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Abstract: Convolution-based autoencoder networks have yielded promising performances in ex-
ploiting spatial–contextual signatures for spectral unmixing. However, the extracted spectral and
spatial features of some networks are aggregated, which makes it difficult to balance their effects
on unmixing results. In this paper, we propose two gated autoencoder networks with the intention
of adaptively controlling the contribution of spectral and spatial features in unmixing process. Gat-
ing mechanism is adopted in the networks to filter and regularize spatial features to construct an
unmixing algorithm based on spectral information and supplemented by spatial information. In
addition, abundance sparsity regularization and gating regularization are introduced to ensure the
appropriate implementation. Experimental results validate the superiority of the proposed method
to the state-of-the-art techniques in both synthetic and real-world scenes. This study confirms the
effectiveness of gating mechanism in improving the accuracy and efficiency of utilizing spatial
signatures for spectral unmixing.

Keywords: hyperspectral unmixing; spectral–spatial model; autoencoder network; gating mechanism

1. Introduction

Hyperspectral images (HSIs) often contain affluent spectral information for the high
spectral resolution. However, owing to the limitations of imaging technology, the spatial
resolution of HSIs is commonly lower than that of multispectral images and visible light
images, which makes it likely to capture multiple substances in one pixel. Such pixels
are called mixed pixels, whose existing hinders the application of detection, classification,
and other applications of HSIs. Thus, spectral unmixing (SU) [1–5] was proposed to
decompose the mixed pixels into a set of substance spectra, called endmembers, and their
corresponding fractions, called abundances. SU is generally used as a preprocessing step
to provide rich pixel features for downstream tasks [6–9], or can be adopted directly as a
method for substance identification [10].

Spectral unmixing generally only considers spectral information for processing, and the
process of unmixing different pixels is independent. However, because of the complex
environmental distribution of ground substances and dynamic atmospheric conditions,
the accuracy of hyperspectral imaging is inevitably affected. The captured spectra are
therefore degraded by noises and the spectral distortion seriously restrains the accuracy of
SU. Though the spatial resolution of HSIs is coarse, it still provides inherent spatial correla-
tion worth exploring for SU. Thus, extensive works [4] have attempted to incorporate the
spatial information into the unmixing procedure with the intention of mitigating spectral
distortion as well as improving the robustness and accuracy of unmixing algorithms. Mul-
tiple steps of SU can incorporate spatial information, such as endmember extraction [11],
selection of endmember combinations [12] and abundance estimation [13,14]. Among the
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spectral–spatial unmixing methods, the spatial–contextual relevance of abundance has
attracted extensive attention of researchers, and numerous documents [15–21] have inves-
tigated the general spatial characteristics of abundance. Iordache et al. [15] proposed a
total variation (TV) spatial regularization for sparse SU, which exploits spatial information
by limiting the transition of abundance in the spatial domain. The motivation is that the
abundance of a pixel is likely to be similar to that of adjacent pixels. Liu et al. [16] proposed
a weighted nonnegative matrix factorization by incorporating the designed neighborhood
weights. A region segmentation method is first utilized to cluster local homogeneous
pixels, and then a TV-based regularization is applied in each region to promote spatial
similarity. This method avoids imposing abundance correlation regularization to areas of
alternating materials, which is an improvement over TV. He et al. [17] continued to research
on addressing spatial piecewise smooth structure and proposed a method based on sparse
unmixing and TV. To circumvent large-scale nonsmooth optimization problems in imple-
menting spatial regularization, Borsoi et al. [18] focused on solving methods and proposed
a multiscale spatial regularizer based on segmentation and over-segmentation algorithms,
which has competitive computational efficiency among existing spatial regularization
strategies. Over the past few years, abundance characteristics have been extensively used
in spectral unmixing algorithms [19–21] to incorporate spatial information on account of ro-
bustness and accuracy. Although considerable progress has been made by the studies, there
are still some fundamental shortcomings that hinder the application of the conventional
methods. First, specific priors are needed to simplify the problem of exploiting spatial
context, and the assumed scenarios are often idealized, which are not widely applicable to
various scenes. Second, the regularization-based methods are sensitive to the controlling
parameters, and users need to adjust the hyperparameters to ensure the effectiveness in
terms of different scenes, which is time-consuming and requires experience. Third, since
some methods use multiple steps and are not end-to-end, this will inevitably introduce
extra errors, thereby causing instability and reducing the overall performance. Therefore,
considering the disadvantages of conventional approaches, it is reasonable to research on
end-to-end methods with the ability to exploit spatial features adaptively.

