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Abstract: Mainstream image super-resolution (SR) methods are generally based on paired training
samples. As the high-resolution (HR) remote sensing images are difficult to collect with a limited
imaging device, most of the existing remote sensing super-resolution methods try to down-sample
the collected original images to generate an auxiliary low-resolution (LR) image and form a paired
pseudo HR-LR dataset for training. However, the distribution of the generated LR images is generally
inconsistent with the real images due to the limitation of remote sensing imaging devices. In this
paper, we propose a perceptually unpaired super-resolution method by constructing a multi-stage
aggregation network (MSAN). The optimization of the network depends on consistency losses. In
particular, the first phase is to preserve the contents of the super-resolved results, by constraining
the content consistency between the down-scaled SR results and the low-quality low-resolution
inputs. The second stage minimizes perceptual feature loss between the current result and LR input
to constrain perceptual-content consistency. The final phase employs the generative adversarial
network (GAN) to adding photo-realistic textures by constraining perceptual-distribution consistency.
Numerous experiments on synthetic remote sensing datasets and real remote sensing images show
that our method obtains more plausible results than other SR methods quantitatively and qualitatively.
The PSNR of our network is 0.06dB higher than the SOTA method—HAN on the UC Merced test set
with complex degradation.

Keywords: remote sensing; unpaired super-resolution; multi-stage aggregation network; consis-
tency losses

1. Introduction

Image super-resolution, which aims to reconstruct the high-resolution (HR) image
from its low-resolution (LR) observation, is an active research topic and has been demon-
strated to be an effective method to increase the spatial resolution. In the field of remote
sensing, the development of antenna arrays [1,2] plays an essential role in image super-
resolution. SR methods compensate for the information lost in the process of image trans-
mission and compression, and improve the spatial resolution of remote sensing data for
environmental monitoring [3] and object detection. The remote sensing image degradation
process is usually defined as

ILR = (IHR
⊗

k) ↓s +n, (1)

where IHR means high-resolution images, k denotes blur kernels, ↓s means degradation
model with scale factor s, n is additive white Gaussian noise(AWGN) in general. Compar-
ing with updating the hardware devices, using the SR technique has advantages of low
cost, easy implementation, and high efficiency. Remote sensing image super-resolution has
become one of the most important applications of SR technology.
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Previous super-resolution methods are mainly based on interpolation [4] and recon-
struction [5]. Images with different spatial resolutions have different carrying capacities for
information. The problem of image super-resolution is from reconstruction of LR images
with severe lack of information to HR images with rich information is an ill-posed problem
that a single LR image can reconstruct multiple super-resolved results. To tackle this prob-
lem, the example-learning based SR methods have been proposed to learn the mapping
function between LR and HR image pair, such as sparse coding [6,7] and probabilistic
graphical model [8]. Furthermore, with the development of deep convolutional neural net-
work(CNN) in the field of computer vision, the SR methods based on deep learning came
into being because they have a higher capability of representation for LR-to-HR nonlinear
mapping modeling than the previous example-learning based SR methods. As an initial
attempt, Dong et al. [9] introduced CNN into SR that employed three convolutional layers
to model the mapping function. In order to increase the depth of the network for improving
the capability of the model, Kim et al. [10] firstly introduced the global residual learning
and gradient clipping strategy into the SR task and succeeds in training a deep SR network
by using global residual learning and gradient clipping strategy. Inspired by VDSR, Tai
et al. [11] used local residual learning and global residual learning to build a deep recursive
residual network to improve the effect of super-resolved results. Skip connection based
networks [12,13] can fuse information in different network depths to increase the repre-
sentation ability of the model so that it has a stronger information-carrying capacity. Tong
et al. [14] initially employed densely connected block and proposed SR method based on
dense skip connections. EDSR [15] which introduced local residual learning and removed
unnecessary batch normalization layers made a significant breakthrough in SR perfor-
mance. Ledig et al. [16] applied Generative Adversarial Networks [17] into the model and
proposed the perceptual loss function. It is crucial to generate more realistic textures and
images. ESRGAN [18] employed residual in residual dense blocks and optimized loss func-
tion on SRGAN. Zhang et al. [19] integrated the channel-wise attention into the residual
blocks by recalibrating the feature channel to push the state-of-the-art(SOTA) performance
of SR forward. Huang et al. [20] initially proposed an interpretable attention mechanism
into SR task and achieved SOTA performance. Supervised methods usually use a particular
degradation model from HR as LR to train the network. Some researches [21,22] have
shown that critical to the success of an accurate model of the degradation of SISR. However,
in contrast to the natural images dataset, the original image in remote sensing dataset [23]
is not clear enough to meet the need as a ground-truth for training. In addition, paired HR
remote sensing images are hard to collect, especially since the cost of updating hardware
devices is extremely high.

