundary smoothness in the feature space. The grid search
method [47] was adopted for parameter optimization.

The success of machine learning algorithms depends on the data quality, but the initial
data usually have significant differences due to the unit, dimension, range, etc. Therefore,
it is vital to normalize and preprocess the data first to improve the quality of the data and
the performance of subsequent machine learning algorithms [48]. In this study, prior to
formulating the wheat FHB detection model, all three-type optimal spectral feature types
(SBs, VIs, and WFs) were normalized using two commonly used normalization algorithms
to accelerate the optimization and improve model accuracy. The two methods included the
following: min–max normalization (MMN), and z-score normalization (ZSN). The MMN
algorithm was performed via the following equation [49]:

F′i =
Fi − Fimin

Fimax − Fimin
(2)
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where F′i is the normalized feature, Fi is the initial feature, and Fimax and Fimin are the
maximum and minimum values of the feature, respectively. Then the ZSN algorithm was
performed via the following equation [48]:

F′i =
Fi − µ

σ
(3)

where µ is the mean value of the feature, σ is the standard deviation of the feature.
The SVM input variables were the initial SBs + VIs, WFs, and SBs + VIs + WFs,

the normalized SBs + VIs, WFs, and SBs + VIs + WFs using MMN algorithm, and the
normalized SBs + VIs, WFs, and SBs + VIs + WFs using ZSN algorithm, respectively. The
output variable was the DER of wheat FHB. Two parameters, the R2 and the root mean
square error (RMSE), were adopted to assess the effectiveness of the SVM models based on
different features. Then, k-fold cross validation was used for training and validation of the
models, in which k = 5.

3. Results and Discussion
3.1. Optimal Spectral Features for Wheat FHB

In order to formulate the detection model for wheat FHB, the three-type spectral
features (including SBs, VIs, and WFs) were initially filtered. Of the thirteen obtained SBs,
with the top 10% R2 values, four SBs were in the visible region, eight SBs in the red-edge
region, and one SB in the near-infrared region. A total of seven VIs reached the significance
level of 0.05, namely, ARI, MCARI, PRI, PhRI, PSRI, RVSI, and TVI. Figure 3 depicts the
correlation scalogram between the wheat spectral reflectance and DER, based on the CWT.
The sensitive wavelet regions were distributed in the visible region and near-infrared
region. After significance testing (p-value < 0.001), a total of 26 candidate WFs were
obtained. It is worth noting that the highest absolute value of R between the three-type
spectral features and DER reached only 0.507. Wheat FHB mainly damages wheat ears, and
its damage is distributed randomly. Conventional wheat FHB spectroscopy measurements
are collected from the side of the wheat ears [10]. Our UAV-based wheat canopy spectrum
is perpendicular to the wheat ears, that is, the collected spectral information was obtained
mainly from above the wheat ears. Therefore, there is relatively little effective disease
information contained in the UAV-based spectral features, which may be the reason for the
low correlation between the selected spectral features and DER.
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To further reduce the redundancy between the features, the pairwise correlation
between the features was calculated and used for threshold segmentation. Figure 4 shows
the correlation between the three-type candidate spectral features. Most of the candidate
SBs and WFs exhibited high redundancy. For the candidate VIs, only two pairs of indices
(ARI and MCARI, RVSI and TVI) had high redundancy. The three SBs, five VIs, and nine
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WFs were finally selected for wheat FHB detection, using a threshold of R2 < 0.8. The R
correlation values between each spectral feature and DER, and their significance levels, are
summarized in Table 2. The three optimal SBs, SB01 (478 nm), SB06 (702 nm), and SB13
(946 nm), were in the blue, red-edge, and near-infrared regions. The five optimal VIs were
related to chlorophyll (MCARI, RVSI), photosynthetic radiation (PRI), light use efficiency
(PhRI), and pigment senescence (PSRI). Of the nine optimal WFs, WF01 (450 nm, scale 23)
and WF06 (470 nm, scale 22) were in the blue region, WF07 (502 nm, scale 21) was in the
blue-edge region, WF10 (566 nm, scale 22) was in the yellow-edge region, WF12 (618 nm,
scale 22), WF13 (618 nm, scale 26) and WF16 (650 nm, scale 23) were in the red region, and
WF22 (806 nm, scale 22) was in the near-infrared region. The two SBs and eight WFs in
the visible region selected in this study are all in the wavelength ranges of 430–525 nm
and 560–710 nm, which is consistent with the findings of Alisaac et al., who found that the
spectral reflectance of the visible region at these ranges is highly correlated with FHB [22].
Typically, wheat that is infected with FHB exhibits a powdery discoloration, discoloration,
or death of infected spikelets, mostly accompanied by a temporary increase in transpiration
and tissue desiccation [50,51]. These phenomena are related to the changes in pigment
content (including carotenoid and chlorophyll), water content, and internal structure of the
infected wheat ears [24,52]. The above changes will affect the optical characteristics of the
wheat canopy, and change its spectral response characteristics. Specifically, in the visible
region, the spectral reflectance of wheat infected with FHB is higher than that of healthy
wheat [27]. Therefore, the selected SBs and WFs are suitable for detecting infection, and
the selected VIs are also effective indices.
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560–710 nm, which is consistent with the findings of Alisaac et al., who found that the 
spectral reflectance of the visible region at these ranges is highly correlated with FHB [22]. 
Typically, wheat that is infected with FHB exhibits a powdery discoloration, discoloration, 
or death of infected spikelets, mostly accompanied by a temporary increase in transpira-
tion and tissue desiccation [50,51]. These phenomena are related to the changes in pigment 
content (including carotenoid and chlorophyll), water content, and internal structure of 
the infected wheat ears [24,52]. The above changes will affect the optical characteristics of 
the wheat canopy, and change its spectral response characteristics. Specifically, in the vis-
ible region, the spectral reflectance of wheat infected with FHB is higher than that of 
healthy wheat [27]. Therefore, the selected SBs and WFs are suitable for detecting infec-
tion, and the selected VIs are also effective indices. 
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Table 2. Optimal spectral features for detecting wheat FHB.