Fortunately, the rapid development of neural networks has brought new solutions for
utilizing spatial information. The self-supervised autoencoders have received particular
interest in the field of SU recently for its considerable unsupervised feature representation
capability [22–29]. In addition, due to the structural convenience, two- or three-dimensional
convolution can be used to exploit spatial correlation without handcrafted designed as-
sumptions under the neural network framework. Extensive attempts have been made to
explore the efficient employment of autoencoders for SU. The earlier autoencoder-based
works were mostly based on single-hidden-layer architectures. Su et al. [23] firstly used
stacked autoencoders to denoise the input pixels with the intention of tackling outliers
and then adopted a final autoencoder to achieve endmember signatures and abundance
fractions. Yet, the stacked structure causes difficulty to training, and the preprocessing
procedure may introduce additional errors. Ozkan et al. [24] utilized a series of methods
to improve the performance of naive single-hidden-layer autoencoder. The inner product
at the encoder layer is replaced by spectral angle distance (SAD) to obtain discriminative
hidden abstracts. Batch normalization, dropout and weight regularization were included to
mitigate overfitting and facilitate reliable parameter estimation. Qu et al. [25] improved the
structure of stacked denoising autoencoders by employing a denoising constraint inspired
by marginalized denoising autoencoder to form an end-to-end unmixing network. Since
the single-layer encoder structure still limits the ability of high-level characteristic repre-
sentation, more researchers put their attention on multi-layer autoencoder architectures.
Zhao et al. [26] used a deep fully connected encoder network to capture more abstract
spectral features, which yields promising unmixing performances. However, spatial in-
formation was not incorporated in the network, making it hard to further enhance the
unmixing results. To this end, a fully convolutional encoder network was proposed in [28],
where two-dimensional convolutional layers were adopted to exploit local spatial corre-
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lation. Dou et al. [27] proposed an orthogonal sparse prior to regularize the abundance
encoded by the multi-layer encoder, which utilizes global spatial information. Similarly,
based on spatial regularization, an adaptive abundance smoothing method for autoencoder
was proposed in [22] to improve the adaptability of the spatial constraint. Though the
spectral–spatial unmixing method based on the autoencoder has shown better adaptability
and unmixing accuracy than conventional methods, the balance of spatial information
and spectral information becomes a new challenge. The ability to dynamically adjusting
the weight of spatial and spectral features that affects the unmixing result according to
different scenes has become the key to further improving the unmixing accuracy.

In this paper, we develop two gated autoencoder networks for spectral–spatial unmix-
ing. Considering the balance problem of spectral and spatial information, we introduce
the gating mechanism to adaptively mitigate the negative effects of uncorrelated spatial
distribution on unmixing results. The two architectures, three-dimensional convolutional
structure and dual branch structure are, respectively, utilized to exploit spatial–contextual
signatures and explore spectral–spatial characteristics. The main contributions of this paper
can be summarized as follows:

1. We propose a gated three-dimensional convolutional autoencoder network to extract
spectral and spatial features simultaneously. The architecture is constituted by a gated
network that produces the attention weights assigned to neighboring pixels and an
autoencoder backbone network that performs the unmixing procedure.

2. We propose a gated dual branch autoencoder network to improve the exploitation
efficiency of spatial and spectral information, respectively. The fully connected branch
takes advantages of extracting spectral features, and the two-dimensional convolutional
branch leverages the structural convenience of exploring inherent spatial correlation.

3. Two regularizers, the gating regularization and abundance sparsity regularization,
are imposed on the attention mask generated by the gated network and abundances,
respectively, to enhance the accuracy of unmixing results and facilitate physically
meaningful interpretation.

The remainder of this paper is organized as follows. Section 2 introduces the spectral
mixing model of SU and the gating mechanism used in the proposed method. Section 3
elaborates on the two proposed autoencoder networks with the objective functions and
regularizations. The experimental results are analyzed and demonstrated in Section 4.
Section 5 concludes this paper.

2. Related Works
2.1. Linear Mixing Model

The spectral mixing rule of the proposed method is based on linear mixing model
(LMM). We define N to be the number of pixels in an HSI, L to be the number of bands,
and P to be the number of endmembers. Let xi ∈ RL×1

+ be the i-th pixel of the observed
HSI, M = [m1, ..., mP] ∈ RL×P

+ be the endmember dictionary with P spectral signatures,
and ai ∈ RP×1

+ be the corresponding abundance of the i-th pixel. Then, the equation of
LMM can be formulated as

xi = Mai + ni,

s.t.
P

∑
j

aij = 1, ai ≥ 0, M ≥ 0,
(1)

where the ni is the additive noise caused by environmental factors or imaging errors.
The abundance satisfies two constraints, respectively, called abundance sum-to-one con-
straint (ASC) and abundance non-negativity constraint (ANC), which ensure the appropri-
ate physical interpretation. Since the reflectances of observed pixels are defined as positive,
all entries of the endmember matrix M should be nonnegative to be physically meaningful.
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2.2. Gating Mechanism

The gating mechanism is an effective data-driven approach to adaptively weighing
the significance of features in neural networks. The typical literatures are long-short
term memory (LSTM) [30] and gated recurrent unit (GRU) [31]. The gating mechanism
was invented to achieve long-distance dependencies and helps to avoid the problems
of gradient vanishing and exploding. In recent years, the gating mechanism has been
transferred to the field of image processing as a scheme to reweigh spatial and channel-
wise importance. For instance, squeeze-and-excitation network (SENET) [32] proposed a
gate-based block structure to recalibrate channel-wise feature responses. Dual attention
network (DANET) further introduced position attention module to facilitate the reweight of
spatial features [33]. The gating mechanism has become an important part of the attention
theories in different fields of deep learning nowadays.

