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Moudrý, V. Use of TanDEM-X and

SRTM-C Data for Detection of

Deforestation Caused by Bark Beetle

in Central European Mountains.

Remote Sens. 2021, 13, 3042.

https://doi.org/10.3390/rs13153042

Academic Editors: Paola Rizzoli and

Armando Marino

Received: 18 June 2021

Accepted: 28 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague,
Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; gdulova@fzp.czu.cz (K.G.);
maresovajana@fzp.czu.cz (J.M.); bartakv@fzp.czu.cz (V.B.)

2 Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow,
Al. 29 Listopada 46, 31-425 Krakow, Poland; m.szostak@ur.krakow.pl

3 Department of Nature Protection, Šumava National Park administration, Sušická 339,
34192 Kašperské Hory, Czech Republic; jaroslav.cervenka@npsumava.cz

* Correspondence: moudry@fzp.czu.cz

Abstract: The availability of global digital elevation models (DEMs) from multiple time points allows
their combination for analysing vegetation changes. The combination of models (e.g., SRTM and
TanDEM-X) can contain errors, which can, due to their synergistic effects, yield incorrect results.
We used a high-resolution LiDAR-derived digital surface model (DSM) to evaluate the accuracy
of canopy height estimates of the aforementioned global DEMs. In addition, we subtracted SRTM
and TanDEM-X data at 90 and 30 m resolutions, respectively, to detect deforestation caused by bark
beetle disturbance and evaluated the associations of their difference with terrain characteristics. The
study areas covered three Central European mountain ranges and their surrounding areas: Bohemian
Forest, Erzgebirge, and Giant Mountains. We found that vertical bias of SRTM and TanDEM-X,
relative to the canopy height, is similar with negative values of up to −2.5 m and LE90s below
7.8 m in non-forest areas. In forests, the vertical bias of SRTM and TanDEM-X ranged from −0.5
to 4.1 m and LE90s from 7.2 to 11.0 m, respectively. The height differences between SRTM and
TanDEM-X show moderate dependence on the slope and its orientation. LE90s for TDX-SRTM
differences tended to be smaller for east-facing than for west-facing slopes, and varied, with aspect,
by up to 1.5 m in non-forest areas and 3 m in forests, respectively. Finally, subtracting SRTM and
NASA DEMs from TanDEM-X and Copernicus DEMs, respectively, successfully identified large
areas of deforestation caused by hurricane Kyril in 2007 and a subsequent bark beetle disturbance in
the Bohemian Forest. However, local errors in TanDEM-X, associated mainly with forest-covered
west-facing slopes, resulted in erroneous identification of deforestation. Therefore, caution is needed
when combining SRTM and TanDEM-X data in multitemporal studies in a mountain environment.
Still, we can conclude that SRTM and TanDEM-X data represent suitable near global sources for the
identification of deforestation in the period between the time points of their acquisition.

Keywords: bark beetle; Copernicus DEM; deforestation; DSM; forest change; NASA DEM

1. Introduction

In the last decades, computers and remote sensing drove innovations in Earth surface
observation. Data availability has been continuously growing, including surface observa-
tion data at a variety of scales [1]. Synthetic Aperture Radar (SAR) sensors are commonly
used for mapping Earth’s surface, particularly due to their capability of mapping large
areas within a short time and due to the fact that they are almost independent of weather
conditions (i.e., they penetrate clouds, smoke, fog, and rain). Several SAR satellite sys-
tems have been operating in the last two decades [2]. SAR sensors were, for example, on
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board the Space Shuttle Endeavour in 2000 (Shuttle Radar Topography Mission; [3]) as
well as on board the TerraSAR-X and TanDEM-X satellites, which were launched in 2007
and 2010, respectively (TanDEM-X mission; [4]). The main aim of those missions was to
create a global (or near-global in the case of SRTM) digital elevation model (DEM) of the
Earth’s surface. The resulting models (i.e., SRTM DEM, NASA DEM, TanDEM-X DEM
and Copernicus DEM) were made freely available and have become an essential source
of Earth’s surface information, widely used, among others, in forestry [5], ecology [6,7],
archaeology [8], and hydrology [9,10].

The radar signals with short wavelengths, such as the ones used for TanDEM-X and
SRTM measurements, are unable to reach the bare ground due to the presence of above-
ground objects (e.g., trees). In forested areas, therefore, the DEMs elevations derived from
X- or C-band interferometric SAR returns correspond to the height of vegetation, while
in the bare, vegetation-free landscape, they represent ground heights (but see [11] for
automated estimation of forest height and underlying topography using TanDEM-X data).
What can be considered unwanted bias in some applications (i.e., hydrological applications
requiring bare ground), can be viewed as an exploitable signal in others, such as acquisition
of forest canopy height [12–16].

