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Abstract: Practical landslide inventory maps covering large-scale areas are essential in emergency
response and geohazard analysis. Recently proposed techniques in landslide detection generally
focused on landslides in pure vegetation backgrounds and image radiometric correction. There
are still challenges in regard to robust methods that automatically detect landslides from images
with multiple platforms and without radiometric correction. It is a significant issue in practical
application. In order to detect landslides from images over different large-scale areas with different
spatial resolutions, this paper proposes a two-branch Matrix SegNet to semantically segment input
images by change detection. The Matrix SegNet learns landslide features in multiple scales and aspect
ratios. The pre- and post- event images are captured directly from Google Earth, without radiometric
correction. To evaluate the proposed framework, we conducted landslide detection in four study
areas with two different spatial resolutions. Moreover, two other widely used frameworks: U-Net and
SegNet, were adapted to detect landslides via the same data by change detection. The experiments
show that our model improves the performance largely in terms of recall, precision, F1-score, and
IOU. It is a good starting point to develop a practical, deep learning landslide detection framework
for large scale application, using images from different areas, with different spatial resolutions.

Keywords: landslide detection; Matrix nets; different spatial resolutions

1. Introduction

Landslides have become devastating hazards around the globe, especially in moun-
tainous regions. They are associated with climate change, and can cause substantial loss of
life and property [1,2]. Diving into the mechanisms of landslides for accurate landslide
prediction calls for practical landslide mapping from large scale areas, with complicated
background objects. Many researchers have developed advanced technologies in land-
slide detection, but they still face challenges in transferring the technology for practical
application [3–6].

Generally, landslide detection technology from remotely sensed images can be grouped
into two categories: image enhancement based [7] and machine learning based [8]. The
image enhancement based category enhances landslide information over other background
objects through typical image processing techniques, such as Markov random field [5,9],
morphological operations [10], object-oriented image segmentation [11,12], and the image
enhancement method [8]. One main drawback of the methods abovementioned is the
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parameter tuning process, which has to be conducted by trial and error. In terms of building
machine learning models in detecting landslides, the manual parameter tuning process can
be avoided. Random forest is a popular model that is flexible and has less probability of
overfitting [13]. It has been widely used in landslide detection by classification [14,15] or re-
gression [16]. Apart from random forest, support vector machine (SVM), decision tree, and
k-means clustering methods have been applied to detect landslides [17–19]. The main ob-
stacle in applying machine learning models in practical applications is the time-consuming
feature engineering. It is quite difficult to design appropriate feature to distinguish land-
slide from bare soil, because soil takes similar spectral and textural characteristics with
landslides. Change detection is a commonly used framework in landslide detection, by
exploring the spectral or textural changes between images from different time domains [20].
However, due to different imaging conditions, the captured remotely sensed images mostly
require radiometric correction to synchronize [5].

The advent of deep convolutional neural networks (CNNs) makes it possible to over-
come the shortages abovementioned, by fitting target functions to achieve reasonable de-
tection performance using convolution layers. It has been widely used in computer vision,
achieving state-of-the-art performance approval [21,22]. Several studies have explored
the application capabilities of deep learning frameworks in landside detection [23,24].
Ding et al. [25] applied a six-layer CNN architecture to detect one small landslide event
in Shenzhen and discovered a low commission error. A seven-layer CNN architecture,
synthesized with an improved region growing method, was adopted to detect two land-
slide events [26], achieving high sensitivity. Omid, et al. [23] explored the performance of
different technologies in landslide detection by conducting a comparison of artificial neural
networks, support vector machines, random forest, an eight-layer CNN, and a five-layer
CNN with different input image sizes. The best mean intersection-over-union (mIOU) of
78.26% was achieved from the five-layer deep learning method with an input image size
of 16 × 16 pixel. Apart from application in high spatial resolution images, there is also
research exploring landslide detection from hyperspectral remote sensing images using a
deep belief network to extract features of landslides, which are further used for detection
by a logistic regression classifier [24]. In accordance with the development of deep learning
architectures, Bo Yu et al., [27] proposed an object-based pyramid scene parsing network
(PSPNet) [28] to detect landslides in Nepal in 2015, from the annually synthesized Landsat
8 image, obtained from Google Earth Engine. They saw a 44% improvement in recall
and 15% improvement in precision compared with the traditional method. Nikhil et al.
proposed a modified U-Net [29] to detect landslides from high spatial resolution images
and achieved a detection rate of 0.72.