However, the current mainstream SR methods focus on model innovation, on the one
hand, assuming that the image degradation process is bicubic interpolation. On the other
hand, focus on the degradation process and build models to fit the data under various
blur kernels. When LR images with unknown degradation that real remote sensing images
contain the sensor noise and aliasing effects, the existing SR methods struggle to achieve
satisfactory performance since we don’t know the downsampling operation of remote
sensing images. Nevertheless, unpaired super-resolution method has a good performance
in constructing real natural images. Freedman et al. [24] proposed self-similarity based
image SR, which reconstructed the HR images by using patches in previous natural images.
Yuan et al. [25] proposed cycle consistency and designed Cycle-in-Cycle GAN, which
did not require the paired LR-HR images and solved the unsupervised image translation
problems. First, a GAN with two discriminators was employed for learning degradation
process; then another GAN was used for image SR. Shocher et al. [26] exploited the in-
ternal self-similarity of a single image internal information into self-supervised iterative
optimization of the model without any reference images or pretrained. Ulyanov et al. [27]
proposed a new strategy for dealing with the regularization tasks in inverse problems and
has been proved to be very effective and has been successful in many imaging inverse
problems such as denoising, super-resolution and so on. Since the imaging environment
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of remote sensing images is generally unknown and complex, unsupervised learning has
been developed in remote sensing image SR. Zhang et al. [28] proposed an unsupervised
method that employs GAN to obtain super-resolved and achieved satisfactory performance.
Inspired by CycleGAN, Wang et al. [29] proposed two generative CNNs for down-sampling
named Cycle-CNN modeling the degradation process and the corresponding reconstruc-
tion, named CycleCNN. UDGN [3] models the internal recurrence of information inside the
single image to generate Lake Area images with higher spatial resolution without requiring
pretraining. Zhang et al. [30] proposed a multi-degradation aided method by adopting the
multiple Gaussian blur kernels and AWGN to get LR images for adapting to the mixed
degraded model.

Since there is not any prior degradation, they generate bad content and details that do
not match the corresponding LR image, many unpaired super-resolution methods can only
use image features that rely on LR patches of a small fixed size. The spatial distribution
of remote sensing images is highly complex, so reconstructing a high-quality HR image
with accurate content and refining photo-realistic details are necessary. When we get
wrong content from low-quality remote sensing images, we observe that super-resolved
results produced by GAN-based methods are often affected by structural distortions. To
tackle this problem and inspired by DCSR [31], we explicitly add a multi-stage aggregation
architecture which is a step-by-step training mode to realize content consistency(CC),
perceptual-content consistency(PCC) and perceptual-distribution consistency(PDC). We
also propose consistency losses for our network. The contributions of our proposed
unpaired SR method can be summarized in three points:

1. We introduce a multi-stage aggregation network for gradually optimizing the model
with the degraded self-exemplars and unpaired references, which allows it to achieve
effective optimization from content to perception. Specifically, the first stage can be
adapted to better pixel-wise PSNR, and the subsequent stages can be adapted to more
realistic texture and details reconstruction.

2. Aiming at retaining the content on remote sensing images and excavating its underly-
ing perceptual similarities from the low-quality images, we propose consistency loss
functions for contents retainment and details reconstruction in different phases.

3. We conducted experimental validation of multiple datasets on our method, and the
results indicate the superiority of our method in remote sensing SR and have more
intuitive visual effects.

2. Materials and Methods
2.1. Methods

The SR task aims to estimate the SR image ISR from its LR counterpart ILR. Generally,
the dataset of paired super-resolution tasks has LR-HR paired images and LR image input
model to receive SR image by non-linear mapping. While there are typically no adequate
paired high-quality remote sensing images as training reference so that unpaired SR method
has received more and more attention. In most cases, we get LR images from original
images assuming that the image degradation process is the bicubic interpolation. But
in fact, we only have low-quality low-resolution images as input so that reconstructing
photo-realistic details is challenging. Therefore, our proposed method aims at recovering
more desired details of LR images with unpaired training datasets.

The framework of MSAN which is shown in Figure 1 consists of a generator and
a discriminator and shows the process of calculating consistency loss functions. In the
different stages, the generator can be updated by calculating corresponding consistency
losses. Given an input LR image IL without paired HR image. The super-resolved image
ISR can be generated by

ISRC = HGenerator−C(IL)r
ISRPC = HGenerator−PC(IL)r
ISR = HGenerator−PD(IL)r

(2)
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where, HGenerator−C(·), HGenerator−PC(·) and HGenerator−PC(·) denote the generator in differ-
ent stages respectively, and r is the scale factor that we want to LR enlarge. And the structure
of Generator-C, Generator-PC and Generator-PD are introduced in detail in Figure 2. For
extracting and aggregating the multi-level features, we design an efficient framework
which contains dense connections and skip connections on multi-level fusion module.
Furthermore, in order to achieve the photo-realistic performance, we utilize multi-stage
consistency for retaining content and structure from low-resolution inputs and recovering
more photo-realistic details. In this section, we detail our proposed method MSAN.

Figure 1. Overview of the proposed unpaired SR method.

Figure 2. The framework of generator.