Producing continuous maps of vegetation height, biomass, and detection of vegetation
changes (e.g., deforestation) is a long-standing goal of remote sensing [12,17]. Using 3D
data from different time points to identify the decrease in canopy height is a promising
remote sensing approach to detect deforestation. Airborne laser scanning (ALS) is the
method best suited to produce such maps [18]. However, ALS surveys are costly and
repeated surveys of large areas are rare, which limits their usability for large-scale detection
of vegetation changes (but see [19,20]). There is, therefore, a demand for methods that
enable more frequent repetition. One possible solution could lie in the utilization of
methods based on SAR data that are increasingly being proposed as useful for detecting
vegetation changes (e.g., for estimation of forest degradation or growth) caused by human
activities or natural phenomena [21–23]. Vegetation changes can be detected using data
from a single sensor [24,25] or using a combination of data from multiple sensors (e.g., of
TanDEM-X acquired between 2011 and 2015 and SRTM DEM acquired in 2000). However,
the accuracy of such estimates is limited, as combining multiple DEMs increases the risk
and magnitude of errors (see Table 1 for recent studies that validated TanDEM-X DEM or
compared it with other existing global DEMs); hence, potential sources of error in such
analyses need to be properly investigated [26].

Disturbance are a natural part of the forest dynamics [27]. In the last decades, distur-
bances have increased in terms of both quantity and intensity in Central European forest.
Strong winds, and subsequent bark beetle (Ips typographus) outbreaks are the most common
type of disturbances in the Norway spruce forest [28] (the representation of which in the
Czech mountain forests is dominant), which triggered intensive research in the field of
remote sensing methods for early detection of bark beetle activity as well as for damage
monitoring [29–33]. Between 2008 and 2011, after Hurricane Kyrill in 2007, the Bohemian
Forest in Czechia went through a massive bark beetle outbreak, which resulted in a large-
scale dieback of the natural mountain spruce forest (in high elevations > 1150 m a.m.s.l.).
For this area, severe disturbances (>50% trees affected) with a short rotation period of
174 years are common [34]. However, with increasing temperatures and reduced precip-
itation resulting from global warming, the number of possible bark beetle generations
per year and their survival through winter periods keep increasing. In addition, global
warming also reduces the vitality of trees, negatively affecting their ability to resist an
attack. We can, therefore, expect an increase in the number and severity of bark beetle
outbreaks in the near future [35–37] and detecting their impact through remote sensing
techniques can be a great help for forest managers.

The main objective of this study was to examine the suitability of the combination of
SRTM and TanDEM-X data for the detection of such large deforestation and to identify
potential sources of error. The nature of DEM errors constantly attracts extensive attention
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and recent studies evaluating the accuracy of TanDEM-X DEM highlighted that it is superior
to other DEMs and emphasized the improvement in detail in TanDEM-X DEM compared
to other global DEMs (see Table 1). Here, we aim to (i) compare the SRTM and TanDEM-X
at 90 m resolution with a LiDAR-based DSM to evaluate their performance as DSMs in
forests and non-forested areas; (ii) evaluate the associations of the differences between
SRTM and TanDEM-X with terrain slope and orientation (i.e., assess a potential synergy
of errors in both models that may affect the detection of deforestation); and (iii) compare
the detected differences with local data and with the Global Forest Change 2000–2012 data
produced by Hansen et al. (2013) [38].

Table 1. Validation studies of TanDEM-X products.

Study Validated DEMs Reference Data

Rizzoli et al. (2017) [39] TanDEM-X 12 m Globally available elevation data provided by ICESat

Wessel et al. (2018) [40] TanDEM-X 12 m

Kinematic GPS points, GPS on Bench Marks points
(23,728 points distributed across the US, DTM of Cape

Town (South Africa; 2460 km2), DSM of Thuringia
(Germany; 100 km2), and DSM of Kumamoto city

(Japan; ~ 10,000 km2)

Hawker et al. (2019) [9]
TanDEM-X 90 m

SRTM 90 m
MERIT 90 m

DTMs of 32 locations located across six continents
derived from airborne laser scanning; cumulative area

11,477 km2

Kramm and Hoffmeister (2019) [41]

TanDEM-X 12 m
TanDEM-X 90 m

SRTM 30 m
SRTM 90 m

ALOS World 3D 30 m
ASTER 30 m

ICESat and ICESat-2 points for an area of
approximately 190,000 km2, and several small DTMs
derived from UAV-photogrammetry and terrestrial

laser scanning; all located in the northern part of Chile

Podgórski et al. (2019) [42]
TanDEM-X 12 m
TanDEM-X 30 m

SRTM 30 m
ASTER 30 m

Airborne laser scanning DTM of Universidad Glacier
located in central Chile covering about 30 km2

Pasquetti et al. (2019) [43] TanDEM-X 12 m 2217 GPS points in Patagonia (Argentina)

González-Moradas and Viveen
(2020) [44]

TanDEM-X 12 m
SRTM 30 m

ALOS World 3D 30 m
ASTER 30 m

139 GNSS points in Peru

Vassilaki and Stamos (2020) [45]
TanDEM-X 12 m

SRTM 30 m
ALOS World 3D 30 m

ASTER 30 m

Visual inspection and accuracy analysis of 7 sites in
Europe and USA with a cumulative area of 167 km2;

and 7 sites located in the polar area in Antarctica. The
reference data consisted of LiDAR returns or nodes of

photogrammetrically compiled DSM

Gdulová et al. (2020) [46] TanDEM-X 12 m
DTMs and DSMs derived from airborne laser scanning
located in three mountain ranges in Czechia covering

about 1000 km2

Uuemaa et al. (2020) [47]

TanDEM-X 90 m
SRTM 30 m
MERIT 90 m

NASADEM 30 m
ALOS World 3D 30 m

ASTER 30 m

The reference DEMs for three study areas (Estonia:
225 km2, New Zealand: 111 km2, and Norway:

193 km2) were obtained from airborne laser scanning
surveys. For China (103 km2), DEM derived from

Pleiades-1A images was used. It is not clear whether
reference data were DSMs or DTMs.