The studies above are generally conducted on images with the same spatial resolution
after radiometric correction with the training data. It largely simplifies the cases in evaluat-
ing the practicability of the proposed model in different areas for actual application, such
as emergency response. In this paper, we proposed an end-to-end deep semantic segmenta-
tion framework of a two-branch Matrix SegNet to detect landslides. It was assembled from
state-of-the-art key point detector Matrix Nets (xNets) [21]. The training and evaluating
images of the proposed model were both achieved from different study areas with different
spatial resolutions. Semantic segmentation is a typical application branch in computer
vision [30], widely used in unmanned driving [31] and robotic domains [32]. It assigns
a semantic label to each pixel in the image. Given two input images in different time
domains, our pipeline extracts feature maps with a backbone of ResNet-50, respectively,
and enhances the more significant features using a squeeze-and-excitation (SE) module [33].
The modified xNets module, inspired by Matrix Nets [21], is further adopted to learn
features with various scales and aspect ratios. A binary segmentation layer is added up
to generate a binary image with pixels labeled as landslides or background objects. The
proposed deep learning framework is evaluated by four different areas, with multiple
scales of landslides and complicated background objects. Furthermore, we compare the



Remote Sens. 2021, 13, 3158 3 of 16

detection performance with the widely used network architecture U-Net and SegNet. The
main contributions of our manuscript are as follows:

(1) We proposed a practical deep learning framework for landslide mapping from differ-
ent areas with different spatial resolution images.

(2) We explored the capability of the proposed model in detecting landslides with com-
plicated background objects.

(3) We performed landslide detection by learning features with multiple scales and aspect
ratios, without radiometric correction on the input images.

The rest of our manuscript is organized as follows: the related works with the proposed
network architecture and recent developments in semantic segmentation are presented in
Section 2. Section 3 introduces our proposed framework and experimental settings. The
study area and data collection are demonstrated in Section 4. Sections 5 and 6 illustrate
the evaluations and discussions, respectively. Our conclusions are presented in the final
section.

2. Related Works
2.1. Semantic Segmentation Development

Generally, semantic segmentation has two executing paradigms [34], one is two-stage
segmentation, the other is one-stage. The two-stage segmentation method segments images
after detecting the bounding box of each object. Mask R-CNN [35] is a typical method, and
lays the foundation for the development of other methods, such as PANet [36], and Mask
Scoring R-CNN [35]. Two-stage segmentation can achieve high accuracy but low efficiency.
The one-stage end-to-end network architecture is more practical in actual application cases
(we adopt it in this study). It mostly takes the structure of the encoder–decoder; encoding
the input images into feature maps is conducted by spatial pooling or atrous convolution
and decoding the feature maps to restore segmentation detail is achieved by deconvolution
or up-sampling operations. SegNet [37], U-Net [29], PSPNet [28], and the series of DeepLab
models [38,39] all take such typical network structures. In terms of landslide detection,
U-Net is a commonly used network architecture [40] because it is easy to train and is highly
efficient [41].

2.2. Matrix Nets (xNets)

The xNets module was originally proposed in an object detection framework [21].
It was designed to detect key-points by learning heat maps, corner regression, or center
regression, simultaneously. xNets, inspired by the Feature Pyramid Networks proposed for
object detection [42], was adopted to down-sample the input feature maps by convolution
in horizontal, vertical, and diagonal directions, separately. Therefore, it can learn features
with multiple scales and aspect ratios, which are necessary in landslide detection from
images with different spatial resolutions. Synthesizing the works in [21,42], a two-branch
Matrix SegNet is proposed in this manuscript, modifying xNets module to detect landslides.
The images before and after the landslide event are drawn as inputs of the two-branch
Matrix SegNet and encoded to the feature maps separately, without radiometric correction,
as required in [5].

3. Proposed Architecture

Due to the large proportion of background objects in remotely-sensed images, we
first adopted potential landslide detection on the pre- and post-event images for each
study area, to remove the background objects that were easily separable. A raw image
example with a spatial resolution of 19 m is shown in Figure 1. Since a landslide takes
similar spectral characteristics with bare soil in the image, we assigned all of the pixels
with intensity values in the green channel smaller than the red channel as a potential
landslide, and others as background objects. Such operation was conducted because the
red channel was more sensitive to bare soil than the green and blue channels [43]. By
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eliminating enormous background object pixels, potential landslide detection can save
much computation consumption.
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dicates the concatenation of two feature maps, + means the addition operation of the input feature 
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Figure 1. Example of a raw image and potential landslide extracted based on a raw image: (a) raw image; (b) potential
landslide extracted image.