2.1.1. Network Architecture

For training unpaired super-resolution network, we don’t have a training set
{

ILRi , IHRi

}Ni=1 ,
that has N LR-HR pairs. Moreover, remote sensing images generally incorporate various
degradation models, including poor details and noises that are undesired for the image
SR task. However, noise and structure degradation models are important for recovering
principle contents and un-occurred details; therefore, there is an urgent need to design a
module that effectively utilizes low-quality input to extract low-frequency image feature
information.

As shown in Figure 2, following our previous work DCSR [31], the generator mainly
consists of three parts: initial feature representation module (IFRM), multi-level fusion
module (MLFM) and reconstruction module (RM). The IFRM is applied to represent a three-
channel LR input as a set of feature-maps, similar to the most existing super-resolution
methods. The MLFM is designed to capture more informative features for SR by a sequence
of stacked enhanced feature extraction modules (EFEM). The extracted features are fed
into the RM to reconstruct the SR images. We employ a convolutional layer as the IFRM to
extract the initial features from LR input, which can be empressed by

f 0 = HIFRM(IL) = Conv3(IL) (3)

Hgenerator(·) = HIFRM(·) + HMLFM(HIFRM(·)) (4)
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where, f0 is the initial extracted feature which is then fed into the MLFM and also used for
global residual-feature learning, HIFRM(·) and HDFE(·) respectively denote the function of
initial feature representation and multi-level fusion module.

Inspired by the dense connections [32] and residual blocks [12,13], they have been
expounded to be an effective strategy for benefiting the information flow of transferred
features at different layers. Different from RDN [13], we add an adaptive learning filter
after concatenation. It is worth mentioning that the main contribution of our proposed
work is a multi-stage aggregation strategy so that the generator of our network follows the
existing networks and can be replaced with any better backbone. The basic dense network
is illustrated in Figure 2. We introduce the strategies in our multi-level fusion module.
For super-resolution task, shallow-layer features generally represent the coarse image
information, however, deep-layer feature maps represent the fine details and textures.
Therefore, in order to improve the reuse of features in the middle layer, we employ the
local skip-connections to ensure that the shallow-layer information still participates in the
image reconstruction. The MLFM is constructed by stacking n enhanced feature extraction
modules (EFEM) for inferring the informative features for detail recovering as shown in
Figure 2. Let fdense represent the feature generated by the dense-sampling structure. Thus,
we introduce the MLFM as

fdense = Conv3(Hn
EFEM(Hn−1

EFEM(Hn−2
EFEM(. . . (H1

EFEM( f 0)) . . .)))) + f 0 (5)

where Hn
EFEM(. . .) indicates the composite function of n-th EFEM, Conv3(·) indicates a 3 ×

3 convolution operation.
As illustrated in Figure 3, different from Feature Extraction Module (FEM) in DCSR,

we add a transition block (TB) which can combine information coming from different
blocks through an adaptive learning process. We also improve the previous FEM that
employs dense connections between m residual blocks (DRB) to form a residual blockchain.
To improve the continuous memory of information flow, TB is attached to the fusing of
feature information of each layer better. In the transition block, The features extracted by
the previous EFEMs and the current residual blockchain are concatenated and then input a
convolutional layer to process features more efficiently. Specifically, the inputs f0, f1, . . .,
and fi are subjected to the concatenation operation. Let fn represent the feature generated
by the middle layer. The process of DRB and TB are formulated as

xm = rm([x0, x1, . . . , xm−1]) (6)

where xm denotes the feature extracted by the m-th residual block, [x0, x1, x2, . . . , xm−1]
indicate the features are concatenated together and r0 denotes

r0( f n−1) = Conv3(ReLU(Conv3( f n−1))) + f n−1 (7)

Hn
DRB = rm(rm−1(. . . r0( fn−1))) (8)

fn = Hn
EFEM( fn−1) = ϕn([Hn

DRB( fn−1), fn−1, fn−2, . . . , f0]) (9)

where ϕn(·) denotes the function of a convolutional layer that kernel size is one which is
applied for reducing the channel dimension into a fixed size, Hn

DRB(·) denotes the dense
residual blockchain contained in the n-th EFEM.

After acquiring the high informative features, we utilize an representation module
(RM) for feature manipulation and outputting a high-resolution image. As shown in
Figure 2 the final representation module only consists of one learnable layer which is a
convolution operation and a non-parametric operation (sub-pixel convolution [33]). When
we need to enlarge the image on scale factor s, RM rearrange the tensor with dimensions
H × W × C · r2 as rH × rW × C for converting groups of high-resolution features into
RGB images.
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Figure 3. The architecture of DRB (a) and TB (b).

2.1.2. Multi-Stage Architecture

Traditionally, we can optimize the model parameters to achieve good performance
by minimizing the loss function between the super-resolved results and ground-truth, as
shown in Equation (10):

min
N

∑
n=1

Lossn(ISR, IHR) (10)

For the unpaired remote sensing super-resolution task, the low-resolution remote sensing
images still contain enough similar principal information by transmitting hardware devices.
Therefore, multi-stage aggregation can solve the problem that unpaired methods generate
undesirable content and details, and consistency losses are introduced to restrict model
convergence, which is shown in Figure 1.