Kumar et al. (2020) [48]

TanDEM-X 90 m
SRTM 30 m

ALOS World 3D 30 m
ALOS PALSAR 12.5 m

ASTER 30 m
High Mountain Asia 8 m

158 GNSS points and 661 ICESat points located in
Nubra Valley, Karakoram mountains (India)

Briole et al. (2021) [49] TanDEM-X 12 m GNSS kinematic surveys in western Gulf of Corinth
(Greece) with a total number of 885,252 points
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2. Data and Methods
2.1. Study Areas and Reference Data

To assess the suitability of space-borne DEMs for vegetation change analysis, they
were first compared with existing high-resolution LiDAR-based DSMs in three study
areas. The study areas representing mountain environment were selected on the basis
of the LiDAR data availability, comprising three Central European mountain ranges and
their surrounding areas (Figure 1): Bohemian Forest (BEF), Erzgebirge (EGG), and Giant
Mountains (GIM). The study areas are situated in Germany, Czechia, and Poland with
altitudes ranging between 300 and 1600 m a.m.s.l, covering about 920 km2 (Bohemian
Forest), 1840 km2 (Erzgebirge), and 1200 km2 (Giant Mountains), respectively. The basic
specifications of the LiDAR data acquisitions are shown in Table 2.
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Figure 1. Location and land cover of three study areas in Central European mountain ranges.

Table 2. Study area and LiDAR data characteristics. Note that the Giant Mountains data consist of two different LiDAR
datasets, one on the Czech and the other on the Polish side.

Study Area Characteristics ALS Parameters

Study Area Area (km2) Height Range (m) Forest Cover (%) Agricultural
Areas (%) Year Point Cloud

Density

Bohemian Forest 680 564–1378 80 9 2017 55 p/m2

Erzgebirge 1846 294–1212 47 42 2015–2017 4 p/m2

Giant Mountains 1200 332–1603 66 27 2011–2012 4–5 p/m2

2.1.1. Bohemian Forest

The airborne LiDAR data for the Bohemian Forest study area were collected by
MILAN GeoService GmbH in June 2017 during a leaf-on period, using the Riegl LMSQ680i
scanner. Flights for data collection were conducted by a helicopter at 550 m above ground
at a velocity of 60 kts and with 60% flight line side overlap. The obtained LiDAR point
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cloud density is 55 points per m2. The LiDAR point cloud was processed by MILAN
GeoService GmbH and provided as DTM and DSM referenced to DHDN/3-degree Gauss–
Kruger zone 4 coordinate reference system (EPSG: 31468), and with elevation recorded as
orthometric heights.

2.1.2. Erzgebirge

The DTM and DSM of Erzgebirge was provided by “Staatsbetrieb Geobasisinformation
und Vermessung Sachsen (GeoSN)” as open data under the dl-de/by-2-0 license. The
airborne LiDAR data for Saxony were collected between 2015 and 2017. The LiDAR point
cloud density is at least 4 points per m2. The data were downloaded as a DTM and DSM,
respectively, with a resolution of 2 m. The height accuracy of the terrain models from
the laser scanner measurements was up to +/−0.15 m and the positional accuracy up to
+/−0.3 m. The horizontal coordinates use ETRS89 UTM33N zone (EPSG: 25833) and the
vertical coordinate uses the “DHHN2016” (EPSG: 7837).

2.1.3. Giant Mountains

The airborne LiDAR data for the Czech part of the Giant Mountains study area
were collected in 2012. The data were acquired during the leaf-on period, using a Riegl
LMSQ680i scanner. Flights for the data collection were conducted at 700 m above ground
and consisted of 553 flight lines with an approximately 20% flight line side overlap. The
obtained LiDAR point cloud density was 5 points per m2. We classified the point cloud
into the ground, vegetation, building, wire, and transmission tower classes in the ENVI
LiDAR software (version 5.3) and LAStools (version 171215), and produced DTM and DSM
at a 1 m resolution [50,51]. The vertical datum of the LiDAR point cloud is Baltic Vertical
Datum—after adjustment (EPSG: 5705), and the horizontal datum is the Datum of Uniform
Trigonometric Cadastral Network (EPSG: 5514).

The airborne LiDAR data for the Polish part of the Giant Mountains study area were
collected during the nationwide project- IT System for the Country’s Protection project
(pl. “Informatyczny System Osłony Kraju”; ISOK project) managed by the Main Office
of Geodesy and Cartography in Poland. The project aimed mainly at creating a detailed
digital terrain model for the whole of Poland. The data were acquired in 2011–2015 and
referenced to Poland CS92 (EPSG: 2180). The vertical datum of the LiDAR point cloud was
the Mean Sea Level (MSL; PL-KRON86-NH). The point cloud density was at least four
pulses per square meter with an altitude accuracy of ≤0.15 m. Generally, the acquisition of
ALS point clouds took place from mid-October to April (i.e., in the leaf-off period, which
guaranteed good penetration of the laser beams through the forest stand. However, for
the Polish Giant Mountains area, data acquisition was performed in the leaf-on period
(from April to October). The data were collected in three blocks: two of them with density
4 points/m2 (collecting period: 11 April–20 October 2012) and one with 12 points/m2

(collecting period: 18 June–8 July 2012).

