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Abstract: Signals, such as point clouds captured by light detection and ranging sensors, are often
affected by highly reflective objects, including specular opaque and transparent materials, such
as glass, mirrors, and polished metal, which produce reflection artifacts, thereby degrading the
performance of associated computer vision techniques. In traditional noise filtering methods for
point clouds, noise is detected by considering the distribution of the neighboring points. However,
noise generated by reflected areas is quite dense and cannot be removed by considering the point
distribution. Therefore, this paper proposes a noise removal method to detect dense noise points
caused by reflected objects using multi-position sensing data comparison. The proposed method
is divided into three steps. First, the point cloud data are converted to range images of depth and
reflective intensity. Second, the reflected area is detected using a sliding window on two converted
range images. Finally, noise is filtered by comparing it with the neighbor sensor data between the
detected reflected areas. Experiment results demonstrate that, unlike conventional methods, the
proposed method can better filter dense and large-scale noise caused by reflective objects. In future
work, we will attempt to add the RGB image to improve the accuracy of noise detection.

Keywords: LiDAR; point cloud denoising; noise filtering; virtual point removal; glass reflection;
large-scale 3-D point cloud

1. Introduction

Light detection and ranging (LiDAR) sensors are high-precision sensors, which involve
transmitting laser light to targets and measuring the reflected light to determine the
difference in the wavelength and time of arrival of the reflected light [1]. LiDAR measures
the position and the shape of objects and forms high-quality 3-D point clouds; it has been
widely adopted in 3-D reconstruction, self-driving cars, robotics, and various fields [2–9].

Light is reflected by objects, such as glass, which forms undesired objects of the
reflected scenes. When capturing large-scale 3-D point clouds using LiDAR sensors, laser
pulses emitted from the scanner also result in the formation of undesired reflection artifacts
and virtual points in the 3-D space. Figure 1 shows an example of a reflection caused by
the LiDAR sensor. The LiDAR sensor measures the distance from the scanner to the target
object by emitting laser pulses and receiving their return pulses based on the propagation
time of light. In this case, the laser is reflected to other objects because of the reflective
nature of the glass when the sensor emits the laser light onto the glass.

Consequently, the distance detected by the scanner is actually the sum of the distance
from the scanner q0 to the glass q1 and the distance from the glass q1 to the object in front
of the glass qreal . As the scanner is unaware of the presence of the glass, the received pulse
is considered the direct reflected pulse of the straight line that reaches the scanned object.
Therefore, the scanner produces a virtual object in the plotted point cloud data.
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Figure 1. Principle of reflection in a LiDAR laser scanner. 

This virtual object produced by the reflective area reduces the quality of the point 
cloud. This problem worsens when the sensing area has many windows or glass materials, 
which are a typical part of the design in modern buildings. As shown in Figure 2, there 
are many reflective materials in a large area; thus, the scale of the noise generated in the 
reflective area is also large. Traditional noise filtering methods used for point clouds, such 
as the statistical outlier removal method, cannot remove dense noise. Therefore, noise pro-
duced by the reflective area cannot generally be filtered. This study proposes a dense re-
flective noise filtering method for large-scale point clouds using the multi-position LiDAR 
sensing data. 

 
Figure 2. Noise area overview. Part (a) is the noise region shown through the point cloud view. (b) 
is the RGB image in the same view. 

Figure 1. Principle of reflection in a LiDAR laser scanner.

This virtual object produced by the reflective area reduces the quality of the point
cloud. This problem worsens when the sensing area has many windows or glass materials,
which are a typical part of the design in modern buildings. As shown in Figure 2, there
are many reflective materials in a large area; thus, the scale of the noise generated in the
reflective area is also large. Traditional noise filtering methods used for point clouds, such
as the statistical outlier removal method, cannot remove dense noise. Therefore, noise
produced by the reflective area cannot generally be filtered. This study proposes a dense
reflective noise filtering method for large-scale point clouds using the multi-position LiDAR
sensing data.
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The proposed method removes the dense reflective noise by calculating the depth
reflection intensity variance within a certain area and by comparing it with the position
sensing data. The proposed method is applicable to large-scale point clouds with high
indoor density and can effectively filter dense noise.

The contributions of this study are summarized as follows:

1. To the best of our knowledge, this study is the first to implement the noise region
denoising for large-scale point clouds containing only single-echo reflection values.

2. Most current methods are based on statistical principles to remove some of the noise.
However, these conventional methods cannot differentiate the reflected noise from
other normal objects. The method proposed herein successfully solves this problem.