The gating process can be characterized as

H̃ = g ∗H, (2)

where H denotes the layer of a neural network and g denotes the attention mask generated
by the gated network. The ∗ represents the element-wise product, and H̃ represents the
data filtered by the mask. Generally, the gating process does not change the shape of the
input data and only modifies the magnitude of the data. It should be noted that the shape
of g should align with one or more dimensions of H, so that the attention mask can measure
and regulate the significance of the target dimensions of H by element-wise product.

3. Methodology

In this section, we elaborate on the two proposed networks. The architectures are
first introduced, including the gated networks and the autoencoder backbone networks.
Then, we give the details in the forward propagation, including the modification of mask
and operations on layers. Lastly, the objective function, as well as the regularizations, is
illustrated from motivations and physical interpretations.

3.1. Gated Three-Dimensional Convolutional Autoencoder Network (GTCAN)

As illustrated in Figure 1, the proposed GTCAN can be divided into two parts. A con-
volutional network, termed gated network (Gated Net), is first used to generate an attention
mask to filter the input data. Then, the modified data is fed into an autoencoder network
(AE Net), termed backbone unmixing network, to perform spectral–spatial unmixing.

Figure 1. Architecture of gated three-dimensional convolutional autoencoder network.

With the intention of leveraging spatial information in the unmixing process, we first
segment the raw HSI cube into a set of small patches Xi ∈ RK×K×L, i = 1, 2, . . . , N. In each
patch, the central pixel is the target pixel to be unmixed, and the K× K− 1 surrounding



Remote Sens. 2021, 13, 3147 5 of 17

pixels are used to provide spatial information. In Figure 1, we take the case that K equals 3
as an example.

For spectral unmixing, spectral information basically plays the dominant role because
the employed spectral mixing model is based on the mixture of multiple spectra in a single
pixel. In this vein, the exploitation of spatial information can be used as an auxiliary
scheme to alleviate the distortion of spectral information due to environmental conditions
or imaging errors. In other words, neighborhood information can increase the applicability
of spectral unmixing in complex scenarios. However, spatial–contextual structure is not
always helpful. For instance, the central pixel of a patch is an isolated point in terms of a
substance, which means that its real abundance differs significantly from the abundances of
surrounding pixels. In this case, the uncorrelated spatial information may interfere with the
unmixing process and cause overfitting to surrounding noises. Thus, it is necessary to adopt
adaptive methods to control the effects of spatial information according to the local spatial
structure. In order to construct an unmixing framework with spectral information as the
mainstay and spatial information as the supplement, we use the gated network to produce
a mask to regularize the magnitude of adjacent pixels of the input data. The operation can
be regarded as evaluating the spatial dependence of surrounding pixels on the central pixel.

In the gated network, double two-dimensional convolutional units are used to extract
spatial signatures and produce a mask G ∈ RK×K, which has the same spatial shape as the
input patch. The process is summarized in Equation (3), where G is determined by the
inherent spatial feature of the input patch X, and Θg denotes the parameters of the gated
network. The detailed configuration of the network is given in the left column of Table 1.

G = fgate(X |Θg). (3)

Table 1. Network configuration of the proposed architectures. The number of input channel is omitted.

GTDAN GDBAN

Gated Net First Branch
Conv2D, size = K× K, channel = 16, padding = 1 Conv2D, size = K× K, channel = 128
Conv2D, size = K× K, channel = 1, padding = 1 FC, length = 64

AE Net Second Branch
Conv3D, size = K× K× 3, channel = 16 FC, length = 64

FC, length = 64 Gated Net
FC, length = P FC, length = 1

FC, length = L, bias = false The Rest

FC, length = 32
FC, length = P

FC, length = L, bias = false

Since the activation function of the gated network is sigmoid function, each value of
the element of the output mask will range from 0 to 1. Consequently, the central pixel will
also be filtered by the mask, which may weaken the importance of spectral information.
Specifically, during the training procedure, the network will try to minimize the objective
function. If the central pixel cannot provide sufficient and accurate spectral information due
to various distortions, the network is likely to overuse the adjacent information and ignore
the content of the target pixel because the diverse spectra of surrounding pixels are likely
to provide better local abstracts that can help the network to reconstruct the central input
spectrum. To circumvent this issue, we manually keep the weight of the central element
of the attention mask as 1. T1 and T2 are two templates matrices used to recalibrate the
mask. T1 is a square matrix with the central element being 0 and the remaining elements
being 1. The shape of T2 is the same as that of T1, and its central element is modified
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as 1, with remaining elements being zero, i.e., T2 = 1− T1. For instance, if K equals 3,
the template matrices can be expressed as

T1 =

1 1 1
1 0 1
1 1 1

, T2 =

0 0 0
0 1 0
0 0 0

. (4)

The process of mask recalibration is represented as

G̃ = T1 ∗G + T2, (5)

where G is the original mask output by the gated network. The T1 acts on retaining the
weight of the neighboring pixels and reset the weight of the middle pixel to 0. Then, we
adopt T2 to purposely increase the weight of the central pixel to 1. In this vein, the attention
mask is able to keep the spectrum of the central pixel unchanged and filters the information
of adjacent pixels at the same time.