2.1.4. Land Cover Data

We obtained land cover data for both years from the Corine land cover database
with a resolution of 100 m. Only areas that were classified as agricultural areas or forests
both in 2000 and 2012, respectively (i.e., no land cover change), were used in the study
(note that natural disturbances or logging are not recorded as a land cover change as such
areas remain classified as forests). The land cover of our study areas consists mostly of
agricultural areas and forests (hereafter non-forests and forests; Table 2; Figure 1). Note
that no terrain changes occurred between SRTM and TanDEM-X DEMs acquisitions in the
study areas.

2.2. Global DEMs (TanDEM-X, Copernicus DEM, SRTM, NASADEM)

The free version of TanDEM-X DEM at the resolution of 90 m (3 arc-seconds) became
available in 2018 (hereinafter, this version will be abbreviated as TDX90). Although
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TanDEM-X products are also available at 12 and 30 m resolutions, this option is only for
scientific use; for general purposes, TanDEM-X is freely available only at a resolution of 90 m.
Data used for the production of TanDEM-X products were collected by a constellation of two
satellites using an X-band radar (TerraSAR-X and TanDEM-X) between 2010 and 2015 [52].
Nominal TanDEM-X acquisitions were performed in the right-looking observation mode, during
ascending orbits in the Northern Hemisphere, and a combination of several acquisitions was
used for most of the land [39]. The target absolute vertical accuracy is specified to be better
than 10 m (90% linear error) [52]. The horizontal datum and vertical heights of the TDX90
are referenced to WGS84-G1150. The present version of TDX90 (version 1) is the final official
standard non-edited product. Nevertheless, with the exception of two pixels in the Giant
Mountains, which were removed for the purpose of this study, no voids were present in the
TanDEM-X 90m DEM in our study areas. The TanDEM-X 90 m DEM was downloaded from
https://download.geoservice.dlr.de/TDM90/ (accessed on 18 February 2021).

The SRTM raw data were collected using a C-band radar during an 11-day mission
in February 2000 and captured the surface of the Earth between the 60◦ N and 56◦ S
latitudes [3]. The goal was to record each terrain segment at least twice from different
angles (on ascending and descending orbit passes) to fill the areas shadowed from the radar
signal by terrain. SRTM DEM was first released in June 2003 and since then, it became one
of the most commonly used global DEMs. The theoretical vertical accuracy according to
the SRTM mission specifications is 16 m. However, studies generally report much better
accuracies [53]. Co-registration with the TanDEM-X data was not carried out, as the SRTM-
C was already used during initial processing steps to provide elevation corrections [52].
The horizontal datum for SRTM is WGS84 and the vertical datum is the EGM96 geoid. We
downloaded the void-filled version SRTM DEM v3 with a resolution of 3 arc-seconds (i.e.,
the same resolution as TDX90 DEM; hereafter SRTM) from the Earth Explorer.

For the final detection of deforested areas in Bohemian Forest at 30 m resolution,
we used also the Copernicus DEM and NASA DEM. Copernicus DEM is an edited (i.e.,
voids were filled and artefacts such as spikes and wells removed) DEM derived from
TanDEM-X data, freely available at a 30 m resolution since the beginning of 2021 [54].
The vertical datum for Copernicus DEM is EGM2008 geoid and the horizontal datum is
WGS84. NASA DEM is a modernization of the SRTM released in 2020, which results from
complete re-processing of the raw radar echo and telemetry, and removal of large-scale
systematic biases and void reductions [55]. Note that we did not adopt these two DEMs for
all study areas as, particularly in the Giant mountains, many cells in Copernicus DEM were
infilled by external—mainly SRTM—elevation data, making the comparison meaningless.
The infill by external data was, however, minimal in the Bohemian Forest study area and
after removal of such cells, the Copernicus DEM was ready for analysis. Potential users
should be aware that using edited DEMs such as Copernicus or NASA DEM for multi-
temporal analysis requires careful examination of auxiliary data, especially Editing Mask
and Filling Mask [54].

2.3. Horizontal and Vertical Datum Conversion

To match the horizontal datum of the space-borne DEMs and reference LiDAR models,
we took advantage of the fact that study areas fit into a single UTM zone and transformed
all models using the bilinear resampling method into WGS84 UTM33N at a 90 m resolution.
LiDAR models were first transformed using the bilinear resampling method and subse-
quently aggregated to the same resolution as the space-borne DEMs. The vertical datum of
all datasets is represented as orthometric heights except for the TDX90, which represents
ellipsoidal heights. In order to match the ellipsoidal heights of TDX90 with the orthometric
heights of other models, we used a quasigeoid of Czechia and surrounding areas (grid of
latitude/longitude coordinates at 1’ × 1.5’ resolution).

https://download.geoservice.dlr.de/TDM90/
https://download.geoservice.dlr.de/TDM90/
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2.4. Accuracy Assessment

To assess the absolute vertical accuracy of a DEM, an independent reference dataset is
needed. Here, we compared the height of individual global DEMs with ALS-derived DSMs.
The accuracy of the reference data should be at least three times better than the evaluated
DEM [56]. As mentioned above, the target absolute vertical accuracies specified as LE90
for the TDX90 and SRTM DEMs validated in this study were better than 10 m and 16 m,
respectively. This implies a required LE90 error of 3.3 m for the reference LiDAR DSMs,
leading to the required standard deviation being lower than 2 m. This requirement is easily
met by ALS data, the typical accuracies of which are in the range of several decimetres [57].