3. The proposed method can be applied to large-scale point clouds. The methods used
in previous studies were only for the point clouds of individual objects or for areas
with sparse point cloud density. The proposed method can denoise large-scale point
clouds using multiple sensing data.

Therefore, this study successfully performs the denoising of dense and large-scale
point cloud data collected from several positions and multiple scenes. Additionally, this
study conducted a comparison experiment using FARO SCENE [10] as a benchmark. The
experimental results clearly indicate that the proposed method successfully eliminates
most of the noise due to reflections when compared with the denoising method of FARO
SCENE. The successful removal of reflection noise significantly contributes to further usage
of point clouds in techniques, such as 3-D reconstruction, and has a considerable impact on
applications, such as point cloud reconstruction.

The remainder of this paper is organized as follows. Section 2 summarizes previous
studies and this research. Section 3 describes the proposed method in detail, and Section 4
presents the results and the analysis of the experiments conducted. Finally, Section 5
presents the concluding remarks.

2. Related Work

Reflection removal, which involves the removal of interference due to the reflec-
tions from glass surfaces, is a technique of great interest in computer vision. Several
studies [11–14] have attempted to remove reflections from single glass images in the field
of image processing and achieve reflection removal by simultaneously using multiple glass
images. Conversely, LiDAR uses active light irradiation technology, emitting laser pulses
and calculating their return time, to measure distance. The noise generated by reflecting
objects has a greater impact on LiDAR production.

From [15], point cloud denoising techniques are classified into seven categories:
statistical-based filtering techniques, neighborhood-based filtering techniques, projection-
based filtering approaches, signal processing-based methods, PDEs-based filtering tech-
niques, hybrid filtering techniques, and other methods. These methods can effectively
remove the outliers from point clouds in specific cases, such as the point cloud models with
added Gaussian noise. However, they are not effective in the removal of the reflection noise.

In recent years, various methods have been developed using clustering algorithms to
detect point cloud noise [16–26]. Li et al. [27] proposed an improved K-algorithm for color-
based clustering of point clouds to detect outlier points. Czerniawski et al. [28] proposed
a point cloud outlier detection method based on density clustering. Rusu et al. [29] and
Weyrich et al. [30] proposed local density-based outlier detection methods to determine
whether a point is an outlier or not, based on the number of domain points. However, in
large-scale point clouds, the number of noise region points is also particularly large, and
the clustering algorithm cannot efficiently detect the reflection noise.

The traditional point cloud denoising methods focus on removing the outliers in the
point cloud data, which generally contain only the coordinate data. The reflected intensity
is the intensity of the returned laser beam obtained by the LiDAR after the emitted laser
beam reaches the specified object. The value of the reflection intensity is generally related
to the material of the object and its optical properties. The reflectivity and optical properties
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of different materials vary [31–34]. Standard materials, such as wood, walls, or clothes,
generally provide diffuse reflection of laser light, which is suitable for LiDAR sensors as
there is no absorption or specular reflection. Conversely, reflective surfaces, such as mirrors
or glass, reflect incident laser light. A glass surface primarily exhibits specular reflection
and transmittance for a slight diffuse reflection of laser light [35–38]. The reflected noise can
be detected with the help of these optical properties. This process has been summarized in
previous studies in four ways. First, Koch et al. [39,40] detected the reflective area based
on the properties of the material; various materials have different properties under laser
irradiation, including reflection, scattering, or absorption. Second, Wang et al. [41,42] and
Ali et al. [43] detected the reflective region by mirror symmetry because the reflective
noise follows the reflection rule of light, and the reflective area can be detected by the
distribution of the pairs of points. Velten et al. [44] detected the noise areas through the
phenomena commonly observed in the reflective areas, such as glass windows, which
generally produce noise with an empty square in the center. Finally, Mei et al. [45] detected
reflected noise with the help of special sensor data, such as multi-echo LiDAR and the
reflected intensity values.

These methods effectively improve the accuracy of the detection of the reflected
noise in SLAM. However, the point cloud data used in SLAM are sparse. Therefore,
these methods are not suitable for large-scale point clouds. Yun et al. [46,47] proposed a
method to remove the virtual points formed due to glass planes in a large-scale point cloud.
However, this method employs multiple echoes of the LiDAR data and is not applicable to
large-scale point clouds that do not contain the multi-echo data.