Based on the detected potential landslide image, we calculated connective contour
for the potential landslide pixel groups, according to their distribution. Each contour is
recognized as a potential landslide. Among the potential landslide contours, bare soil was
a major background object that was difficult to recognize. Therefore, we proposed a two-
branch Matrix SegNet to enhance the landslide feature learning ability in distinguishing
landslides from confusable background objects. The proposed model is trained on image
patches that are cropped from the original images based on each connective contour. This
strategy could enhance the distinguishing ability of the proposed model more directly and
avoid the unbalanced sample distribution issue commonly confronted in natural hazard
detection, where the number of landslide pixels is smaller than that of background objects
in magnitudes.

As shown in Figure 2, our proposed semantic segmentation network takes a twin-
tower structure to explore the land cover change of the images before and after the land-
slide event.
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Figure 2. Proposed semantic segmentation network architecture, wherein the concat operation
indicates the concatenation of two feature maps, + means the addition operation of the input feature
map and output feature map of the SE module.

The twin-tower architecture is employed according to the conclusion in [44]; it is
better than concatenating the input images directly. The two input images are encoded
into two feature maps with a backbone of ResNet-50 [45], respectively. ResNet-50 is a
50-layer residual network, a widely used network backbone in learning features [29,37,42].
It was proposed to solve the problem of model degradation by adding an identity mapping
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in each network building block. Model degradation is a common issue raised by the
continuously increasing layers of the network. The encoded feature maps by backbone
are further concatenated and enhanced by the squeeze-and-excitation (SE) module, as
demonstrated in Figure 3. SE enhances features by learning the weight for each channel of
feature maps, multiplying the learnt weight with each corresponding feature map channel.
The enhanced feature maps are further used for learning features with multiple scales and
aspect ratios using the matrix convolution module. Figure 4 shows the detailed network
structure of the matrix convolution module. It consists of 5 × 5 matrix of convolution
operations, wherein vertical convolution (shown in yellow) down-samples the input feature
maps vertically, horizontal convolution (shown in red) down-samples the input feature
maps horizontally, and diagonal convolution (shown in green) down-samples the input
feature maps in both directions. By sampling the feature maps in three different ways
simultaneously, the matrix convolution can extract features in multiple scales and aspect
ratios and generate an output feature map Fmo. It takes the same size with that of the input
feature map Fmi. To enlarge the feature scale extraction, we concatenate the feature maps
Fmi and Fmo for final convolution to produce a semantic segmentation result image.
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input feature map, Fmo is the output feature map, yellow feature maps are obtained by vertical
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Inspired by RetinaNet [46], focal loss function is adopted in our framework training
pipeline. It was proposed to deal with the unbalanced sample distribution between positive
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and negative samples, which is commonly confronted in landslide detection. Focal loss is
modified from binary cross entropy loss, as stated in Equation (1), wherein ygt indicates the
ground truth label, and ppred stands for the probability calculated by the model that input
sample belongs to label 1 (binary 0/1 classification task). The weight of negative samples
is reduced in the convergence of the training model by adding weight factor α, as shown in
Equation (2). Moreover, focal loss focuses on difficult samples by adding focusing index β.
It can adjust the ratio of easy examples, being assigned a small weight using β. Following
the works in [46], β is set as 2 and α is set as 0.25.

Lentropy = −ygtlogppred −
(
1 − ygt

)
log(1 − ppred) (1)

L f ocal = −α(1 − ppred)
βygtlogppred − (1 − α)ppred

β
(
1 − ygt

)
log(1 − ppred) (2)

4. Study Area and Dataset Preparation

In order to evaluate the transferability and robustness of our proposed two-branch
Matrix SegNet, it was applied to detect landslides in four research areas, including the
Lushan earthquake impacted area (Lushan in short), the Jiuzhaigou earthquake impacted
area (Jiuzhaigou in short), the Central Nepal area (Nepal in short), and Southern Taiwan
(Taiwan in short). All images before and after the landslide events were collected from
Google earth (because they are public and free). The images collected were directly used for
the training model, without radiometric correction. It added more difficulty in evaluating
the proposed model. Due to different imaging times and limited data provided from Google
Earth, there were still some high spatial resolution images missing after the landslide event.
Therefore, we adopted different resolutions for different study areas, as long as they
generally covered the impacted area, with an acquisition time of within 2 years after the
event. The unified resolution for each study area was selected as high as possible. Table 1
presents general information of the images used for each landslide event, and the detailed
process of each corresponding dataset construction can be referred to in the following part.