In the next step, we multiply the mask with the input data to conduct the gating
procedure, and the formulation is given in Equation (6). The magnitude of insignificant
adjacent pixels will be weakened so as not to interfere with unmixing or cause overfitting.
Conversely, helpful spatial characteristics will be preserved and input to the subsequent
autoencoder network.

X̃ = G̃ ∗ X. (6)

Then, the reweighted input data is fed into the autoencoder network. We first adopt a
three-dimensional convolutional unit to extract spectral and spatial features simultaneously.
Next, two fully connected layers are employed to extract high-level representations from
the spectral–spatial feature and generate abundance. Finally, the decoder reconstructs the
data according to the estimated abundance. It should be noted that we remove the bias
of the last fully connected layer in Table 1 because the structure of the decoder should
conform to the spectral mixing model to be physically interpretable.

In the following contents, we will illustrate several components of the loss function of
the proposed network. Generally, the undulation of terrain and irregular illumination are
very common on the surface of the earth, resulting in approximately scaling changes in the
captured spectral information because the different strengthens of illumination will fairly
scale all bands of the spectra without changing the spectral angle. Thus, we adopt spectral
angle distance (SAD) as the reconstruction function, which facilitates angular similarity
and is not sensitive to magnitude scaling caused by irregular illumination. By contrast,
mean square error (MSE) only promotes similarity in Euclidean space and fails to tackle this
spectral variation. Compared with MSE, SAD is suitable for more scenes. The formulation
of SAD can be written as

LRE = arccos
(

xTx̂
||x||2||x̂||2

)
. (7)

where x is input data, and x̂ is the reconstructed data.
As the abundance is generated by the softmax function of the encoder network, the abun-

dance fraction is hard to achieve 0 or 1, which is not sparse. To make the estimated abundance
â better accord with the distribution of natural scenes, we use L1/2 regularization [34,35] to
facilitate sparsity, and the formulation parameterized by α can be expressed as

LABD = α ∗ ‖â‖1/2. (8)

In order to explore the effects of the gating mechanism on unmixing results as well as
increasing the adjustability of the network, we impose a regularization on the attention
mask G̃ to control the value. The regularization can be defined as

LGATE =
β

K ∗ K− 1 ∑ T1 ∗ G̃, (9)
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where β is the hyperparameter that determines the strength of filtration, and ∑ represents
the sum of all the elements of the matrix. The K ∗ K − 1 on the denominator is the nor-
malizing term. Since the attention weight of the central pixel is always 1, the role of T1
is to formally exclude it in the regularization. This regularization can be characterized as
penalizing the mean attention value of the adjacent pixels. For instance, if β is set as a large
value, the value of the mask is prone to be 0, and the exploited spatial information will
be reduced.

To sum up, the overall objective function can be summarized as

argmin
Θ

LALL = LRE + LABD + LGATE. (10)

where Θ denotes the parameters of the whole network. Lastly, the network can be
trained end-to-end by employing a backpropagation algorithm. After the model con-
verges, the abundance is obtained from the output of the encoder, and the endmembers are
the weight of the decoder.

3.2. Gated Dual Branch Autoencoder Network (GDBAN)

Different from the architecture of GTCAN, GDBAN extracts spatial and spectral infor-
mation separately. We, respectively, leverage fully connected layer and two-dimensional
layer to make use of their advantages in processing data with different structures. The ar-
chitecture of GDBAN is shown in Figure 2 and its configuration is specified in Table 1.

Figure 2. Architecture of gated dual branch autoencoder network.

In the first branch, we use two-dimensional convolution to extract spatial features
from the patch composed of K× K pixels and propagate the features into a fully connected
layer. Since the two-dimensional convolution is suitable for capturing information with
spatial structure characteristics, it can be utilized to exploit local spatial context. Then, a full
connection follows the convolutional layer to integrate the features into a lower dimension.

In the second branch, a fully connected layer is used to process the central pixel of
the patch, that is, the target pixel to be unmixed. The receptive field of each neuron of the
fully connected layer covers the entire spectrum, which makes it good at capturing global
spectral signatures. Compared with one-dimensional convolution, we do not need to use a
multi-layer structure to enlarge the receptive field of the hidden layer, which makes the
network more compact.