3. Proposed Method
3.1. Overview

This study uses the point cloud data obtained from the LiDAR sensor to detect noise
due to highly reflective objects by integrating the LiDAR point cloud data obtained from
multiple locations together and then to remove noise to reconstitute the noise-free 3-D
point cloud data. Figure 3 shows an overview of the entire point cloud denoising system.

The point cloud data in this study contain the scan location information (i.e., location of
the LiDAR sensor, point location information, XYZ, color information, RGB, and reflection
value information). Typically, the scanned data contain several individual scan files, each
of which is obtained from one scan. Multiple scans are performed at different locations
in a region, and the point cloud of this region is obtained after merging. To eliminate
the large amount of noise in the merged point cloud files, the method proposed in this
paper processes each scan file in a certain order. The proposed method is divided into
three modules. The first module is the data pre-processing module, which converts the
3-D point cloud data into a 2-D distance image format. The second module is the reflective
area detection module, which detects the presence of a reflective area by calculating the
variance value in each window using a sliding window. The third module is the noise
removal module, which compares the reflective areas with the sensor data from the other
locations to obtain the exact noise locations. This module also includes a location selection
module to improve the accuracy of the noise detection by optimizing the selection of the
other sensor locations.

3.2. Data Preprocessing Module

This module is designed to convert the 3-D point cloud data into 2-D range images. In
this study, the coordinate data obtained from the point cloud data were converted to depth
range images, and the reflection intensity values in the point cloud data were converted to
reflection range images.
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The LiDAR points are clearly ordered along the scanlines, forming the first dimension
of the sensor topology, linking each LiDAR pulse to the immediately preceding and
succeeding pulses within the same scan line; the topology of the sensor also varies with
the LiDAR sensor model being used. Three-dimensional LiDAR sensors involve multiple
simultaneous scanline acquisitions. Each scanline contains the same number of points, and
each scanline may be stacked horizontally to form the same type of structure. Therefore,
any measurement of the sensor may be arranged in a H ×W image [48], where H (height),
W (width) refers to the two-bit matrix with H, W as the coordinate system, H, W depends
on the setting of the Lidar sensor. It is related to the scanning angle range and resolutions.
With the stereographic projection method, we can project the XYZ coordinate system of
the 3-D point cloud into the 2-D plane, as shown in Figure 4. The principle is similar to
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that of panorama, where the point cloud of a scene is simplified to a sphere, as shown
in Figure 4c, where each red point represents a point in the point cloud and each point
contains information on the position, color, and reflection values. Figure 4b shows the
range image, which only shows the color information of each point. The figure also shows
how the sensor topology stretches the 2-D image. The point cloud is defined as a matrix
of N × (3 + D), where N is the number of points contained in the point cloud, 3 is the
coordinates of the point cloud, and D is other information of the point cloud (e.g., color and
reflection value). The range image can be defined as a matrix of H×W, where H and W are
determined by the size of the point cloud. In this study, such images are only constructed
as the pixel reflection intensity using the range calculation, later referred to as range images.
When the pulses emitted by the LiDAR sensors are absorbed by the target object due to the
reflecting surfaces, or in the absence of a target object (e.g., the sky), the laser is generally
unable to measure the distance. Consequently, during the generation of range images, there
are a large number of missing points owing to the absence of measurements. In this study,
0 is used to replace missing parts. Additionally, the data used in this study only contain
the intensity values of a single laser return. The data for which multiple laser return values
are acceptable are beyond the scope of this study.
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Figure 5 shows the data preprocessing steps that convert the point cloud data to range
images. The LiDAR scanned data are first converted into a 2-D matrix, and the point cloud
coordinate data are mapped to the color code after calculating the depth value to generate
the depth range image; the reflection value data are then directly mapped to the code to
generate the reflection range image.

The method of extraction of range images is as follows. The distance between each
point and the sensor is calculated for each point pi in the point cloud pcloud, which is called
the depth in this study, considering the sensor position as the origin. First, the x, y, and
z values are mapped to the 2-D image format by topology. The depth values are then
calculated using the formula shown in Equation (1) to determine the distance:

depth =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2. (1)

where (x1, y1, z1) is the LiDAR sensor position, and (x2, y2, z2) is the position of each point
pi in the point cloud pcloud.
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Figure 5. Data preprocessing module overview.