(1) First stage: Content Consistency

Aiming at recovering the principal information of the super-resolved results from
the LR inputs, the content-consistency stage is optimized via minimizing the difference
between the super-resolved image ISRC and the corresponding low-quality image IL. We
proposed a content-consistency loss function (LCC) in the training process of the first stage.
Only using LCC to optimize the model during training can reconstruct the correct content
and avoid recovering the wrong content due to the high spatial resolution of the remote
sensing images. In this stage, the content-consistency loss LCC is formulated as

LCC =
∥∥(D(ISRC )− IL

)∥∥
1 (11)

where D(·) indicates the down-scaling operators using the bicubic algorithm. We down-
sample super-resolved images ISRC by the same scale factor and the processed image as
input performs enhanced feature extraction and reconstruction. This stage mainly pursues
a high PSNR value. However, due to the influence of uncontrollable artifacts under the
unknown degradation model, noise and distortion will still affect the reconstruction of
the principal information at this stage. The super-resolved of the current stage is slightly
smoother and cannot produce rich details.

(2) Second stage: Perceptual-Content Consistency

In the absence of paired groud-truth images, while ensuring that the content remains
consistent, excavating deep semantic features is urgently necessary. In order to enhance the
perceptual content of super-resolved images and explore the implicit perceptual similarity,
we perform the second stage of training on the results of the previous stage. Particularly,
we design two consistency loss functions (LPCC1 and LPCC2 ) as illustrated in Figure 4. The
generator used at this stage is the same as in the previous stage. The pre-trained VGG-
19 [34] is applied here for inferring the perceptual similarity of IL and ISRPC . As shown in
Figure 4, in calculating LPCC1 , we perform a blurring operation on ISRPC and upscaled IL.
The objective functions for training the second phase could be formulated as

LPCC1 =
∥∥∥(ϕdeep(G(ISRPC ))− ϕdeep(G(Up(IL)))

)∥∥∥
1

(12)
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where Up(·) indicates the up-scaling operators via bicubic resampling meanwhile the size
of Up(IL) is the same as ISRPC . Aiming at removing the distortion effects, we apply the blur-
ring operators G(·) on images using 5 × 5 Gaussian blur kernels with σ = 1.2. Furthermore,
we use the deep layer features ϕdeep of VGG-19 for representing the perceptual-content (PC)
representations. We extract the final perceptual-content features on the “Conv5,4” layer of
VGG19. Specifically, “Convm,n” indicates the feature maps obtained by the n-th convolution
(before activation) before the m-th max-pooling layer within the VGG-19 network.

Figure 4. Overflow of the second stage with perceptual-content consistency.

In addition, even with noise and distortion in low-quality remote sensing images,
low-level PC features should also be helpful for reconstructing desired structure details. So
we proposed the perceptual down-scaling which is still calculated by using the L1 norm.

LPCC2 =
∥∥(ϕshallow(D(ISRPC ))− ϕshallow(IL)

)∥∥
1 (13)

where ϕshallow denotes shallow-level features “Conv2,2” of VGG-19, which is utilized for
perceptual representations of down-scaled ISRPC and IL. However, in calculating LPCC2

for perceptual down-scaling similarity, different from LPCC1 , the input of VGG-19 is the
down-scaling ISRPC and the original low-quality image IL.

(3) Third stage: Perceptual-Distribution Consistency

Aiming at pursuing better visual effect, GAN [17] could reconstruct the photo-realistic
details of remote sensing images with better perceptual performance due to the statistic
gaming of the generator and discriminator. So the unpaired remote sensing ground-truths
as real images Ir and the reconstructing results of the first two stages as fake ones I f ,
similar to ESRGAN [18]. As shown in Figure 1, we employ the relativistic GAN to train the
photo-realistic model to implement the perceptual-distribution consistency constraint. The
relativistic discriminator intends to estimate the probability that Ir is more realistic than I f .
So LPDC is composed of LDis and LGen. The corresponding adversarial loss is formulated as

LDis = −EIr [log(DisRa(Ir, I f ))]−EIl [log(1− DisRa(I f , Ir))] (14)

The generator loss is calculated by

LGen = −EIr [log(1− DisRa(Ir, I f ))]−EIl [log(DisRa(I f , Ir))] (15)

where DisRa denotes the relativistic discriminator in ESRGAN [18] and loss functions are
calculated by the cross-entropy. The framework of the discriminator is the the same as
RankSRGAN [35]. In addition, we also employ the total variation loss LTV as a regulariza-
tion term to remove noises and checkerboard artifacts from images and keep the edges.

2.2. Dataset and Implementation Details
2.2.1. Dataset

We perform experiments to evaluate our method on three widely used benchmark
datasets in remote sensing: WHU-RS19 [23], UC Merced dataset [36] and DOTA [37]. For
WHU-RS19, UC Merced dataset, we randomly extract 70% original images for training as
low-quality LR input, 15% images for validation, and the rest for testing. Especially, for the
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unpaired super-resolution task, since the HR-sized inputs are needed in the third phase,
500 images from the DOTA dataset are selected as the unpaired HR references. To be fair,
the test images are not used when training network as shown in Figure 5.