Next, in order to ensure the priority of spectral information and control the weight of
spatial information for unmixing, we use the spectral–spatial feature as the input of the
gated network to generate the attention mask. The extracted spatial feature and spectral
feature from the two branches are firstly concatenated into one vector and propagated to
a single-layer gated network. Then, a full connection operation is adopted to generate a
scalar mask, defined as g. The procedure of mask generation can be represented as

g = σ(Wg[hspatial, hspectral] + bg), (11)
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where hspatial ∈ R64×1 and hspectral ∈ R64×1 are the extracted spatial and spectral features
according to the configuration in Table 1. Wg ∈ R1×128 represents the weight of the gated
network and bg is the bias. [·, ·] denotes the concatenating operation and σ denotes the
sigmoid function. To perform the gating operation, the spatial feature is multiplied by the
attention mask. Then, we add the two features together to form an updated spectral–spatial
feature hall ∈ R64×1, shown in Equation (12), and feed it into a feedforward network to
encode the abundance and reconstruct the central pixel of the input patch.

hall = hspectral + g ∗ hspatial. (12)

The reconstruction function and the abundance sparsity regularization are the same as
those of GTCAN. The difference is that the attention mask generated by the gated network
of GDBAN is a scalar. Thus, the regularization for the mask parameterized by β is modified
as follows

LGATE = β ∗ g. (13)

Besides, the format of the overall loss function is consistent with Equation (10), and the
training method is also identical. Accordingly, the abundance and endmember can be
obtained from the converged model. The output of the encoder represents the inferred
abundance, and the weight of the decoder is the extracted endmember.

4. Experiments

In this section, we investigate the effectiveness of the proposed methods and compare
the performances with several unmixing techniques. The used metrics for evaluating the
algorithms are reconstruction spectral angle distance (rSAD), abundance root mean square
error (aRMSE) and endmember spectral angle distance (eSAD). They are given as follows

rSAD =
1
N

N

∑
i=1

arccos
(

xTx̂
||x||2||x̂||2

)
,

aRMSE =

√√√√ 1
NP

N

∑
i=1

P

∑
j=1

(aji − âji)2,

eSAD =
1
P

P

∑
j=1

arccos

(
mT

j m̂j∥∥mj
∥∥

2

∥∥m̂j
∥∥

2

)
,

(14)

where x denotes the input data, and x̂ denotes the reconstructed data. The a and m are the
reference abundance and reference endmember, respectively. Correspondingly, the â and
m̂ are the estimated abundance and estimated endmember, respectively. N and P represent
the number of pixels and the number of endmembers. Concerning the real-world scene
that lacks reference abundance, we use a classification-based metric, overall accuracy (OA),
to assess the unmixing performance.

The algorithms for comparison are introduced as follows:

• SCLSU [36]. Scaled constrained least squares unmixing, equivalent to the non-
negative least squares with normalized abundance, was proposed to address spectral
scaling effects.

• CNNAEU [29]. Convolutional neural network autoencoder unmixing is a technique
with fully two-dimensional convolutional architecture. Spatial information is used in
this method.

• DCAE [28]. Deep convolutional autoencoder uses multiple one-dimensional con-
volutional layers to encode the spectral information and a fully connected layer to
reconstruct the data. Spatial information is not incorporated in this method.

• AAS [22]. Autoencoder with adaptive abundance smoothing is a fully connected
network, and an abundance spatial regularization is included in the loss function to
exploit spatial correlation.
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One synthetic data and three real-world data were used to evaluate the performance
of the algorithms, which are as follows:

• Synthetic data. Six spectra were collected from the USGS library [37] and sampled into
200 bands as the endmembers. The abundances were generated by Gaussian fields
using the toolbox at [38]. Then, to take the spatial–contextual correlation into account
and model irregular illumination, we used normalized two-dimensional Gaussian
distribution ranging from 0.75 to 1.25 to scale the synthetic abundances. Lastly, we
synthesized the data following the LMM with random perturbations to simulate the
noises. The shape of the synthetic image is 70× 70× 200, and the image is shown in
Figure 3.

• Samson [39]. The size of this data is 95 × 95 × 156, and three endmembers are
considered in this data, which are soil, tree and water. The ground truth is referenced
from [39].

• Jasper Ridge [39]. The data contains tree, soil, water and road with the shape of
100× 100× 198. Ref. [39] provides the ground truth of this data.

• Houston [29]. The raw data was used in the 2013 IEEE GRSS Data Fusion Contest,
and we considered a 98× 128× 144 subimage in this study. Four spectra are manually
selected from the data as the endmembers. The ground truth is determined that if the
spectral angle distance between a pixel and one of the reference endmembers is the
closest, the pixel will be classified into the endmember category.

(a) (b)

Figure 3. A pseudo color image of synthetic data and endmembers. (a) Pseudo color image. (b) End-
member spectra.

4.1. Experimental Setup

All experiments were done on a setup with Nvidia GTX 1080Ti 11 GB GPU, Intel Core
i9-9900K 3.6 GHz 8-core CPU and 32 GB DDR4 memory. We use the Pytorch 1.6.0 and
CUDA 10.1 with python 3.7 to train the networks in this paper. For optimization, we use
Adam with a learning rate of 1 × 10−3 .