After normalizing the original data, a grayscale map can be generated. Since the
nuances of the grayscale map are not suitable for observation. This study uses the
‘cv::applyColorMap’ function provided by OpenCV [49] to transform grayscale maps.
Thus, a color range image was obtained. The color mapping is performed only to facilitate
the observation of the features. Only the raw data were used in this study for data process-
ing, and no color mapping was performed. Figure 5 schematically illustrates the process of
converting the range image. Examples of reflectance range images and depth range images
are shown in Figure 6.
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The reflection area is analyzed using the reflection intensity and the depth range
images, as shown in Figure 7. The reflection range image is used as an example to show the
characteristics of the noise point regions. The Shapiro–Wilk test [50] is used to test whether
the data conform to a Gaussian distribution. The W statistic is calculated as follows:

W =
(∑n

i=1 aixi)
2

∑n
i=1 (xi − x)2 . (2)



Remote Sens. 2021, 13, 3058 8 of 22

where xi is the ith order statistic, and x = (x1 + . . . + xn)/n is the sample mean. The
coefficients ai = (a1, . . . , an) =

mTV−1

(mTV−1V−1mT)
1/2 and m = (m1, . . . , mn)

T are the expected

values of the order statistics of independent and identically distributed random variables
sampled from the standard normal distribution and V is the covariance matrix of those
order statistics. In the initial experimental analysis, this paper uses Equation (2) as a
condition to determine the noise area by whether it conforms to the Gaussian distribution.
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Figure 7 shows the reflection range image obtained by the reflection value mapping.
The reflection values are plotted within a certain region in a scatter plot and a distribution
plot, where the horizontal coordinate of the distribution plot is the reflected intensity value
of the selected area and the vertical coordinate is the number of a certain value. The scatter
plot has the index of the points in the horizontal coordinate and the reflection intensity
value of each point in the vertical coordinate. Note that in Figure 7, the coordinate system
ranges of the reflection intensity distribution plot are not consistent. In the non-reflective
region selected in Figure 7a, the reflection intensity is concentrated between 1854 and
1945 with a W-statistic value of 0.981, while in the reflective region selected in Figure 7b,
the reflection intensity is divided between 885 and 1792 with a W-statistic value of 0.823.
When the laser emitted by LiDAR shines on the same object, the intensity of the echo
reflection received by LiDAR is similar. Additionally, when the laser shines on a highly
reflective object, it is reflected to other objects due to reflection. Thus, the distribution of
the reflection intensity obtained is chaotic. The features are grouped into two categories
based on extensive experimentation. The first category is the general area, as shown
in Figure 7a, which does not contain noise and is composed of the same material; the
distribution of the reflection values in this area is normal and the scatter plot shows that
this part of the distribution is relatively uniform. The second category is the noise region,
as shown in Figure 7b, which contains the reflective substances, which are smooth metallic
materials in this case. The light emitted from the LiDAR is reflected at different locations
due to the presence of the reflective substances. Therefore, the reflection values in this
part are generally cluttered, as shown in the scatter and distribution diagrams in part b.
The reflection values are quite complex, and the range is quite large to be shown in the
distribution diagram. The reflected intensity values in the normal region are normally
distributed, whereas the reflected intensity values in the reflective region are irregular.
Thus, the normal area can be distinguished from the reflective area using this feature.
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3.3. Reflective Area Detection Module

We also define a set {τ that takes vi ∈ { from every sliding window using the sliding
value ρ. Then, we define a set {re f as:

{re f =

{
1, vi > α or vi > β, vi ∈ {τ ,
0, otherwise.

(3)

where α is the depth variance threshold and β is the reflection variance threshold.
The process of the reflective area detection module is as follows. First, we create an

m× n window with i as a step and slide the image in the depth and the reflection intensity
range. The m× n depth variance array and reflection intensity variance array is obtained
by calculating the variance of the window (Equation (4)). The variance is a measure of
the dispersion of a set of data, where the mean of the squared differences between each
sample value and the mean of the overall sample value is used. Taking the data of the
selected region in Figure 7 as an example, for the non-reflective region, the W statistic
value is 0.981 and the variance is 118.456, and for the reflective region, the W statistic
value is 0.823 and the variance is 59,776.815. Since the range of the W statistic value is
in 0–1, and the variance of the response to the characteristics of the data distribution, the
larger the variance, the higher the data dispersion. So, this paper selects the data with high
dispersion as the candidate area of noise region by calculating the variance of the data
in the selected area. Therefore, the noise area can be effectively detected by comparing
the variance of the reflection intensity and the distance. The depth variance array and the
reflection intensity variance array are filtered by setting a threshold value that is greater
than the set value and is considered to contain noise in this window. The depth variance
array and the reflection intensity variance array are concatenated to obtain the final 2-D
array containing the noisy region:

S2 =
∑n

i=1 (xi − x)2

n− 1
(4)

where x is the average value.
This section presents the method to detect the region where the reflection noise exists.