Figure 5. Part of test images chosen from WHU-RS19 and UC Merced test sets. (a) Airport_41.
(b) Pond_43. (c) Port_45. (d) Desert_43. (e) Bridge_41. (f) airplane82. (g) buildings87. (h) harbor34.
(i) overpass94.

2.2.2. Implementation Details and Metrics

As depicted in Section 3, in the MLFM structure, we stack EFEMs number as n = 8
to build a deep network with having 64 initial channels. In each EFEM, we stack sixteen
residual blocks(m = 16) which convolutional layers have 64 filters with the growth rate of
64. In the training process, we use the 74 × 74 RGB image patches which are randomly
cropped from the low-quality training set, and then augment them with random horizontal
flipping and rotation by 90◦. Besides, the high-resolution high-quality patches with a size
of 296 × 296 are randomly selected from the ground-truth. Furthermore, all the LR and HR
images are pre-processed by subtracting the mean RGB value of the dataset for accelerating
the ing phase. We train all of our models by using the Adam optimizer [38] with setting
the momentum parameter β1 = 0.9, β1 = 0.99. The mini-batch size is set to 16 and the initial
learning rate is 1 × 10−4 and halved for every 1 × 105 mini-batch updates. Each of the final
models will get convergence after 2 × 105 mini-batch updates on PyTorch framework and
the NVIDIA Titan RTX with 24 GB memory.
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For evaluating the SR performance, we apply two common image quality assessment
criteria for evaluating pixel-wise discrepancies: Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) [39]. In addition, we also use a no-reference image quality
assessment Natural Image Quality Evaluator (NIQE) [40] and a full-reference metric the
Learned Perceptual Image Patch Similarity (LPIPS) [41] for scoring the degree of perceptual
performance. Following the convention of super-resolution, only the luminance channel is
selected for full-reference image quality assessment because the intensity of image is more
sensitive to human-vision than the chroma.

3. Results

In this section, for assessing our method performance, we will give a detailed descrip-
tion of our experimental results. The proposed method is compared with the supervised
methods and unsupervised methods on four common image quality assessments that we
apply in Section 2.2.2.

3.1. Model Analysis

From Section 2.1.2, we train the final generator of our model is trained under the
optimization of different stages with Content Consistency, Perceptual-Content Consistency
and Perceptual-Distribution Consistency. In this part, we design the ablation study and
analyze for investigating the effectiveness of each stage by training the ablated models.

In order to verify whether the feature maps extracted by the CC, PCC, and PDC have a
dependency relationship, we show the visual results of training intermediate feature maps.
As illustrated in Figure 6, we can detect that the feature maps extracted by the generator of
different stages are similar. Therefore, our multi-stage aggregation network is reasonable
because it can gradually reconstruct high-efficiency remote sensing images. To verify the
necessity of using (muti-stage) architecture on unpaired dataset training, we remove CC, PCC
and PDC from MSAN. As shown in Table 1 and Figure 7, specifically, those ablation study
results demonstrate progressive consistency plays significant roles in qualitative performance:

Table 1. Ablation study on WHU-RS19 test dataset.

Method Scale PSNR↑ SSIM↑ NIQE↓ LPIPS↓
HR Ground Truth - - - 4.541 -

Bicubic ×4 28.06 0.7233 8.005 0.4181

MSAN w/o PCC & PDC ×4 27.95 0.7067 8.958 0.3647
MSAN w/o PDC ×4 27.61 0.7285 8.219 0.3633
MSAN w/o CC ×4 26.83 0.7013 7.569 0.3677

MSAN ×4 27.43 0.7157 6.569 0.3511

Figure 6. The feature maps of CC, PCC, PDC are visualized from left to right.
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Figure 7. Visualization results of ablation study for ×4 upscaling on WHU-RS19 test set.

3.1.1. The Effect of Content Consistency

As depicted in Section 2.1.2(1), in the CC stage, the content-consistency loss LCC is
introduced for reconstructing the principal information from the low-resolution remote
sensing inputs by down-scaling the super-resolved images. As Equation (11), this term
aims at driving the degraded super-resolved results to be similar to the blurred low-quality
inputs with the assumption of noiselessness. The principal content information of super-
resolved results ISRc show high consistency to the low-resolution inputs as illustrated
in Figure 7. That is why our model in the first stage has higher PSNR scores and lower
perceptual metrics than other ablated model in Table 1.

