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Abstract: Strong geometric and radiometric distortions often exist in optical wide-baseline stereo
images, and some local regions can include surface discontinuities and occlusions. Digital pho-
togrammetry and computer vision researchers have focused on automatic matching for such images.
Deep convolutional neural networks, which can express high-level features and their correlation,
have received increasing attention for the task of wide-baseline image matching, and learning-based
methods have the potential to surpass methods based on handcrafted features. Therefore, we focus
on the dynamic study of wide-baseline image matching and review the main approaches of learning-
based feature detection, description, and end-to-end image matching. Moreover, we summarize
the current representative research using stepwise inspection and dissection. We present the results
of comprehensive experiments on actual wide-baseline stereo images, which we use to contrast
and discuss the advantages and disadvantages of several state-of-the-art deep-learning algorithms.
Finally, we conclude with a description of the state-of-the-art methods and forecast developing trends
with unresolved challenges, providing a guide for future work.

Keywords: wide-baseline stereo image; deep learning; convolutional neural network; affine invariant
feature; image matching

1. Introduction

Wide-baseline image matching is the process of automatically extracting correspond-
ing features from stereo images with substantial changes in viewpoint. It is the key
technology for reconstructing realistic three-dimensional (3D) models [1–3] based on two-
dimensional (2D) images [4–6]. Wide-baseline stereo images provide rich spectral, real
texture, shape, and context information for detailed 3D reconstruction. Moreover, they
have advantages with respect to spatial geometric configuration and 3D reconstruction
accuracy [7]. However, because of the significant change in image viewpoint, there are
complex distortions and missing content between corresponding objects in regard to scale,
azimuth, surface brightness, and neighborhood information, which make image match-
ing very challenging [8]. Hence, many scholars in the fields of digital photogrammetry
and computer vision have intensely explored the deep-rooted perception mechanism [9]
for wide-baseline images, and have successively proposed many classic image-matching
algorithms [10].

Based on the recognition mechanism, existing wide-baseline image-matching meth-
ods can be divided into two categories [11–13]: Handcrafted matching and deep-learning
matching. Inspired by professional knowledge and intuitive experience, several researchers
have proposed handcrafted matching methods that can be implemented by intuitive
computational models and their empirical parameters according to the image-matching
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task [14–18].This category of methods is also referred to as traditional matching, the
classical representative of which is the scale invariant feature transform (SIFT) algo-
rithm [14].Traditional matching has many problems [15–18] such as repetition in wide-
baseline image feature extraction or the reliability of the feature descriptors and matching
measures. Using multi-level convolutional neural network (CNN) architecture, learning-
based methods perform iterative optimization by back-propagation and model parameter
learning from a large amount of annotated matching data to develop the trained image-
matching CNN model [19]. A representative deep-learning model under this category
can be chosen, such as MatchNet [20]. Methods under this category offer a different ap-
proach to solving the problem of wide-baseline image matching, but they are currently
limited by the number and scope of training samples, and it is difficult to learn the optimal
model parameters that are suitable for practical applications [21–25]. Learning-based image
matching is essentially a method that is driven by prior knowledge. In contrast to the
traditional handcrafted methods, it can avoid the need for many manual interventions
with respect to feature detection [26], feature description [27], model design [28], and
network parameter assignment [29]. Moreover, it can adaptively learn the deep represen-
tation and correlation of the topographic features directly from large-scale sample data.
According to the scheme used for model training, the wide-baseline matching methods
can be further divided into two types [30]: Multi-stage training with (1) step-by-step [31]
and (2) end-to-end training [32]. The former focuses on the concrete issues of each stage,
such as feature detection, neighborhood direction estimation, and descriptor construction,
and it can be freely integrated with handcrafted methods [33]; whereas the latter consid-
ers the multiple stages of feature extraction, description, and matching as a whole and
achieves the global optimum by jointly training with various matching stages [34]. In
recent years, with the growth of training datasets and the introduction of transfer learn-
ing [35], deep-learning-based image matching has been able to perform most wide-baseline
image-matching tasks [36], and its performance can, in some cases, surpass that of tra-
ditional handcrafted algorithms. However, the existing methods still need to be further
studied in terms of network structure [37], loss function [38], matching metric [39], and
generalization ability [40], especially for typical image-matching problems such as large
viewpoint changes [41], surface discontinuities [42], terrain occlusion [43], shadows [44],
and repetitive patterns [45–47].