To assess the vertical difference between global DEMs and canopy height, we calcu-
lated height differences between the reference LiDAR DSM and the global DEMs. To assess
the absolute vertical accuracy of TDX90 and SRTM DEMs with respect to the vegetation
cover, we calculated the accuracy measures separately for non-forests and forests. We
plotted the density distribution of height differences and used the differences to calculate
root mean square error (RMSE), the absolute deviation at 90% quantile (LE90), and mean
error (ME), expressed as:

ME =
1
n

n

∑
i=1

(hDEMi − hREFi) =
1
n

n

∑
i=1

∆hi (1)

RMSE =

√
1
n

n

∑
i=1

∆h2
i (2)

LE90 = Q|∆h|(0.9) (3)

where n is the total number of sampled cells, hDEMi is the ith height from the global DEM,
and hREFi is the corresponding height from the LiDAR DSM. LE90 was calculated as the
90th percentile of manually sorted absolute height differences (i.e., 90% of the differences
are less than or equal to this value) [58].

2.5. Detection of Deforestation and Validation of Results

The acquisition of TanDEM-X and SRTM data was performed at different time
points and their combination is now increasingly used for the assessment of vegetation
changes [59,60]. Data for SRTM were acquired in February 2000 while TanDEM-X data
were acquired over a four-year period between December 2010 and January 2015. In
the meantime, Bohemian Forest has gone through a bark beetle disturbance with major
deforestation between 2008 and 2011 after Hurricane Kyrill in 2007 [61]; ca. six thousand
hectares of mature mountain spruce forest died during this period. Therefore, to evaluate
whether the degree of such forest loss can be accurately derived from global DEMs, we
subtracted the SRTM and NASA DEMs from the TDX90 and Copernicus DEMs, respec-
tively, visually assessed the differences, and compared it with two validation datasets: (i) a
polygon layer provided by the Šumava National Park administration (area of Bohemian
forest), which is based on field surveys and high-resolution orthophoto images, showing
an annual forest loss between 2006 and 2020. Each polygon is in a given year assigned to
one of the following categories (no change; standing dead trees; lying dead trees; salvage
logging, windfalls); and (ii) the Global Forest Change 2000–2012 data derived from Landsat
images at 30 m resolution. In particular, we used the forest cover loss dataset defined as
a change from forest to non-forest state (note that forests are defined as vegetation taller
than 5 m) [38,62]. In addition, we evaluated the effect of environmental conditions on the
magnitude of SRTM and TDX90 differences. We assessed the effect of the terrain character
using the slope and aspect. The terrain slope and aspect were derived from a LiDAR DTM
at a 90 m resolution (i.e., we first aggregated the LiDAR DTM to a 90 m resolution using
mean values and then calculated the terrain characteristics) [63,64]. We used the Horn’s
algorithm with a 3 × 3 cell neighbourhood implemented in ArcGIS (version 10.8.1) [65].
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3. Results
3.1. Comparison of SRTM and TDX90 with LiDAR-Based DSM

In non-forest areas, the density plots of height differences between the global models
and LiDAR-based DSM show a symmetric unimodal distribution with the distribution
maxima close to zero (Figure 2). Although RMSEs in non-forest areas are similar, i.e., below
4.5 m, for both models (Table 3), TDX90 shows a considerably narrower spread of height
differences than SRTM in all study areas. In forests, the RMSE of TDX90 is below 5.7 m
while that of SRTM ranges between 5.2 and 7.3 m. The density plots of canopy height
differences show a unimodal distribution with the centre of the distribution shifted into
the negative values. This is particularly true for SRTM DEM while for TDX90 DEM, the
distribution maximum is closer to zero (i.e., both models underestimate the canopy height
on average by a few meters; Table 3). The vegetation height underestimation is slightly
higher in the case of SRTM (except for forests in the BEF study area).
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Table 3. Evaluation of SRTM and TDX90 error of canopy height estimates for non-forest areas and forests in three study
areas relative to LiDAR DSM.