3.1.2. The Effect of Perceptual-Content Consistency

As depicted in Section 2.1.2(2), by utilizing the pre-trained VGG-19 network to ex-
cavate the deep layer and shallow layer features, the effects of PCC that employs LPCC1
and LPCC2 should focus more on perceptual content information similarity between the
feature level criteria of super-resolved results and low-resolution inputs. And as shown
in Figure 4, LPCC1 discriminates the deep layer features similarity with the assumptions
of noiselessness using Gaussian blur G(·). LPCC2 is applied on optimizing the distance of
the shallow layer between the low-resolution inputs and down-sampling super-resolved
results. Since the deep features extracted from the VGG-19 [34] depends on the local
receptive fields strongly, the undesired noises would introduce some negative effects on
the clear pixels to retain the perceptual-content consistency of ISRC and IL. LPCC2 mainly
controls the similarity of principal information and explores perceptual to generate novel
details as the perceptual features of noises have positive effects on information supplement
of details. As shown in Figure 8, to evaluate the effect of different Gaussian kernels in
computing the perceptual consistency, we conduct the experimental comparisons. The
results suggest that the size of kernel (5 × 5) and the standard deviation value (σ = 1.2) are
proper. Furthermore, as depicted in Figures 6 and 7, adding the PCC stage to the model
focuses more on the perceptual content consistency of super-resolved results from the
corresponding inputs. Due to remote sensing images containing the complex distribution
of objects, the PCC stage mainly avoids lack of informative details, over-fitting on edges
and artifacts.

3.1.3. The Effect of Perceptual-Distribution Consistency

As depicted in Section 2.1.2(3), we exploit the adversarial learning to train the per-
ceptual model for photo-realistic super-resolution. Especially for experiments, as shown
in Table 1, comparing the model MSAN w/o PC and MSAN (NIQE and LPIPS), it fully
demonstrated that perceptual-distribution consistency is beneficial to improve the visual
effect. From Figure 7, we can observe that the super-resolved results of the MSAN without



Remote Sens. 2021, 13, 3167 11 of 18

PDC cannot generate photo-realistic textures and details. It means PDC is necessary for
our architecture.

Figure 8. Experimental comparisons of differnet Gaussian kernels for ×4 upscaling on WHU-RS19
test set.

3.2. Comparisons with State-of-the-Art Methods

For a comprehensive comparison, we compare our method with several paired meth-
ods including SRCNN [9], EDSR [15], ESRGAN [18], RCAN [19], IMDN [42]and HAN [43],
and unpaired methods including SelfExSR [24], ZSSR [26], CinCGAN [25] and DRN [44].
These methods are all evaluated on the UC Merced test set and the WHU-RS19 test set with
bicubic degradation and complex degradations (bicubic + Gaussian blur) at the scaling
factor of ×4. Bicubic degradation is the most widely used assumption in the paired SR task,
although it cannot effectively fit the original remote sensing image degradation model.
Therefore, we conducted experiments on bicubic degradation as a baseline and add blur
degradation to analyze the robustness of MSAN against complex degradation.

3.2.1. Result on Bicubic Degradation

In this part, two remote sensing test sets are down-sampled with bicubic degrada-
tion. Tables 2 and 3 show quantitative comparisons for ×4 SR and present the average
assessment results.

Table 2 presents the quantitative results of evaluation between our method and other
unpaired methods. Consider the UC Merced test set as an example. It can be seen that
our method achieves the best performance in all cases. Specifically, the PSNR gains which
MSAN exceeds the second-best model reach 0.48 dB. The LPIPS of our method is 0.0062
lower than that obtained with the suboptimal method. The proposed MSAN shows
significant advantages of NIQE. The NIQE and LPIPS of the MSAN are both optimal
compared with those of other unpaired methods on the WHU-RS19 test set. The NIQE and
LPIPS of our method are 0.047 and 0.0036 lower than that obtained with the suboptimal
method respectively. According to Table 2, in the remote sensing dataset, the unpaired
method we proposed is superior to all the other unpaired methods on most of the metrics.
It is verified that MSAN can reconstruct more subjective perception remote sensing images.

Table 3 presents the quantitative results of evaluation between our method and paired
methods. As for the ×4 SR task on UC Merced test set, the cases of our method all
achieve the best performance. The proposed MSAN performs the best in terms of LPIPS
and NIQE and keeps the presentable PSNR values. Taking the WHU-RS19 test set as an
example. For bicubic degradation, experimental results demonstrate that the proposed
method outperforms part of paired SR methods. Our method achieves the best LPIPS
performance with those of other methods. The LPIPS is 0.009 lower than that obtained
with the suboptimal IMDN method. HAN keeps the presentable PSNR and SSIM values.
Although ESRGAN achieves the lowest NIQE, the content of its super-resolution results is
often inconsistent by undesirable artifacts so that the PSNR of the ESRGAN is the lowest
as shown in Figure 9.

As shown in Figure 9, we present visual comparisons on bicubic degradation datasets
with the Bicubic technique and other state-of-the-art methods, which are among the meth-
ods listed in Table 2 and 3. Here, we use SSIM and non-reference image quality metrics
NIQE to assess these super-resolved results. From Figure 9a, we observe that most of the
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compared unpaired methods suffer from blurred artifacts so that it is difficult to reconstruct
the correct content and structure edge. The SelfExSR and DRN reconstruct SR image
contains wrong details that can’t match the information in the groud-truth images. In
contrast, our MSAN can slightly alleviate this phenomenon and produce more accurate
results with more precise details. In Figure 9b, we present visual comparisons of some
paired methods reconstruction results. For image “Desert_43” from the WHU-RS19 dataset,
our MSAN can synthesize realistic textures while retaining a delicate content compared to
other methods.