Spectral Feature Type R p-Value

Spectral bands (SBs)
SB01: Band 8, 478 nm 0.484 ***

SB06: Band 64, 702 nm 0.488 ***
SB13: Band 125, 946 nm 0.479 ***

Vegetation indices (VIs)

MCARI 0.452 ***
PRI 0.313 ***

PhRI 0.257 **
PSRI 0.291 **
RVSI −0.403 ***
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Table 2. Cont.

Spectral Feature Type R p-Value

Wavelet features (WFs)

WF01: 23, 450 nm −0.411 ***
WF06: 22, 470 nm 0.430 ***
WF07: 21, 502 nm −0.412 ***
WF10: 22, 566 nm 0.412 ***
WF11: 23, 590 nm 0.475 ***
WF12: 22, 618 nm 0.423 ***
WF13: 26, 618 nm 0.507 ***
WF16: 23, 650 nm −0.419 ***
WF22: 22, 806 nm 0.361 ***

Note: ** and *** mean that the correlation significance reaches 0.01 and 0.001 significant levels, respectively.

3.2. Evaluation of Wheat FHB Detection Models

A detection model applying an SVM on the three-fold spectral feature combination
(SBs + VIs + WFs) was established, to assess the effectiveness of detecting wheat FHB. For
comparison and testing of the initial results, the combination of SBs and conventional VIs
(SBs + VIs), and single WFs, were also used as the inputs to the SVM to establish detection
models, respectively. In addition, in order to accelerate the optimization and improve the
model accuracy, the normalized SBs + VIs + WFs, SBs + VIs, and single WFs using MMN
and ZSN algorithms, were also utilized, respectively. Figure 5 shows the evaluation results
that were obtained using the five-fold cross-validation. No matter the initial or normalized
spectral features, the WFs outperformed the SBs + VIs in the detection of wheat FHB, with
the higher R2 values and higher slope values. This result is consistent with the results of
Zhang et al., Shi et al., and Zheng et al. in the detection of wheat yellow rust, and Huang
et al. in the discrimination of wheat disease and nitrogen–water stresses [26,28,32,53].
CWA can be used to identify signals in the time and frequency domains simultaneously,
and the low- and high-frequency signals obtained through the different transform scales
can capture the narrow absorption features of the original spectrum and the shape of the
continuum [25,54]. Therefore, compared to the selected SBs and VIs, the extracted WFs
have the best scales and wavelengths, and can capture spectral details that are sensitive
to wheat FHB. For the results of the SVM detection models based on spectral feature
combinations under the same data type (including initial, MMN normalized, and ZSN
normalized), the SBs + VIs + WFs illustrated excellent linearities and the highest correlations
with the measured DER, which had the highest R2 values and the lowest RMSE values
(Figure 5c,f,i). The fitted lines of the scatterplot based on SBs + VIs + WFs was also the
closest to the 1:1 line. The spectral feature combination of SBs, VIs, and WFs can leverage
complementary information, which not only reflects the host wheat growth status and
physiological changes caused by FHB infection, but also captures details of the disease.
Hence, when SBs + VIs + WFs are used as the input, the accuracy of the FHB detection
model is improved effectively.