For a fair and efficient comparison, we adopted a similar training strategy to train
each network. The number of endmembers is determined based on documents of the
referenced data, and the selection of hyperparameters of the competitor methods refers to
the source documents. Since the proposed method is unsupervised, all samples of each
data are used for model training. To accelerate the training process and avoid inappropriate
initialization, we use the vertex component analysis (VCA) [40] to construct the endmember
dictionary of each algorithm before training. At the beginning of the training, the weight
that represents the endmembers will be frozen so that it will not deteriorate while training
other parameters. After the model converges, the endmembers will be unfixed and fine-
tuned. If the competitor algorithm contains a unique training strategy, we will keep the
practice according to the references. As the initialized parameters of neural networks are
random and the endmembers found by VCA are not constant, we repeat each experiment
ten times and guarantee the same random seeds in each group of experiments.
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4.2. Experiments on Synthetic Data

For the synthetic data, we analyze the experimental results from four aspects, i.e., as-
sessment of abundance error maps, analysis of statistical unmixing results, analysis of
robustness to noises, and running time comparison. For both proposed networks, we
empirically set the penalty parameter of sparsity-promoting term α of as 1 × 10−6 and set
the hyperparameter β that controls the gating mechanism as 1 × 10−3. The number of
training epochs is set to 150.

The absolute error maps of abundance are illustrated in Figure 4, where the abundance
errors are highlighted in red. Regarding SCLSU, it achieves good results on most abundance
maps, but many isolated abundance noises can be observed. Two reasons may account
for this situation. On the one hand, SCLSU is not robust to the perturbations for only
considering fitting the scaling effect of spectra. The existence of noises may mislead the
estimation of the scaling factor. On the other hand, spatial–contextual information is not
introduced in the method, and the abundance of each pixel is calculated independently,
resulting in an inaccurate evaluation for the consistency of abundance in homogeneous
regions. CNNAEU fails to obtain competitive results on this data. Due to its fully two-
dimensional convolutional architecture, CNNAEU is not good at capturing fine-grained
spectral features. The features of the target pixel will be aggregated with the features
of adjacent pixels, which induces the loss of precise spectral details. Though spatial
information is incorporated in the algorithm, a series of abundance estimation errors occur
caused by the insufficient capacity of representation of channel feature. Compared with
SCLSU, there is no large amount of noises on the abundance maps estimated by DCAE,
which indicates the favorable noise suppression ability of the autoencoder. However,
regional errors still exist. This is probably due to the fact that only spectral information is
used, which makes it difficult to further improve the unmixing accuracy. By contrast, AAS
incorporates a spatial regularization into the objective function, which helps to enhance the
abundance estimation ability of the network that only extracts spectral feature. Thus, AAS
obtains acceptable results. The abundance error maps generated by GTCAN and GDBAN
are the purest in comparison. Particularly, GTCAN suppresses the estimation noises of
single pixels well compared with SCLSU and does not produce regional errors compared
with AAS, which achieves the best visual result.
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Figure 4. Absolute error maps of the estimated abundances on synthetic data by different methods.
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Table 2 lists the quantitative results of the unmixing performance. In accordance with
the above analysis, GTCAN yields the best abundance estimation result concerning aRMSE
with minimum standard derivation, and GDBAN is slightly inferior to it. With regard
to the reconstruction performance (rSAD), except for CNNAEU, the algorithms achieve
similar results. This is because the failure of capturing effective spectral information of
CNNAEU leads to underfitting. Regarding the endmember estimation (eSAD), since the
decoder weight of each autoencoder-based technique is fine-tuned by the same endmem-
bers, the difference between the results is not large. The result obtained by the proposed
method is sub-optimal, which is close to the best result produced by DCAE.

Table 2. Quantitative results on synthetic data (SNR = 30 dB). The optimal results are bolded.

Methods rSAD (10−2) aRMSE (10−2) eSAD (10−2)

SCLSU 2.90 ± 0.12 3.17 ± 0.25 1.89 ± 0.23
CNNAEU 5.01 ± 0.67 12.79 ± 4.66 1.88 ± 0.23

DCAE 2.95 ± 0.12 3.88 ± 0.40 1.63 ± 0.23
AAS 2.96 ± 0.12 3.55 ± 0.25 1.87 ± 0.23

GTCAN 2.88 ± 0.12 2.85 ± 0.21 1.66 ± 0.24
GDBAN 2.90 ± 0.12 3.18 ± 0.21 1.65 ± 0.23

As the compared methods may be sensitive to the signal-to-noise ratio (SNR) of the
data, it is indispensable to investigate the robustness to noises. In the following Figure 5,
we assess the performances of the compared methods on the synthetic data under different
SNRs ranging from 15 dB to 35 dB. The results of rSAD and eSAD of most algorithms are
similar and do not show obvious differences. According to Figure 5b, SCLSU does not
show good robustness in terms of low SNR cases, but as the SNR increases, its unmixing
accuracy improves quickly. DCAE and AAS yield ordinary performances. The performance
of the proposed GDBAN is quite stable, and GTCAN achieves the best results in most SNR
scenarios, which indicates the superiority of the proposed architecture.

(a) (b) (c)

Figure 5. Robustness analysis with the different SNRs. (a) rSAD. (b) aRMSE. (c) eSAD.