Figure 9. Visual comparisons of MSAN with other methods on bicubic degradation for ×4 upscaling.
(a) Super-resolved results from WhU-RS19 test set. (b) Super-resolved results from UCMerced test set.

Table 2. Average resultes of unpaired SR methods on bicubic degradation. The best results were
highlighted with bold black.

Dataset Method Scale PSNR SSIM NIQE LPIPS

UC Merced

SelfExSR [24] ×4 21.40 0.5698 10.01 0.6882
ZSSR [26] ×4 22.67 0.6156 9.690 0.6850

CinCGAN [25] ×4 23.46 0.6355 9.756 0.4259
DRN [44] ×4 22.05 0.5477 12.69 0.6632

MSAN (ours) ×4 23.94 0.6451 7.207 0.4197

WHU-RS19

SelfExSR [24] ×4 28.12 0.7398 6.625 0.3660
ZSSR [26] ×4 25.29 0.6882 7.667 0.4009

CinCGAN [25] ×4 26.47 0.7073 6.516 0.3740
DRN [44] ×4 28.85 0.7693 7.298 0.3547

MSAN (ours) ×4 27.43 0.7157 6.403 0.3511
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Table 3. Average resultes of paired SR methods on bicubic degradation. The best results were
highlighted with bold black.

Dataset Method Scale PSNR SSIM NIQE LPIPS

UC Merced

SRCNN [9] ×4 22.25 0.5978 10.51 0.4435
EDSR [15] ×4 23.71 0.6412 9.219 0.6822

ESRGAN [18] ×4 19.65 0.5192 18.90 0.6642
RCAN [19] ×4 19.71 0.5207 14.08 0.6632
IMDN [42] ×4 20.39 0.5484 11.73 0.6704
HAN [43] ×4 20.04 0.5419 12.67 0.6589

MSAN (ours) ×4 23.94 0.6451 7.207 0.4197

WHU-RS19

SRCNN [9] ×4 28.15 0.7414 6.891 0.3526
EDSR [15] ×4 27.83 0.7238 7.533 0.3890

ESRGAN [18] ×4 25.62 0.6268 4.338 0.3724
RCAN [19] ×4 28.74 0.7670 7.006 0.3535
IMDN [42] ×4 28.65 0.7612 7.212 0.3520
HAN [43] ×4 28.89 0.7705 7.247 0.3554

MSAN (ours) ×4 27.43 0.7157 6.403 0.3511

3.2.2. Result on Complex Degradation

We further apply our MSAN to solve the complex degradation image super-resolution
to analyze the robustness. In order to construct complex degradation, the isotropic Gaussian
blur is added to low-resolution images. Quantitative comparisons for ×4 SR are shown in
Tables 4 and 5 and visual comparisons are shown in Figure 10.

In Table 4, compared with other unpaired SR methods, our method achieves the best
quantitative results of the evaluation. Making the UC Merced test set as an example, It
can be seen that our method achieves the best performance on PSNR, SSIM and NIQE.
CinCGAN and DRN also render competitive results. Specifically, The LPIPS of CinCGAN
is 0.4487 lower than other unpaired methods. The PSNR and SSIM which MSAN exceeds
the second-best model—DRN reach 0.02 dB and 0.0101 respectively. The proposed MSAN
still shows significant advantages of NIQE. In the WHU-RS19 test set, the SSIM and NIQE
of the MSAN are both optimal compared with those of other unpaired methods. The PSNR
of our method is 0.04 dB lower than that obtained with the best method.

Table 4. Average resultes of unpaired SR methods on degradation on complex degradation. The best
results were highlighted with bold black.

Dataset Method Scale PSNR SSIM NIQE LPIPS

UC Merced

SelfExSR [24] ×4 23.98 0.6109 9.417 0.7271
ZSSR [26] ×4 23.79 0.6059 9.111 0.7236

CinCGAN [25] ×4 23.56 0.6156 9.369 0.4487
DRN [44] ×4 24.11 0.6214 10.84 0.7182

MSAN (ours) ×4 24.13 0.6315 7.855 0.7214

WHU-RS19

SelfExSR [24] ×4 26.42 0.6916 6.614 0.3993
ZSSR [26] ×4 26.65 0.7052 7.229 0.3896

CinCGAN [25] ×4 25.68 0.6898 6.454 0.4011
DRN [44] ×4 26.58 0.6835 7.548 0.4036

MSAN (ours) ×4 26.61 0.7183 5.112 0.3936
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Table 5. Average resultes of paired SR methods on complex degradation. The best results were
highlighted with bold black.