Compared with the initial spectral feature combinations (including SBs + VIs + WFs,
SBs + VIs, and single WFs), the normalized spectral combinations using both MMN and
ZSN could improve the accuracy of the SVM detection models effectively. Since SVM
calculates data margins, which makes it is equivalent to a distance classifier. However,
the excessive distance caused by the differences in the spectral features will result in a
huge amount of matrix calculation, and also the need to consider the overflow problem
in computation. Therefore, through normalization algorithms, the data can be mapped to
a favorable plane, which is convenient for calculation [55]. Besides, the spectral feature
combinations that were normalized using the MMN algorithm outperformed the spectral
feature combinations that were normalized using the ZSN algorithm, which is consistent
with the result of Tang et al. in their research on data normalization for SVM training [56].
Among all nine SVM detection models, SBs + VIs + WFs that were normalized using the
MMN algorithm generated the optimal SVM detection model, with the highest R2 value
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of 0.88, the lowest RMSE value of 2.68, and the fitted line (with a slope of 0.729) closest to
the 1:1 line. However, our results were only based on two commonly used normalization
algorithms, and more data preprocessing algorithms need to be tested in the future.
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Furthermore, all nine SVM detection models tended to underestimate high DER
values. We believe that the spectral measurement method and sample distribution were the
cause of this phenomenon. On one hand, due to the UAV-based collection of hyperspectral
images that are perpendicular to the canopy, and FHB randomly infecting different parts
of the wheat ears, the loss of effective spectral disease information in quadrats with high
DER values may be higher than that in quadrats with a low DER value. On the other hand,
during our field investigation, despite the widespread occurrence of FHB in the field, the
overall DER in the survey quadrats was low, and only a few quadrats had high DER values.
That is, the obtained dataset is imbalanced for the formulation of the wheat FHB detection
models. However, when the dataset is imbalanced, traditional data mining algorithms are
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prone to overfitting [57]. In future, field disease data with a more uniform distribution of
DER values should be collected, to further improve the robustness of the detection model.

The optimal detection model, based on SBs + VIs + WFs that were normalized using
the MMN algorithm, was adopted for mapping wheat FHB damage on 3 May and 8 May
2019. According to GB/T 15796-2011, DER values are classified into the following five
ranges that reflect FHB harm degrees: mild (DER≤ 10), mild-to-moderate (10 < DER ≤ 20),
moderate (20 < DER≤ 30), moderate-to-severe (30 < DER≤ 40), severe (DER > 40). Figure 6
shows the spatial distribution of FHB-infected wheat on 3 May and 8 May 2019. It can
be observed that wheat FHB developed rapidly over a short period of time. In order to
quantify the spread, the area proportions corresponding to different FHB infection levels
was calculated for the two dates (Table 3). On 3 May, although the wheat FHB infection had
spread across the whole field, the overall disease level was moderate or lower. Specifically,
the mild-to-moderate infection areas covered the highest proportion (61.4%), followed by
mild infection areas (33.7%), and the remaining were mainly moderately infected (4.8%).
On 8 May, although the proportion of mild-to-moderate infected areas was still the highest
(47.7%), the proportion of moderately infected areas had increased rapidly, from 4.8% to
37.7%. Moderate-to-severe infected areas reached 8.1%, while mildly infected areas only
accounted for 6.7%. These results are consistent with the infection characteristics of wheat
FHB and our field survey.
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Table 3. Area proportions with different FHB infection levels on 3 May and 8 May 2019.