Non-Forest Forests

Study Area Model Cells ME (m) RMSE (m) LE90 (m) Cells ME (m) RMSE (m) LE90 (m)

BEF SRTM
7254

−2.53 4.39 7.71
70,611

−2.91 7.03 10.93
TDX90 −2.36 4.31 7.21 −3.32 5.74 8.24

EGG SRTM
87,777

−1.36 2.93 4.34
97,345

−4.06 6.58 10.20
TDX90 −0.90 2.47 3.56 −1.79 5.39 7.57

GIM SRTM
36,755

−1.08 3.26 5.24
93,492

−2.06 5.16 8.36
TDX90 −0.68 3.53 4.69 −0.48 5.07 7.17
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3.2. Associations of Difference between TDX90 and SRTM with Terrain Characteristics

We evaluated the associations of the difference between TDX90 and SRTM with terrain
characteristics (Table 4). Under optimal circumstances (i.e., if no erroneous measurements
were present), we should observe positive or negative bias in forest areas (depending on
the vegetation growth or removal in the period between the acquisitions of these models)
and no bias in non-forest areas. Indeed, our results show only minor differences between
TDX90 and SRTM in both non-forest areas (mean difference of 0.4 m) and forests (mean
difference of 1.3 m). In non-forest areas, the RMSE of the differences between TDX90 and
SRTM was 2.0 m; in forests, RMSE was slightly higher, namely 5.6 m (Table 4). The overall
characteristics were moderately associated with the terrain character. Height differences
show slight dependence on the slope and its orientation. LE90s for TDX-SRTM differences
tended to be smaller for east-facing than west-facing slopes, and vary with aspect by up
to 1.5 m in non-forest areas and 3 m in forests, respectively (Table 4). This corresponds
with visual assessment of TDX90 and SRTM difference, which revealed high local negative
differences between TDX90 and SRTM originating from erroneous TDX90 measurements
especially on west-facing slopes with forest cover (Figures 3 and 4). The comparison of
TDX90 with canopy height represented by SRTM (Figure 3; left column) demonstrates a
local underestimation of the canopy height. In effect, the errors in the GIM study area
(Figures 3 and 4) can easily be confused with the effect of deforestation in the BEF study
area (Figure 3), which can potentially affect vegetation change analyses.

Table 4. Overall comparison (i.e., including all study areas) of TDX and SRTM DEMs with respect to the character of the
environment. The error values for aspect are colour-coded as follows: The cell with the lowest value is green, and the cell
with the highest value is purple. The remaining cells are shaded accordingly (see the colour ramp below the table).

Non-Forest Areas Forests

ME (m) RMSE (m) LE90 (m) ME (m) RMSE (m) LE90 (m)

Overall accuracy Overall accuracy
0.42 2.03 2.72 1.30 5.59 7.99

Aspect (degrees) Aspect (degrees)
[0.0, 22.5] 0.48 1.66 2.46 1.35 4.97 7.21

(22.5, 45.0] 0.43 1.62 2.49 1.27 4.99 7.33
(45.0, 67.5] 0.37 1.70 2.61 1.47 5.07 7.54
(67.5, 90.0] 0.44 1.69 2.64 1.94 4.90 7.34
(90.0, 112.5] 0.45 1.72 2.67 2.19 4.88 7.45

(112.5, 135.0] 0.44 1.71 2.63 2.23 4.87 7.50
(135.0, 157.5] 0.47 1.72 2.64 2.21 5.04 7.61
(157.5, 180.0] 0.44 1.93 2.73 2.14 5.20 7.72
(180.0, 202.5] 0.33 2.79 2.94 1.97 5.63 8.28
(202.5, 225.0] 0.40 2.77 2.93 1.18 6.02 8.77
(225.0, 247.5] 0.29 2.61 3.09 0.62 6.44 9.21
(247.5, 270.0] 0.28 2.29 3.09 0.16 6.66 9.73
(270.0, 292.5] 0.29 2.44 2.94 −0.01 6.91 10.25
(292.5, 315.0] 0.41 2.11 2.80 0.52 6.40 8.95
(315.0, 337.5] 0.60 1.92 2.68 0.94 5.72 7.78
(337.5, 360.0] 0.60 1.79 2.45 1.26 5.24 7.38

Slope (degrees) Slope (degrees)
(0,10] 0.51 1.67 2.45 1.45 5.15 7.54

(10,20] −0.12 3.60 4.40 1.23 6.17 8.72
(20,30] −0.64 5.51 7.65 0.05 6.50 10.02
(30,75] −1.69 1.69 1.69 −0.53 5.84 9.55
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3.3. Detection of Deforestation in the Bohemian Forest

We subtracted the SRTM and TanDEM-X at the 90 m resolution, and NASA DEM
and Copernicus DEM at the 30 m resolution, respectively, in an attempt to detect defor-
estation events occurring in the Bohemian Forest in the period between their acquisitions
(2000–2011). Negative difference was considered a sign of deforestation/degradation while
a positive difference was considered a sign of forest growth or afforestation. The compari-
son with validation datasets showed a clear correspondence between the spatial pattern of
negative changes and deforested areas in the Bohemian Forest. Negative changes in canopy
height are visualized in purple while positive changes in green (Figure 5). It is notable that
the deforestation is so extensive that the overall pattern is clearly evident even at the 90 m
resolution. In addition, forest loss in the “lying dead trees” category was inadequately
identified in the Global Forest Change 2000–2012 data (i.e., using Landsat multispectral
data), while our approach using 3D data identified it correctly (Figure 5). The density plots
of canopy height differences show a unimodal distribution with the distribution shifted
either into the positive values (in areas without forest loss) or into negative values (in
deforested areas—standing or lying dead trees as well as areas with salvage logging). The
same pattern is evident for the Global Forest Change 2000–2012 data (Figure 6).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