The method calculates the variance based on a sliding window through the distribution
characteristics of the reflection noise. As shown in Figure 8, the variance value of the
selected window is calculated by setting a sliding window SWi of m× n on the depth and
the reflective range image, in the data preprocessing step. If the depth variance or the
reflection intensity variance within the selected window is greater than the set threshold α
and β (here, α is the depth variance threshold, and β is the reflection variance threshold),
this window is regarded as the window containing noise. All the data are then detected
through the sliding window. Let us define a set of points { = {vi}, where vi is the variance
calculated from the set of points selected by the sliding window SWi.
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3.4. Noise Removal Module

As the reflective area noise is related to the position and the angle of the sensor, the
noise generated in the reflective area is different for the sensors in the various positions,
as shown in Figure 9. When the LiDAR sensors located at different locations irradiate an
object, the point cloud data of the object are obtained. After registering and merging the
point cloud data of all the position sensors, they are represented as global coordinates.
Consequently, if it is ordinary data, the coordinate points of its point cloud are all identical.
However, if it is a reflective object, the sensors located at different positions produce
different artifacts because of the nature of the reflection.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 8. Overview of the variance-based sliding window approach. 

3.4. Noise Removal Module 
As the reflective area noise is related to the position and the angle of the sensor, the 

noise generated in the reflective area is different for the sensors in the various positions, 
as shown in Figure 9. When the LiDAR sensors located at different locations irradiate an 
object, the point cloud data of the object are obtained. After registering and merging the 
point cloud data of all the position sensors, they are represented as global coordinates. 
Consequently, if it is ordinary data, the coordinate points of its point cloud are all identical. 
However, if it is a reflective object, the sensors located at different positions produce dif-
ferent artifacts because of the nature of the reflection. 

 
Figure 9. Schematic of the position of points in different sensors. 

The noise removal module contains two parts, as shown in Figure 10: the selection 
method based on the scattered peripheral sensors and the removal of noise by the multi-
position LiDAR sensing data comparison. 

Figure 9. Schematic of the position of points in different sensors.

The noise removal module contains two parts, as shown in Figure 10: the selection
method based on the scattered peripheral sensors and the removal of noise by the multi-
position LiDAR sensing data comparison.
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We input four thresholds in this module: the threshold of deleting the nearest sensor
γ, matching point threshold δ, number of the nearest sensor ε, and radius of the distance ζ.
First, the target sensor reflection area results are loaded sequentially; the LiDAR sensor
position data are loaded and sorted based on the distance to the target sensor position.
After deleting several sensors closest to the target sensor based on the threshold value γ,
the point cloud data from the remaining sensors are loaded into the k-d tree according
to the threshold value ε. Based on the noise part of the reflective area result of the target
sensor, the coordinate value of the noise point is obtained from the original point cloud
data by the index of the noise point, and the coordinate value of the noise point is used
to search in the k-d tree. If other points can be searched within the threshold ζ, and the
number of points searched is greater than the threshold δ, the point is a normal point;
otherwise, it is a noise point. Finally, the coordinates of the normal points are obtained
from the original point cloud by using the index of all the normal points and are saved
as the denoised point cloud. The main algorithm that processes multiple sensing data is
Algorithm 1.

Algorithm 1. Noise removal using multi-position LiDAR sensing data comparison

Input:
Threshold_of_deletes_nearest_sensor γ,
Matching_point_threshold δ,
Number_nearest_sensor ε
Radius_distance ζ
Peripheral LiDAR sensor position list {Xi, Yi}n

1
Target LiDAR sensor position (xtarget, ytarget)
Output: DenoisePointCloud
For target sensor reflective area result from target sensor position (xtarget, ytarget)
Load Peripheral LiDAR position data from LiDAR sensor position {Xi, Yi}n