Table 1. General information of images used for each landslide event.

Dataset Pre-Event Image
Time

Post-Event Image
Time Image Size Spatial

Resolution

Landslide/Non-
Landslide Pixel

Ratio (%)

No. of
Landslides

Lushan 31 December 2010 31 December 2013 5626 × 5088 19 m 0.084 11,754

Jiuzhaigou 7 December 2015
13 August 2017
14 August 2017

27 September 2019
8999 × 9890 2.39 m 0.55 3817

Nepal 12 December 2014 9 November 2015 6627 × 5985 2.39 m 0.26 1126
Taiwan 31 December 2008 31 December 2009 2685 × 4105 19 m 0.60 359

4.1. Lushan Earthquake-Induced Landslide

The magnitude of the 7.0 Ms Lushan earthquake occurred in Lushan County, Sichuan
Province, on 20 April 2013 (shown in Figure 5). It triggered tens of thousands of land-
slides [47] and led to severe casualties and loss of wealth. The landslides were manually
interpreted from high spatial resolution images on the GIS platform [47]. With the landslide
inventories interpreted in [47], we collected Google Earth images covering the impacted
area before and after the earthquake, with a spatial resolution of 19 m. The images were
acquired on 31 December 2010, and 31 December 2013, respectively. From Figure 5, we
can recognize that forestry and road networks occupy the majority part of the study area.
Landslides are distributed intensively along the side of road networks. Since the landslide
inventories in [47] are visually interpreted from images with resolutions of 1 to 15 m, they
cover more details than what we can achieve from 19 m resolution images. Therefore, we
adjusted the landslide inventories and removed the landslides that could not be visually
interpreted from the 19 m resolution images. After modification, the number of landslide
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inventories reached 11,754, which could still provide abundant training landslide pixel
samples to build up a landslide detection model.
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4.2. Jiuzhaigou Earthquake-Induced Landslide

On 8 August 2017, an earthquake with a magnitude of 6.5 Mw occurred in Jiuzhaigou
County. Synthesizing field investigations and visual interpretations from high spatial
resolution images, 4834 earthquake-triggered landslide inventories are mapped in [48]. The
images covering the Jiuzhaigou earthquake-impacted area before and after the event were
downloaded with a resolution of 2.39 m. However, the resolution is still different from
that used to interpret landslide inventories in [48]. Therefore, the landslide inventories
were adjusted to match the images we captured from Google Earth, as well by visual
interpretation. The number of landslide inventories maintained in our study images is
3817. Moreover, there is one point where the images (after the event collected from Google
Earth) are largely covered by clouds, as shown in Figure 6a,b. We collected one more image
taken on 27 September 2019, in Figure 6c. Some parts are updated in Figure 6c, while
the majority parts are maintained (the same as in Figure 6b). Concerning the disturbing
clouds, we synthesized the three images by selecting the smallest pixel intensity in the
green channel to maintain soil information and remove clouds. The synthesized image
is shown in Figure 6d, and is directly used for landslide detection, although there is still
some remaining clouds. From Figure 6d, we can recognize that landslides are distributed
intensively in the central part of the study area and sparsely along the side of road networks.
The main background objects mainly comprise of road networks, forestry, vegetation, bare
soil, rocks, and clouds. This complicated object distribution pattern can be used to evaluate
the transferability of the proposed model.

4.3. Central Nepal Landslide

Nepal is a country prone to multiple geohazards. In 2015, Nepal went through a series
of deadly earthquakes and experienced thousands of landslides [49]. As shown in Figure 7,
we randomly selected one mountainous spot with numerous landslides in Central Nepal
and collected the corresponding images from Google Earth with a spatial resolution of
2.39 m. The landslides are mainly distributed along the side of road networks. Ground
truth landslide polygons used for training and evaluating models are visualized by two
experienced experts.
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4.4. Southern Taiwan Landslide

Southern Taiwan is vulnerable of rainfall-induced landslides [50]. Typhoon Morakot
hit Taiwan on 7 August 2009, and resulted in about 18,000 landslides. There has been
considerable research (in regard to detecting landslides) for that event [51], but that study
area is purely cut out from rural areas, and the background objects are generally pure
vegetation. On the contrary, our study area (shown in Figure 8) is a rectangle, including
oceans, an urban area with construction, and a rural area with bare soil and road networks.
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The landslides are distributed intensively in the central part of the study area. That adds
more difficulty in detecting landslides, but one can evaluate the model more practically
and objectively. The images we collected from Google Earth have a resolution of 19 m,
and the corresponding ground truth landslide polygons are visually interpreted by two
experienced experts.
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31 December 2009.