3.3. Detection of Deforestation in the Bohemian Forest  
We subtracted the SRTM and TanDEM-X at the 90 m resolution, and NASA DEM 

and Copernicus DEM at the 30 m resolution, respectively, in an attempt to detect defor-
estation events occurring in the Bohemian Forest in the period between their acquisitions 
(2000–2011). Negative difference was considered a sign of deforestation/degradation while 
a positive difference was considered a sign of forest growth or afforestation. The compar-
ison with validation datasets showed a clear correspondence between the spatial pattern of 
negative changes and deforested areas in the Bohemian Forest. Negative changes in can-
opy height are visualized in purple while positive changes in green (Figure 5). It is notable 
that the deforestation is so extensive that the overall pattern is clearly evident even at the 
90 m resolution. In addition, forest loss in the “lying dead trees” category was inade-
quately identified in the Global Forest Change 2000–2012 data (i.e., using Landsat multi-
spectral data), while our approach using 3D data identified it correctly (Figure 5). The 
density plots of canopy height differences show a unimodal distribution with the distri-
bution shifted either into the positive values (in areas without forest loss) or into negative 
values (in deforested areas—standing or lying dead trees as well as areas with salvage log-
ging). The same pattern is evident for the Global Forest Change 2000–2012 data (Figure 6). 

 
Figure 5. Differences between Copernicus DEM and NASA DEM (30 m resolution), and TDX90 and 
SRTM (90 m resolution) in comparison with the forest loss according to Global Forest Change data 
and data from Bohemian Forest provided by Šumava National Park administration. 

Figure 5. Differences between Copernicus DEM and NASA DEM (30 m resolution), and TDX90 and
SRTM (90 m resolution) in comparison with the forest loss according to Global Forest Change data
and data from Bohemian Forest provided by Šumava National Park administration.



Remote Sens. 2021, 13, 3042 12 of 17
Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 18 
 

 

 

 
Figure 6. Distributions of the height differences between the Copernicus DEM and NASA DEM at the 30 m resolution 
(top) for four forest change classes (classification according to validation dataset provided by Šumava National Park ad-
ministration) and (bottom) in comparison with the forest loss according to Global Forest Change data. The vertical dashed 
line represents zero (i.e., agreement between models). 

4. Discussion 
In this study, we showed that large deforestation can be successfully identified from 

global DEMs difference. We successfully identified deforestation in the Bohemian Forest 
caused by the bark beetle disturbance between 2008 and 2010 (Figure 3). On the other 
hand, however, we also identified local erroneous measurements of deforestation (Figure 
3) that were mostly associated with underestimation of the vegetation height by TDX90, 
mostly on the west-facing slopes (i.e., slopes facing the sensor; Figure 4). Our results show 
a moderate dependence of the differences between TDX90 and SRTM on terrain charac-
teristics (i.e., slope and aspect), mostly with positive bias (Table 4). This is in accordance 
with results by Leonardo et al. (2020) [15] who also reported the deterioration of canopy 
height data derived from TanDEM-X with increasing slope. These errors might be easily 
confused with deforestation (Figure 3) and can locally affect its estimates. Most errors of 
this kind in our study were located in the Giant Mountains, representing the highest 
mountains with the most complex terrain of all analysed areas.  

While this study concentrated on negative differences associated with deforestation, 
other studies used DEM differencing to estimate both positive and negative changes in 
vegetation height (or biomass) due to both forest degradation and/or forest growth 
[5,21,22]. However, large errors in the vegetation biomass estimates are typically reported, 
along with numerous issues related to input DEMs [26], and the in-depth knowledge of 

Figure 6. Distributions of the height differences between the Copernicus DEM and NASA DEM at the 30 m resolution
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dashed line represents zero (i.e., agreement between models).

4. Discussion

In this study, we showed that large deforestation can be successfully identified from
global DEMs difference. We successfully identified deforestation in the Bohemian Forest
caused by the bark beetle disturbance between 2008 and 2010 (Figure 3). On the other hand,
however, we also identified local erroneous measurements of deforestation (Figure 3) that
were mostly associated with underestimation of the vegetation height by TDX90, mostly on
the west-facing slopes (i.e., slopes facing the sensor; Figure 4). Our results show a moderate
dependence of the differences between TDX90 and SRTM on terrain characteristics (i.e.,
slope and aspect), mostly with positive bias (Table 4). This is in accordance with results
by Leonardo et al. (2020) [15] who also reported the deterioration of canopy height data
derived from TanDEM-X with increasing slope. These errors might be easily confused with
deforestation (Figure 3) and can locally affect its estimates. Most errors of this kind in our
study were located in the Giant Mountains, representing the highest mountains with the
most complex terrain of all analysed areas.

While this study concentrated on negative differences associated with deforestation,
other studies used DEM differencing to estimate both positive and negative changes in veg-
etation height (or biomass) due to both forest degradation and/or forest growth [5,21,22].
However, large errors in the vegetation biomass estimates are typically reported, along
with numerous issues related to input DEMs [26], and the in-depth knowledge of the
accuracy of SRTM and TanDEM-X is necessary for the accurate detection of vegetation
changes. Based on our results, we strongly suggest that prior to performing vegetation
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change analyses, potentially erroneous areas in global DEMs should be acknowledged.
Problematic areas can be successfully identified using auxiliary data such as the consistency
mask (COM), the coverage map (COV), and the height error map (HEM) provided together
with TDX [40,46].