1
Sort Peripheral LiDAR position data from LiDAR sensor position {Xi, Yi}n

1
Delete peripheral sensors position around the target sensor (xtarget, ytarget) by threshold γ.
Select peripheral sensors by threshold ε.
Load peripheral sensors point cloud from peripheral sensors position {Xi, Yi}ε1 into k-d tree
for each noise point do

find original location from point cloud
search noise point from k-d tree
if presence of other points in threshold ζ & number of points searched > δ then

add to normal point
else

add to noise point
end for
for normal point

Search point cloud location using normal point index
Save denoise point cloud

end for
end for

Through extensive experiments, this study concluded that sensors located in the
corners of the room generate less noise and can effectively capture the structure of the room.
Therefore, the four sensor locations in the corners of the room are always reserved for data
comparison. As the data obtained from the closer sensors are similar to the selected sensor
noise positions, we need to remove several sensor data from the closest positions of the
selected sensor. The details are shown in Figure 11. After removing the closest sensors to
the selected sensor, we select the current closest sensors and four sensors in the corners
of the room for data comparison. This diagram is a simplified version of the scattered
peripheral sensor selection method and the actual application. The specific parameters
vary depending on the scenario, owing to the large number of sensor locations and the
complexity of the situation.
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4. Experiments and Evaluation
4.1. Data Acquisition

The data used in this study were obtained from FARO Focus 3D X 130 [51]. We used
this device to capture real indoor scenes. The main data came from the ETRI exhibition hall.
The area is about 300 m2, which contains a large number of displays and glass areas. Other
data came from indoor locations, such as conference rooms (about 20 m2) and museums
(about 30 m2). Most of the scanner settings use default settings. Some of the settings data
are provided in Table 1, which may be changed for different scenarios. Here, we only
provide the more typical scanner settings data. Point cloud registration is courtesy of FARO
SCENE [10].

Table 1. Scanner settings parameters.

Scanner Settings Name Parameters

Scan Angular Area (Vertical) 90
◦ ∼ −60

◦

Scan Angular Area (Horizontal) 0
◦ ∼ 360

◦

Resolutions 10, 240 points/360
◦

Scanner Distance Range 130 m
Horizontal Motor Speed Factor 1.02

4.2. Generation of Ground Truth Data and Experimental Environment

As current data do not contain the ground truth (GT) data, 15 scenes are manually
denoised, and the GT data are generated to test the effectiveness of the proposed method.
In Figure 12, (a) shows the RGB image of the same scene, (b) shows the point cloud image
of the same scene, and (c) is the manually labeled GT image, where the green part is the
no-data region. The lasers do not provide the measured distances due to the reflective
surfaces, absorption by the target object, or due to non-existence. Black is the normal
region, and purple is the noise region.

Experiments were conducted using a desktop computer, with the following specifica-
tions: Windows 10 operating system and an Nvidia RTX 2080Ti GPU. An Intel Core i9-9900
CPU running Python 3.8 is configured to the system. FARO SCENE [10] software is used
to denoise the point clouds to compare the effectiveness of the methods proposed in this
paper. FARO SCENE [10] is a comprehensive 3-D point cloud processing and management
software tool. It also contains the common tools used for point cloud registration and
processing. In this experiment, three point cloud noise filters were used, which include a
dark scan point filter, a distance filter, and a stray point filter. The dark scan point filter
removes all scan points whose reflection value is below a given threshold. The distance
filter is used to remove scanned points within a specified range from the laser scanner
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data. The stray point filter has the same application field as the outlier filter. The specific
parameters are listed in Table 2.
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Table 2. FARO SCENE filter parameters.

Filter Name Parameters Name Parameters

Proposed Method

Sliding window size 100×100
Stride 50

Depth variance threshold α 0.2
Reflection variance threshold β 10,000

Threshold of deletes nearest
sensor γ 4

Matching point threshold δ 1
Nearest neighbor number ε 8

Radius distance ζ 0.01

FARO Dark Scan Point Filter Reflectance Threshold 900

FARO Distance Filter
Minimum Distance 0
Maximum Distance 200

FARO Stray Point Filter
Grid Size 3 px

Distance Threshold 0.02
Allocation Threshold 50%

The point cloud data used in this study are quite dense, and the number of points and
the noise points in the point cloud in each scene are listed in Table 3. The data obtained
varies slightly from the set resolution due to the sensor and the place where the data
are collected.

Table 3. Point number of point cloud.

Sensors Number The Size of
Range Image

Total Number of
Point Cloud

Total Number of
Noise Point

S001 10, 330 × 4268 44,088,440 128,601
S002 10, 330 × 4268 44,088,440 139,343
S003 10, 338 × 4268 44,122,584 80,130
S004 10, 330 × 4268 44,088,440 128,456
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Table 3. Cont.