5. Experiments and Evaluations
5.1. Experimental Settings

Our experiment was conducted on the PyTorch deep learning framework, and the
proposed model was trained on three TITAN × GPUs from NVidia. Each GPU had a
memory storage of 12 GB. The strategies of random scaling, random colorization, and
random cropping were adopted to enlarge the data variability and enhance the general-
ization ability of the model. As introduced in Section 3, a potential landslide was first
detected from the collected image to remove background objects (as many as possible).
Based on the detected potential landslide image, four patches with a size of 512 × 512 pixels
were generated in four directions, respectively, for each connective contour to cover more
neighboring background objects, as demonstrated in Figure 9. For the cases where patch
regions exceed image boundaries, they would be filled with zero intensity to maintain
a size of 512 × 512. For cases where the potential landslide contour exceeds 512 × 512,
the patch would take the same size of the bounding box of the corresponding connective
contour. The total number of cropped patches of landslide events in Lushan is 7140, in
Jiuzhaigou—19,088, in Nepal—6037, and in Taiwan—1160.
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The Adam (adaptive moment estimation) optimizer [52] is used to optimize our
proposed framework. Following the work in [21], the initial learning rate is set to 5 × 10−5,
and has a decay rate of 10. We trained our model on 70% of the cropped patches generated
in Lushan earthquake-induced landslide images and evaluated the model structure on the
rest patches. In order to evaluate the transferability of the proposed network structure,
we randomly selected 30% of the cropped patches from the other three events (Jiuzhaigou
earthquake-induced landslide event, Nepal landslide event, and Taiwan rainfall-induced
landslide event) to fine-tune the model, and we evaluated the model with the rest patches,
respectively. The number of patches used for evaluation in each of the corresponding
four datasets are 4998 (Lushan), 13,362 (Jiuzhaigou), 4226 (Nepal), and 812 (Taiwan), and
the corresponding number of ground truth landslide inventories for each dataset is 654
(Lushan), 1286 (Jiuzhaigou), 483 (Nepal), and 62 (Taiwan).

5.2. Evaluations

To verify our proposed model, U-Net and SegNet were adopted to detect landslides
on the four evaluation areas. Since U-Net and SegNet are both originally proposed with a
single branch, they are designed to process input images with a single time domain. In
order to conduct change detection from images with two different time domains, both U-
Net and SegNet were adapted to take the same twin-tower structures before the backbone of
ResNet-50, to carry on a fair performance comparison with our proposed model. Moreover,
the modified U-Net and SegNet were trained on the same data, with the same strategies
and loss functions. We randomly selected two test sites for each evaluation study area and
demonstrated the corresponding detection results by U-Net, SegNet, and the proposed
two-branch Matrix SegNet in Figure 10, respectively.

A visual comparison of Figure 10 reveals that the matrix convolution module and the
squeeze-and-excitation module adopted in the two-branch Matrix SegNet work well in
capturing multi-scale features and enhancing useful features from images with different
spatial resolutions. Most landslides can be well detected by the two-branch Matrix SegNet
in all four study areas, except for some minor landslides omitted in each image, especially
in the cases of Lushan. As shown in Figure 10(c1,c2), SegNet fails to detect most landslides
in the images of Lushan. U-Net omits more small landslides than our two-branch Matrix
SegNet, as shown in the yellow circle in Figure 10(d1). In Jiuzhaigou, SegNet is able to
detect some landslides, but omits more landslides (referring to Figure 10(c3,c4). U-Net
performs much better than SegNet in detecting most landslides, nevertheless, it misclas-
sifies more tiny landslides as background objects compared with the two-branch Matrix
SegNet in Figure 10(a3–d3,a4–d4). The landslide distributions of images in Nepal and
Taiwan are comparatively simpler, and the detection performances by the three methods
are largely enhanced. However, omission is still an important issue in small landslide
detection, especially by SegNet and U-Net. Moreover, in Taiwan (Figure 10(a7–d7,a8–d8)),
commission is largely raised by SegNet and U-Net as well. Faced with complicated back-
ground objects in different spatial resolutions, the proposed two-branch Matrix SegNet
behaves generally well in landslide detection by learning multi-scale features through the
matrix convolution module, enhancing useful features through the squeeze-and-excitation
module. That further verifies the effectiveness of our model in detecting various landslides
from complicated background objects without radiometric correction.