Table 3 lists the running time of each approaches. Since spectral unmixing in this paper
is conducted in an unsupervised case, we did not perform any training-validation split
of the input data. We used all the pixels for training, and the spatial size of the synthetic
data is 70× 70. Namely, the number of samples is 4900. According to Table 3, SCLSU
has the highest efficiency because of the simplicity of the model. DCAE takes the highest
time to converge for its deep one-dimensional convolutional encoder network. CNNAEU
and AAS spend a moderate amount of time. Due to the application of various network
structures, our method does not yield competitive performance in terms of running time.
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Table 3. Running time comparison.

Methods SCLSU CNNAEU DCAE AAS GTCAN GDBAN

Time (s) 1 34 99 38 86 72

4.3. Experiments on Real-World Data

In the real-world data experiments, we evaluated the algorithms on three data from
three aspects, which are analysis of quantitative unmixing results, abundance analysis
from a visual perspective, and hyperparameter sensitivity analysis, respectively. The
hyperparameters of facilitating sparsity of GTCAN on Samson, Jasper Ridge and Houston
are set as 1× 10−2, 2× 10−2 and 1× 10−2, respectively. Accordingly, the α of GDBAN is set
as 1× 10−2, 2× 10−2 and 4× 10−2. The number of training epochs remains 150, and the
determination of β is analyzed in the following parameter sensitivity analysis.

4.3.1. Experiments on Samson Data

The first experiment is conducted on the Samson data, and the estimated abundance
maps are exhibited in Figure 6. It is observed that the abundance maps identified by our
proposed methods show high contrast and maintain the best purity. Each map contains re-
gions with clustered high abundance fractions and smooth low fractions, and the estimated
distributions are in accordance with natural appearance. It is worth noting that, compared
with other methods, GTCAN and GDBAN retain rich edge information for the abundance
maps, which is mainly on account of the adaptability of the gating mechanism. For instance,
at the junction area of water and soil, even if the abundance changes dramatically on both
sides of the boundary, the proposed algorithms can still give precise prediction to the pixels
with high abundance fraction. In addition, the abundances estimated by our algorithm
show good regional consistency. Taking the abundance maps of water as an example,
in land regions, the abundance of water is almost zero without regional errors, which
implies the effective utilization of spatial information. The statistical results in Table 4 also
verify the above analysis.

Reference SCLSU CNNAEU DCAE AAS GTCAN GDBAN

So
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Figure 6. Reference and estimated abundance maps on Samson data by different methods.

Since the gating mechanism is of great importance to the unmixing performance,
we investigate the effects through changing the penalty parameter of gating mechanism.
As illustrated in Figure 7, the abundance estimation performances concerning different
penalty values on three data are given. A larger value of β represents the closure of the
gate mechanism. In other words, the spatial information will be used less. Conversely,
the smaller β means that the spatial information is more preserved. According to Figure 7,
the penalty value for obtaining the best abundance estimation is approximately in the
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range of 1× 10−3 to 5× 10−2. This can be understood that, on the one hand, when the
gating regularization becomes stricter, the spatial information will be less helpful to the
unmixing. On the other hand, when the gating mechanism is not constrained strictly, it
will facilitate the reduction of reconstruction errors while ignoring balancing the effect of
spectral information and spatial information on unmixing. Therefore, limiting the value of
the mask to an appropriate range is conducive to unmixing performance.

Table 4. Quantitative results on Samson and Jasper Ridge data. The optimal results are bolded.

Data Methods rSAD (10−2) aRMSE (10−2) eSAD (10−2)

Samson

SCLSU 5.22 ± 0.25 13.27 ± 2.34 6.61 ± 0.26
CNNAEU 10.35 ± 1.02 24.13 ± 0.65 6.59 ± 0.26

DCAE 3.76 ± 0.08 14.94 ± 1.68 6.57 ± 1.40
AAS 5.30 ± 0.25 13.11 ± 2.35 6.54 ± 0.29

GTCAN 3.45 ± 0.03 10.94 ± 1.35 6.56 ± 1.04
GDBAN 3.45 ± 0.04 11.04 ± 1.41 6.51 ± 1.08

Jasper Ridge

SCLSU 12.55 ± 5.82 18.41 ± 3.01 24.43 ± 5.73
CNNAEU 16.19 ± 6.21 17.90 ± 1.80 24.43 ± 5.73

DCAE 8.92 ± 3.42 17.08 ± 3.39 22.76 ± 4.95
AAS 12.49 ± 5.91 17.68 ± 3.36 24.18 ± 5.72

GTCAN 6.60 ± 0.46 16.24 ± 3.39 21.27 ± 5.08
GDBAN 6.51 ± 0.45 16.23 ± 3.24 23.20 ± 7.25

(a) (b) (c)

Figure 7. Parameter sensitivity analysis of gating mechanism. (a) Samson scene. (b) Jasper Ridge scene. (c) Houston scene.