Sensors Number The Size of
Range Image

Total Number of
Point Cloud

Total Number of
Noise Point

S005 10, 338 × 4268 44,122,584 178,147
S006 10, 328 × 4268 44,079,904 412,792
S007 10, 330 × 4268 44,088,440 283,019
S008 10, 330 × 4268 44,088,440 133,439
S009 10, 330 × 4268 44,088,440 42,168
S010 10, 330 × 4268 44,088,440 109,443
S011 10, 326 × 4268 44,114,048 137,085
S012 10, 328 × 4268 44,096,976 69,148
S013 10, 330 × 4268 44,088,440 77,341
S014 10, 334 × 4268 44,105,512 132,483
S015 10, 330 × 4268 44,088,440 98,729

4.3. Noise Detection and Performance

This study uses the same evaluation criteria as in [52] to quantitatively analyze the
proposed method. Noise is referred to as an outlier in this section for comparison purposes.
The outlier detection rate (ODR) is used to calculate the detection performance. The noise
detection rate is the ratio of the number of noises correctly identified by the proposed
method to the total number of noises, as expressed in Equation (5): the higher the ODR,
the greater the noise detected by the proposed method. The inlier detection rate (IDR)
is the ratio of the number of inliers correctly identified by the proposed method, to the
total number of inliers, as expressed in Equation (6): the higher the IDR, the greater the
number of inliers detected by the proposed method. The false positive rate (FPR) is the
ratio of the inliers identified as outliers to the total number of inliers: the lower the FPR,
the lower the rate at which the proposed method identifies outliers as inliers. The false
negative rate (FNR) is the ratio of outliers identified as inliers to the total number of outliers:
the lower the FNR, the lower the rate at which the proposed method identifies inliers as
outliers. Accuracy refers to the ratio of the correct predictions (correct outlier and correct
inlier) across all the points. If all the points are marked as outliers, the ODR becomes one.
Similarly, if all the points are marked as inliers, the IDR becomes one. When the above four
ratios are combined, the accuracy rate illustrates the effectiveness of the proposed method
in detecting the outliers. The ODR, IDR, FPR, FNR, and the accuracy are defined as follows:

ODR =
number o f outliers correctly identi f ied

total number o f outliers
, (5)

IDR =
number o f inliers correctly identi f ied

total number o f inliers
(6)

FPR =
number o f inliers identi f ied as outliers

total number o f inliers
(7)

FNR =
number o f outliers identi f ied as inliers

total number o f outliers
(8)

Accuracy =
TP + TN

total number of points
(9)

where TP and TN indicate the number of outliers and inliers that are correctly defined,
respectively.

Table 4 compares the results obtained in this study with the results obtained from
the FARO filter. The results obtained by the proposed method are superior to those of the
FARO filter regarding the ODR, IDR, FPR, and FNR. This demonstrates that the proposed
method can effectively detect the outliers and the common points and the FPR and the
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FNR are significantly lower than those of the FARO filter. Note that the objective it is to
obtain higher values of ODR and IDR and the lower values of FPR and FNR.

Table 4. Comparison of accuracy performance.

Sensors Number
Accuracy (the Higher, the Better)

FARO Result Our Result

S001 0.95351 0.97139
S002 0.93753 0.98322
S003 0.94718 0.98905
S004 0.95088 0.99058
S005 0.93813 0.98503
S006 0.92625 0.98012
S007 0.93602 0.98734
S008 0.94119 0.98779
S009 0.94173 0.98412
S010 0.93568 0.98917
S011 0.94076 0.98981
S012 0.95078 0.97774
S013 0.94661 0.97318
S014 0.93407 0.97917
S015 0.94165 0.98947

average 0.94146 0.98381

Table 5 shows the accuracy of the results of the proposed method, compared to that
of the FARO results. As expressed in Equation (9), the accuracy value is the ratio of the
accurately detected outlier and inlier points, to all the points. As the density and the scale of
the point cloud data used in this study are exceptionally large, and the inlier points account
for the vast majority. The results of the proposed method are only slightly better than those
of FARO in the comparison of the accuracy values. However, the images presented in the
paper evidently show that the proposed method successfully removes most of the outliers
that are due to reflections.

Table 5. Comparison of the quantitative performance.