To present a general statistical and objective evaluation on each of the four study areas,
we calculated recall, precision, F1-measure, and intersection over union (IOU), according
to Equations (3)–(6) for each study site, and listed the statistics in Tables 2–5, respectively.
TP indicates the number of ground truth landslide pixels correctly classified to landslides.
TN indicates the number of ground truth background object pixels correctly classified as
background objects. FP indicates the number of ground truth background object pixels
misclassified as landslides. FN indicates the number of ground truth landslide pixels
misclassified as background object pixels. IOU and F1—measure are commonly used as
comprehensive evaluation indexes, balancing between recall and precision.
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Figure 10. Landslide detection results of two test samples in each dataset: the images in column
(a) indicate ground truth images of landslides, labeled as white, and background objects are labeled
as black; the images in column b–d demonstrate the detection results by our two-branch Matrix
SegNet, SegNet, and U-Net, respectively; indexes (*).1–(*).2 represent the test images in Lushan;
indexes (*).3–(*).4 represent the test images in Jiuzhaigou; indexes (*).5–(*).6 represent the test images
in Nepal and indexes (*).7–(*).8 represent the test images in Taiwan, * indicates a–d.
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IOU =
TP

FP + FN + TP
(3)

recall =
TP

TP + FN
(4)

precision =
TP

TP + FP
(5)

F1-measure =
2 × precision × recall

precision + recall
(6)

Table 2. Evaluation statistics (%) in landslide detection from Lushan study area.

Recall Precision F1-measure IOU

U-Net 20.60 96.85 33.97 20.46

SegNet 0.0487 75.12 0.0973 0.0487

Proposed network 22.33 73.49 34.26 20.67

Table 3. Evaluation statistics (%) in landslide detection from Jiuzhaigou study area.

Recall Precision F1-measure IOU

U-Net 61.03 89.86 72.69 57.10

SegNet 47.60 74.29 58.03 40.87

Proposed network 70.46 82.75 76.11 61.44

Table 4. Evaluation statistics (%) in landslide detection from Nepal study area.

Recall Precision F1-measure IOU

U-Net 31.37 73.40 43.96 28.17

SegNet 62.29 72.76 67.12 50.51

Proposed network 68.43 78.30 73.04 57.53

Table 5. Evaluation statistics (%) in landslide detection from Taiwan study area.

Recall Precision F1-measure IOU

U-Net 28.30 81.72 42.04 26.61

SegNet 90.97 43.15 58.54 41.38

Proposed network 49.39 72.59 58.79 41.63

It is apparent that the proposed two-branch Matrix SegNet has the best general
performance with the highest F1-measure and IOU among the three methods in detecting
landslides for the four study areas. U-Net and SegNet both gain low recall and high
precision in Lushan datasets. Synthesizing images in Figure 10, we can see that U-Net and
SegNet are more sensitive to small landslides. They are more likely to misclassify small
landslide areas as background objects. We should note that the spatial resolution of Lushan
and Taiwan datasets is lower than that of Nepal and Jiuzhaigou datasets. As shown in
Figure 10, the landslides in Lushan dataset, especially, are distributed more intensively with
a smaller size. It indicates that small landslides can easily be excluded with continuous
convolution operations in the encoding parts of both U-Net and SegNet structures, since
they both take the typical encoding–decoding network structures. Moreover, comparing
landslide distribution of different datasets from ground truth images in Figure 10, we can
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recognize that landslide distribution is most complicated in Lushan dataset, with the most
intensive distribution of the smallest landslides. Therefore, F1-measure and IOU of U-Net,
and our two-branch Matrix SegNet, are no higher than 35%. However, our proposed Matrix
SegNet still has a slightly higher accuracy, by 0.2%. In terms of the Taiwan dataset, which
has the same spatial resolution with the Lushan dataset, U-Net still omits small landslides
(as shown in Figure 10(c7–d7), while SegNet misclassifies many small background areas
as landslides (as shown in Figure 10(c8–d8). It further validates the high sensitivity of
a typical encoder–decoder network architecture in detecting small landslides from high
spatial resolution images.