4.3.2. Experiments on Jasper Ridge Data

The second real-world scene is Jasper Ridge data, and the visual results are exhibited
in Figure 8. We can observe that the abundance maps estimated by the proposed methods
maintain the same style as that in the Samson data, which is high contrast and purity and
shows the best visual resemblance to the reference maps. For instance, the abundance
maps of dirt reflect high contrast because the maps maintain high abundance fractions
in clustered areas and clearly indicate the shape of the road, which may result from the
moderate application of the sparsity regularization. With regard to the maps of water and
road, due to the exploitation of spatial–contextual correlation, the backgrounds (regions of
low abundance fraction) present consistency and regional continuity and show the best
visual fidelity. The quantitative results are listed in Table 4, where the proposed methods
still yield the minimum error concerning each index.



Remote Sens. 2021, 13, 3147 14 of 17

Reference SCLSU CNNAEU DCAE AAS GTCAN GDBAN
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Figure 8. Reference and estimated abundance maps on Jasper Ridge data by different methods.

4.3.3. Experiments on Houston Data

Unlike the previous natural scene data, the Houston data is an urban scene data with
sharp regional edges and shorter transition areas between substances, which will test the
adaptivity of the methods for utilizing spatial information. Due to the lack of reference
abundance, we use OA to evaluate the abundance estimation performances of the methods,
and the labeled classification-based ground truth is shown in the following Figure 9.

Figure 9. Ground truth of Houston data.

The predicted abundance maps by different algorithms are presented in Figure 10,
and the corresponding statistical results are listed in Table 5. We observe that the unmixing
performance of GDBAN is outstanding in terms of OA and eSAD. Several reasons may
account for this result. First, the classification-based evaluation index, overall accuracy,
only judges whether the corresponding endmember of the highest abundance fraction
matches the reference material, requiring high-contrast abundance to obtain a satisfying
consequence. In addition, the characteristics of urban scene ensure that the distribution
of abundance is sparse. Therefore, the sparsity of abundance has a great influence on
the unmixing results of this data. However, high sparsity requirements will lead to the
increase of reconstruction error, which may cause underfitting and hurt unmixing accuracy.
Because of the favorable reconstruction performance and reconstruction stability (low
standard derivation) of the proposed algorithm, it can enhance the sparsity of generated
abundances without causing degradation of unmixing. Second, it should be noted that GT-
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CAN does not yield similar competitive results as GDBAN. The abundance maps of asphalt
will serve as an example. GDBAN suppresses the low abundance fractions to maintain
the uniformity of the background, while GTCAN encounters trouble with eliminating the
interference caused by alternating roofs and vegetation. The good performance of GDBAN
stems from the ability to easily shut down the impact of spatial information because the fre-
quent alternation of the substances provides little useful adjacent information and instead
will mislead the solution of unmixing. Compared to GTCAN using a matrix as the mask
to filter spatial information, GDBAN only needs to pay attention to one parameter, which
is more efficient and convenient. Third, since the spatial–contextual dependence is not
satisfied in some regions, the effective extraction of spectral information becomes the key to
accurate unmixing. Compared with one-dimensional convolution and three-dimensional
convolution, full connection is more efficient in utilizing spectral information for its global
receptive field, so GDBAN achieves more acceptable results.

SCLSU CNNAEU DCAE AAS GTCAN GDBAN

C
on

cr
et

e
A

sp
ha

lt
M

et
.R

oo
fs

Ve
ge

ta
ti

on

Figure 10. Estimated abundance maps on Houston data by different methods.

Table 5. Quantitative results on Houston data. The optimal results are bolded.

Methods rSAD(10−2) OA(%) eSAD(10−2)

SCLSU 4.04 ± 0.84 71.33 ± 13.85 7.59 ± 0.68
CNNAEU 11.56 ± 1.81 59.23 ± 6.71 7.55 ± 0.68

DCAE 3.08 ± 0.65 73.51 ± 12.70 7.35 ± 0.71
AAS 4.10 ± 0.74 74.72 ± 15.59 7.55 ± 0.67

GTCAN 2.48 ± 0.43 75.71 ± 16.26 7.39 ± 0.77
GDBAN 2.76 ± 0.33 78.62 ± 16.41 6.06 ± 1.23

5. Conclusions

The exploitation of spatial information has long been a concern in the field of spectral
unmixing. Researchers made plenty of attempts to leverage spatial features to enhance the
unmixing accuracy and robustness, which are based on handcrafted designed rules and
incorporating adaptive mechanisms. In this paper, aiming at improving the efficient and
robust employment of spatial correlation in different scenes, we propose two neural net-
work architectures with sparse and balancing regularizations for spectral–spatial unmixing.
The first network, GTCAN, uses a matrix mask to filter the spatial information and adopts
three-dimensional convolution to extract spectral and spatial information simultaneously.
The second network, GDBAN, leverages the advantages of two-dimensional convolution
and full connection in exploiting spatial and spectral information, respectively, and em-
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ploys concatenated spectral–spatial features in the generation of the spatial attention mask.
Furthermore, the L1/2 sparsity regularization and gate penalty regularization also play
their significant roles in contributing to the appropriate implementation of the proposed
network. The experiments have validated that, compared with the state-of-the-art unmix-
ing techniques, the proposed methods yield competitive performance in both the synthetic
scene and different real-world scenes. In addition, the experiments indicate that there is
still room to improve the regularization mechanism for spatial information, which is worth
investigating in further research.
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