The target vertical accuracies stated in the specifications of SRTM and TDX90 (ex-
pressed as 90% of the product errors, LE90) should be below 16 and 10 m, respectively. Both
SRTM and TDX90 comply with mission specifications when compared to LiDAR DSM.
Our results show, despite the presence of local errors that may result in underestimation of
canopy height (Figures 3 and 4), that TDX90 yields a generally better fit to LiDAR-based
DSM than SRTM. This difference was not so apparent in non-forest areas where similar
differences from LiDAR-based DSM were found for both models (although TDX90 showed
higher consistency of results and a considerably narrower spread of height differences
than SRTM in all study areas). In forests, the better fit of TDX90 to DSM is even more
pronounced, with the SRTM results being shifted to the negative values. However, it is
necessary to point out that this result was expected, in particular, due to the large time
difference between acquisitions of SRTM and TDX90; to be able to reliably evaluate the
goodness of fit of the global DEMs to actual LiDAR-based DSMs, two LiDAR-based models
from the times of global DEM acquisitions would be necessary.

Due to the limited data availability, it is a common practice of remote sensing appli-
cations in forestry to combine datasets from multiple time points. Our study is not an
exception and the time of acquisition should be taken into account when interpreting the
results. LiDAR data has been acquired a few years after the acquisition of TDX data, except
for the Giant Mountains study area (Table 2). Consequently, the negative bias between
TDX (and SRTM, respectively), and LiDAR DSM is not only the result of radar penetration
into the vegetation but also vegetation growth. In addition, data may be generally ac-
quired at a time of the year that is unsuitable for forestry applications (e.g., leaf-off period),
which might lead to canopy height underestimation in such data (and, hence, have an
opposite effect than vegetation growth). SRTM was acquired in February (winter in the
northern hemisphere) in contrast to TDX, which is averaged from multiple acquisitions
taken between December 2010 and January 2015. The forests in all study areas are, however,
mainly coniferous and, therefore, we did not expect any significant underestimation of the
canopy surface. This might have, however, resulted in an additional positive bias in the
non-forested areas due to the presence of vegetation, such as crops on agricultural fields,
during TDX data acquisition; such vegetation was not present in winter when SRTM was
acquired. In forests, the positive bias also results from the lower X-band penetration into
the vegetation compared to the C-band and, obviously, from the forest growth between the
dates of SRTM and TDX data acquisition (i.e., 2000 and 2011).

The time of acquisition is also related to the presence/absence of snow cover, another
environmental factor that might bias our results. In the winter months, the thickness of the
snow cover in this region can easily reach several meters resulting in uncertainty due to
the unknown penetration of the radar signal into the snow [66]. The level of penetration is
dependent on the snow properties such as the content of the liquid water; while dry snow
can potentially be penetrated by the X-band radar, the penetration into wet (i.e., containing
liquid water) snow can be considered negligible [67]. However, as the study areas are
predominantly forested by spruce stands, it is likely that this source of error is relatively
minor in forested areas and does not affect the detection of deforestation.

Although the above mentioned facts considerably increase the uncertainty of the
performed analyses, the results show that if there is a negative difference between TDX
and SRTM, it can be inferred that deforestation has occurred in a given cell (Figure 6). In
addition, the detection of deforestation may be improved by using various thresholds. Prior
studies have adopted a threshold of −7 m for detecting deforested areas [59,60,68], which
roughly corresponds to the distribution maximum of deforested areas height differences
between Copernicus DEM and NASA DEM (Figure 6). In other words, looking at the data
from Figure 6, it appears that the threshold of −7 m is justified as there are very few errors
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of more than −7 m in the “no forest loss” category that could be erroneously classified
as forest loss. Finally, our approach using 3D data adequately identified forest loss in all
assessed categories, while in the Global Forest Change 2000–2012 data (i.e., using Landsat
multispectral data) the “lying dead trees” category was identified inadequately. Integration
of multispectral and SAR data, which provide complementary information, can improve
monitoring of forest loss.

5. Conclusions

In the present study, we evaluated two global DEMs produced using radar inter-
ferometry (SRTM and TanDEM-X) in three Central European mountain ranges. Models
acquired using the same technology, such as SRTM and TanDEM-X, can be expected to be
subject to similar errors. When combined, for example, for vegetation change assessments,
these errors can have a synergistic effect and lead to erroneous results. A comparison of
SRTM and TanDEM-X 90m DEM with LiDAR DSMs showed that both models tend to
underestimate the canopy height by several meters. Our analysis shows that differences of
SRTM and TanDEM-X show a moderate dependence on terrain characteristics. In particular,
we found local errors in TanDEM-X associated mainly with forest-covered west-oriented
slopes, which resulted in erroneous identification of canopy changes. Therefore, researchers
should proceed with caution when using TanDEM-X in multitemporal studies. However,
if these problems are acknowledged and their adverse effects prevented, the combination
of SRTM and NASA DEMs and TanDEM-X and Copernicus DEMs, respectively, represents
a suitable source for the identification of deforested areas in the mountain environment.
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