The performances of the three methods are apparently better in Nepal and Jiuzhaigou
datasets than the other two datasets with at least 15% higher F1-measure and IOU. It
indicates that more details in higher spatial resolution images are better at providing more
detailed ground object information for landslide detection, especially in cases of small
landslides. Our proposed Matrix SegNet can achieve up to 20% progress in detection
accuracy in the datasets of Jiuzhaigou and Nepal.

6. Discussions

Synthesizing the evaluation performances of U-Net, SegNet, and our proposed two-
branch Matrix SegNet on the test images of four different study areas, our model has better
transferability than U-Net and SegNet. Faced with evaluation images with different spatial
resolutions, the parameter IOU of our proposed two-branch Matrix SegNet is at least 0.21%
higher than U-Net and SegNet in Lushan and Taiwan datasets with a spatial resolution of
19 m, and over 7% progress than U-Net and SegNet in the Nepal and Jiuzhaigou datasets
with a spatial resolution of 2.35 m. Similar with parameter IOU, the comprehensive
evaluation parameter F1-measure also witnessed similar improvement by our proposed
two-branch Matrix SegNet with almost 0.2% progress in Lushan and Taiwan datasets and
7% progress in Nepal and Jiuzhaigou datasets. The performance of our model improves
more on images having a spatial resolution of 2.35 m than those with a spatial resolution of
19 m. This mostly attributes to the spectral and textural details demonstrated of landslides
in images with higher spatial resolution. The matrix learning module used in our model
is more applicable for multiple landslide detection from high spatial resolution images
by capturing landslide features horizontally, vertically, and diagonally. However, the
traditional layer-wise convolution is likely to omit multi-scale features of landslides by
U-Net and SegNet.

From the evaluation statistics, we recognize that the precision and recall of our pro-
posed two-branch Matrix SegNet are more balanced than those of U-Net and SegNet in
all cases of the evaluation datasets. One possible driving factor of this phenomenon is the
high omission of small landslides by U-Net and SegNet. They can mostly be well-detected
by our Matrix SegNet. However, regardless of the improvement, the recall by our pro-
posed model is smaller than 71% in the evaluation cases. The disturbing bare soil, as the
background objects of landslides, is an issue confronted in our model as well. This may
be overcome by modifying the network structure to focus more on enhancing the shape
discrimination ability between landslides and background objects in future work.

We should note that the accuracy gained by our experiments is lower than that
obtained in [5], mainly because of the large differences of experimental images. Images
in [5] were mostly captured from areas with pure vegetation and there was high contrast
between landslides and background objects in spectral characteristics. However, images
in our experiment were mostly taken with various imaging radiances from different
study areas, and the ground objects were distributed complicatedly to mimic practical
applications.

7. Conclusions

This study proposed a practical trial of landslide detection by adopting raw pre- and
post-event images captured from Google Earth directly. In our proposed two-branch Matrix
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SegNet, the matrix convolution module was adopted to learn landslide features with mul-
tiple aspect ratios and scales, horizontally and vertically. Landslide features were further
enhanced by incorporating the squeeze-and-excitation modules. The proposed model
structure was applied to detect landslides from images with different spatial resolutions
from four different study areas with various ground object distribution patterns. Two
widely used semantic segmentation frameworks, U-Net and SegNet, were adopted as
comparisons with the proposed model. The statistical evaluations verify the efficiency of
our proposed two-branch Matrix SegNet in detecting multiple landslides. It shows a larger
improvement in landslide detection in F1-measure and the IOU of datasets, with a spatial
resolution of 2.39 m over the performances by U-Net and SegNet, than that in datasets
with a spatial resolution of 19 m over U-Net and SegNet. The matrix convolution module
has a stronger ability to capture multi-scale landslide features. However, a high landslide
omission rate is an issue in our proposed model, especially in cases with small landslides
in complicated background objects. In future work, we will work on modifying the model
structures to enhance the distinguishing ability of shape characteristics of landslides and
bare soils, to reduce the omission error. Our proposed framework switches on a path to
develop reliable and applicable methods to detect landslides from large-scale research
areas with complicated background objects.
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