Date
Area Proportion under Different FHB Infection Levels/%

Mild Mild-to-
Moderate Moderate Moderate-

to-Severe Severe Sum

3 May 2019 33.7 61.4 4.8 0.1 0 100
8 May 2019 6.7 47.4 37.7 8.1 0.1 100

3.3. Study Limitations and Future Work

In this study, we propose a wheat FHB detection model using a spectral feature com-
bination of SBs, VIs and WFs extracted from UAV-based hyperspectral imagery, to estimate
wheat FHB DER quantitatively. The result is promising, with a significant improvement in
detecting wheat FHB DER compared with single WFs, and the combination of SBs and VIs.
Still, there are several issues to be considered in future applications. In addition to spectral
features, image texture, as a feature that can reflect the external changes of disease-infected
target objects, has been widely used in disease monitoring [58,59]. Hence, the effectiveness
of the texture features in wheat FHB detection should be investigated. Second, choosing the
optimal spectral resolution of UAV-based imagery is essential for the accurate monitoring of
diseases [19,29,60]. However, only two UAV images with a spatial resolution of 4 cm were
acquired for detecting wheat FHB in this study. We will acquire UAV images at different
spatial resolutions and at different flight altitudes, and study the optimal spatial resolution
for wheat FHB detection. Third, the UAV-based imagery was obtained by a conventional
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way, perpendicular to the crop canopy in this study. However, due to the characteristic
that FHB mainly infects wheat ears, the above-mentioned conventional method will lead
to the loss of effective information about the disease. Currently, UAV-based multi-angle
hyperspectral remote sensing imaging technology has been successfully applied to the
fine vegetation classification [61]. Therefore, an appropriate UAV-based image acquisition
angle can be tried to be determined to replace the conventional method, to capture more
infection information of the disease in the future. Finally, wheat varieties, meteorological
conditions, fertilization management, etc., affect the infection and development of wheat
FHB [62–64]. In our study, these factors did not vary significantly. Besides, owing to the
prevalence of FHB in our study field, no healthy wheat quadrats were registered. In the
future, we will try to increase the number and variety of fields observed, collect multi-year
sample data, which include healthy wheat, early diseased wheat, and wheat infected with
different severities, and fully consider the above factors, to further improve robustness and
extend our method to larger areas.

4. Conclusions

In this study, the quantitative detection of wheat FHB was achieved using a combi-
nation of SBs, VIs, and WFs extracted from UAV-based hyperspectral images. First, the
three types of spectral features were extracted and optimized from the acquired UAV-based
hyperspectral imagery on 3 May and 8 May 2019. A quantitative wheat FHB detection
model, based on the optimal combination of SBs, VIs, and WFs, was then formulated
using the SVM method. Two commonly used normalization algorithms (MMN and ZSN)
were used before the construction of the detection models. The accuracy of the proposed
wheat FHB detection model was tested using five-fold cross-validation based on field data,
by comparing it with single WFs, and a combination of SBs and VIs (SBs + VIs). Finally,
the wheat FHB damages of the field on 3 May and 8 May 2019 were mapped using the
proposed detection model. Several conclusions were obtained. The WFs-based wheat
FHB detection models outperformed the (SBs + VIs)-based models. No matter the initial
or normalized spectral features, the spectral feature combination of SBs, VIs, and WFs
can effectively improve the accuracy of the detection model. In all nine spectral feature
combinations, SBs + VIs + WFs that were normalized using the MMN algorithm performed
best in the detection of wheat FHB, with the highest R2 of 0.88 and the lowest RMSE of 2.68.
The disease damage mapping result illustrates that wheat FHB developed very rapidly
under suitable conditions. These results suggest that UAV-based hyperspectral imaging
technology is promising for the detection of wheat FHB at field scale.

In this study, we were more concerned about the characterization capacity of the
determined spectral features (including SBs, VIs, and WFs) for wheat FHB. For this, we
focused on the period of the high incidence of the disease, during which the disease was
obvious and could be detected. Meanwhile, the ground samples we collected for modeling
were pure disease samples with different DERs, which did not confuse other information.
Therefore, the spectral feature combination-based wheat FHB detection model that was
proposed in this study was relatively reliable. However, more information should be
considered in future studies. Apart from the crop growth and detailed disease information,
some image spatial information (such as texture features and spatial resolutions) is also im-
portant. The feasibility of UAV-based hyperspectral imagery in wheat FHB detection under
different acquisition angles should be tested. Meanwhile, wheat varieties, meteorological
conditions, fertilization management, etc., which affect the spread of wheat FHB, should
not be ignored. The number of infected fields and quadrats surveyed, the experimental
year, and the ground sample types, should also be increased.
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