Dataset Method Scale PSNR SSIM NIQE LPIPS

UC Merced

SRCNN [9] ×4 23.18 0.6403 9.305 0.4207
EDSR [15] ×4 24.10 0.6301 8.680 0.7089

ESRGAN [18] ×4 21.11 0.4683 7.860 0.6340
RCAN [19] ×4 23.96 0.6481 15.02 0.6810
IMDN [42] ×4 22.97 0.5365 11.12 0.7736
HAN [43] ×4 24.07 0.6511 10.64 0.6152

MSAN (ours) ×4 24.13 0.6315 7.855 0.7214

WHU-RS19

SRCNN [9] ×4 25.37 0.6533 6.018 0.4354
EDSR [15] ×4 26.53 0.7011 7.366 0.3911

ESRGAN [18] ×4 25.08 0.5910 4.583 0.4402
RCAN [19] ×4 26.59 0.7127 6.894 0.3876
IMDN [42] ×4 26.59 0.7085 7.007 0.3901
HAN [43] ×4 26.55 0.6845 7.544 0.4171

MSAN (ours) ×4 26.61 0.7183 5.112 0.3936

Figure 10. Visual comparisons of MSAN with other SR mathods on complex degradation for ×4
upscaling. (a,b) Super-resolved results of different images from WHU-RS19 test set.

As shown in Table 5, Several evaluation indexes render competitive results in contrast
with paired SR methods. Compared to ESRGAN, the proposed MSAN achieves the best
in terms of PSNR and keeps the presentable LPIPS and NIQE values. Although SRCNN
achieves the lowest LPIPS, NIQE of it is the highest compared to other methods. To
show that the MSAN has an excellent reconstruction effect on blur low-resolution images,
we present the visual effect in Figure 10, where the images are from WHU-RS19. From
Figure 10, ESRGAN generates many distorted textures on complex degradation test sets; in
addition, ZSSR and SelfExSR suffer from the jagged effect on the edges of details. Super-
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resolved results of our method reconstruct more content details than other methods. This
firmly reflects the strong SR capacity of our models in dealing with complex degradation.

4. Discussion
4.1. Method of Application

In Section 3, all experiments are based on the down-sampling of the original images
with a known degradation model to obtain low-quality low-resolution images of the test
set. However, in the real world, the information transportation and compression procedure
are generally unknown. Therefore, reconstructing original low-quality images of different
datasets to further discuss the proposed method’s SR reconstruction effect is necessary.

To this end, the sample without degradation operation is chosen from the UC Merced
dataset with a spatial resolution of 0.3 m per pixel. The methods based on the Bicubic, ZSSR,
and MSAN are used to perform SR reconstruction. As shown in Figure 11a, it presents the
results of SR reconstruction with an up-sampling factor×4. Due to the lack of corresponding
ground-truth images, the reconstruction performance can be evaluated by comparing the
visual effect reconstructed by different methods. In addition, we chose three original images
from the DOTA and GaoFen-1 with a high spatial resolution as shown in Figure 11b–d.

Figure 11. Visual comparisons of the Bicubic model, ZSSR, and MSAN when applied to original
remote sensing images in each group of pictures. (a) Super-resolved results from UC-Merced test set.
(b,c) Super-resolved results from DOTA dataset. (d) Super-resolved results from GaoFen-1.
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Because of the quality of different original images, the visual effect of the image
reconstructed by our method on the first two images is not as good as that on the last
two images. Nevertheless, the proposed method obtains better performance with more
details and textures and more precise contour stripes than the two other methods. These
experimental results further verify that our MSAN produces promising results when
tackling real-world remote sensing data with complicated patterns.

4.2. Limitation

By quantitatively analyzing the experimental results on various datasets, we find that
our MSAN achieves the best performance on the WHU-RS19 dataset but only reaches the
second-best on the UC Merced dataset, whose high-resolution counterparts have lower
quality and resolution than the WHU-RS19 dataset. In a sense, it indicates that our MSAN
shows less effectiveness and generalization on reconstructing small-sized images. For a
reason, in the content reconstruction stage, the content consistency constraint is applied
to optimize the model by calculating the pixel-wise discrepancy. And in the UC Merced
dataset, the images with the size of 256 × 256 contain fewer contents for reconstruction.
Due to the progressive reconstruction, only if the super-resolved results of the first stage
preserve the principal information of the image, the subsequent stages would refine the
perceptual textures well. Therefore, in the future, it is expected to improve the capability of
the model and optimization for content consistency in the first stage.

5. Conclusions

In this paper, we propose an efficient unpaired super-resolution method with multi-
stage aggregation network(MSAN) to super-resolved real remote sensing images. Specif-
ically, we utilize content consistency, perceptual-content consistency and perceptual-
distribution consistency to exert a stage-by-stage training mode, which helps reconstruct
accurate content, avoid structure details loss and generate desired photo-realistic details.
We introduce different consistency losses for different phases to optimize content and
distribution similarity between the super-resolved results and low-quality inputs. The
generator of MSAN mainly includes EFEMs to improve the use of original low-quality
image feature information. The experiments of method analysis suggest the effectiveness of
progressive reconstruction strategy and every phase is dependent. Extensive experimental
results demonstrate that our method achieves satisfactory performance in four metrics
compared with current unpaired SR methods and renders a competitive visual effect in
contrast with paired SR methods. Besides, we conduct our experiments on original remote
sensing images and obtains excellent performance, proving the robustness and practicality
in real-world applications.
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