Sensors
Number

ODR IDR FPR FNR

FARO Result Our Result FARO Result Our Result FARO Result Our Result FARO Result Our Result

S001 0.16994 0.55673 0.95580 0.97261 0.04419 0.02738 0.83005 0.44326
S002 0.18977 0.69611 0.93990 0.98413 0.06009 0.01586 0.81022 0.30389
S003 0.23453 0.86457 0.94847 0.98928 0.05152 0.01071 0.76546 0.13543
S004 0.22589 0.79470 0.95300 0.99115 0.04699 0.00884 0.77410 0.20530
S005 0.18062 0.80563 0.94121 0.98576 0.05879 0.01423 0.81938 0.19436
S006 0.14959 0.72257 0.93359 0.98256 0.06640 0.01744 0.85040 0.27742
S007 0.15795 0.65505 0.94104 0.98948 0.05895 0.01051 0.84204 0.34494
S008 0.12123 0.82198 0.94368 0.98829 0.05631 0.01170 0.87876 0.17801
S009 0.16194 0.84753 0.94248 0.98425 0.05751 0.01574 0.83805 0.15246
S010 0.05995 0.76042 0.93785 0.98974 0.06214 0.01025 0.94004 0.23957
S011 0.05431 0.84133 0.94353 0.99027 0.05647 0.00972 0.94568 0.15866
S012 0.16055 0.89068 0.95203 0.97788 0.04797 0.02211 0.83944 0.10931
S013 0.11603 0.82901 0.94807 0.97344 0.05192 0.02656 0.88396 0.17098
S014 0.22899 0.80661 0.93619 0.97969 0.06380 0.02031 0.77100 0.19338
S015 0.18443 0.79391 0.94335 0.98991 0.05664 0.01008 0.81556 0.20608

average 0.15971 0.77912 0.94401 0.98456 0.05597 0.01542 0.84027 0.22087

4.4. Noise Detection and Performance

In this section, we present the results obtained by the proposed method in the form
of pictures.

In Figure 13, the point cloud reflection noise detection results of some sensors are
shown. Here, (a) is the original point cloud, and (b) is the RGB image and the 2-D results
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obtained by the proposed method, respectively, and the white area is the detected noise
area, which can be observed in the RGB image. Further, (c) and (d) show the noise
detection results from different angles. The purple part shows the noise detected by the
proposed method.
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Figure 14 shows our results compared to the point cloud after manual denoising. This
image contains scanned data from 15 scenes. Here, (a) is the original point cloud, (b) is
the point cloud detected by our method, (c) is the point cloud after denoising using our
method, and (d) is the point cloud after manual denoising.
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Figure 16 illustrates the results of the proposed method. The green part of the figure
shows the noise area. This image contains scanned data for a total of 72 scenes.
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Figure 17 shows a comparison of the proposed results with the FARO SCENE de-
noising results. Here, (a) shows the original point cloud view, (b) shows the result after
the FARO SCENE denoising, and (c) shows the denoising result obtained from the pro-
posed method. The images evidently show that most of the noise due to reflections can
be effectively removed using the proposed method. Additionally, noise generated by
moving objects can be effectively removed. This image contains scanned data for a total of
72 scenes.
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Figure 18 shows the results when the proposed method is applied to other datasets
(other buildings in different areas) to verify the generalized performance of the algorithm.
In the other datasets, the proposed method is observed to effectively remove the noise
generated by reflections and the noises generated by moving objects.
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5. Discussion and Conclusions

This paper proposed a method to remove reflection noise in high-density point clouds.
In this method, the 3-D point cloud data were first converted into 2-D range image data,
and the reflected noise area was detected by calculating the variance in the range image.
The detected noise area was then compared with the point cloud data from sensors at other
locations to determine the specific noise location and to remove the noise. Experiments
show that this method is more effective in removing dense large-scale noise caused by
reflections and moving objects when compared to the traditional methods. In this study,
the point cloud data collected from several different buildings were tested, and good
results were obtained, indicating that the proposed method has wide applicability and can
effectively remove large reflective noise regions from dense point clouds. Therefore, this
study effectively fills the gap in handling large-scale point clouds by the traditional methods.
To the best of our knowledge, this study is the first to implement noise region denoising
for large-scale point clouds containing only single-echo reflection values. This paper also
uses FARO SCENE as a benchmark for comparison experiments, and the proposed method
in this paper is significantly better than other denoising methods. Consequently, a good
result was achieved.

In the current work, the reflection intensity value data were used for initial noise area
detection. Further, the location information of each point was used to detect the final noise
location via comparison with the point locations from other location sensors. However, a
drawback is that an accurate noise region must be obtained by comparing the point cloud
positions with those obtained from sensors at other locations. In future work, we will
use a machine learning approach to detect noise regions using only sensor data from a
single location.
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