On the basis of a review of the image-matching process, we incrementally organize,
analyze, and summarize the characteristics of proposed methods in the existing research,
including the essence of the methods as well as their advantages and disadvantages. Then,
the classical deep-learning models are trained and tested on numerous public datasets and
wide-baseline stereo images. Furthermore, we compare and evaluate the state-of-the-art
methods and determine their unsolved challenges. Finally, possible future trends in the
key techniques are discussed. We hope that research into wide-baseline image matching
will be stimulated by the review work of this article.

The main contributions of this article are summarized as follows. First, we conduct a
complete review for the learning-based matching methods, from the feature detection to
end-to-end matching, which involves the essences, merits, and defects of each method for
wide-baseline images. Second, we construct various combined methods to evaluate the
representative modules fairly and uniformly by using numerous qualitative and quantita-
tive tests. Third, we reveal the root cause for struggling to produce high-quality matches
across wide-baseline stereo images and present some feasible solutions for the future work.

In Section 2, this article reviews the most popular learning-based matching methods,
including the feature detection, feature description, and end-to-end strategies. The results
and discussion are presented in Section 3. The following summary and outlook are given
in Section 4. Finally, Section 5 draws the conclusions of this article.
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2. Deep-Learning Image-Matching Methodologies

At present, the research on deep-learning methods for wide-baseline image matching
mainly focuses on three topics: Feature detection, feature description, and end-to-end
matching (see Figure 1). Therefore, this section provides a review and summary of the
related work in these research topics below.
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Figure 1. Focus of this review: Topics of deep-learning methods for wide-baseline stereo
image matching.

2.1. Deep-Learning-Based Feature Detection

Figure 2 summarizes the progress in deep-learning feature-detection methods. Based
on the implemented learning mode, the mainstream deep-learning feature-detection al-
gorithms can be divided into two types: Supervised learning [48] and unsupervised
learning [49]. Supervised learning feature detection takes the feature points extracted by
traditional methods as “anchor points”, and then trains a regression neural network to
predict the location of more feature points; whereas the unsupervised learning strategy uses
a neural network directly to train the candidate points and their response-values, and then
takes the candidate points at the top or bottom of the ranking as the final feature points.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 22 
 

 

2. Deep-Learning Image-Matching Methodologies 
At present, the research on deep-learning methods for wide-baseline image match-

ing mainly focuses on three topics: Feature detection, feature description, and end-to-end 
matching (see Figure 1). Therefore, this section provides a review and summary of the 
related work in these research topics below. 

 
Figure 1. Focus of this review: Topics of deep-learning methods for wide-baseline stereo image 
matching. 

2.1. Deep-Learning-Based Feature Detection 
Figure 2 summarizes the progress in deep-learning feature-detection methods. 

Based on the implemented learning mode, the mainstream deep-learning fea-
ture-detection algorithms can be divided into two types: Supervised learning [48] and 
unsupervised learning [49]. Supervised learning feature detection takes the feature points 
extracted by traditional methods as “anchor points”, and then trains a regression neural 
network to predict the location of more feature points; whereas the unsupervised learn-
ing strategy uses a neural network directly to train the candidate points and their re-
sponse-values, and then takes the candidate points at the top or bottom of the ranking as 
the final feature points. 

 
Figure 2. Development of feature detection with deep learning. 

The basis of wide-baseline image matching is the extraction of local invariant fea-
tures, which are local features that remains table between the stereo images under geo-
metric or radiometric distortions, such as viewpoint change or illumination variation. In 
recent years, researchers have focused on exploring feature detection schemes for deep 
learning with enhancing network [50]. Using the supervised learning strategy as an ex-
ample, Lenc et al. first proposed a local invariant feature loss function ( )covL x  [51]. 

    2
( ) mincov F

L g g q x x x 
 

(1)

Figure 2. Development of feature detection with deep learning.

The basis of wide-baseline image matching is the extraction of local invariant features,
which are local features that remains table between the stereo images under geometric or
radiometric distortions, such as viewpoint change or illumination variation. In recent years,
researchers have focused on exploring feature detection schemes for deep learning with
enhancing network [50]. Using the supervised learning strategy as an example, Lenc et al.
first proposed a local invariant feature loss function Lcov(x) [51].

Lcov(x) = min‖gφ(x)− φ(gx)q‖2
F (1)
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where ‖·‖2
F is F-norm, x is the image block to be processed, g is the random geometric

transformation, gx is the random transformation result of x, φ(·) is the transformation
matrix output by the neural network, and q is the complementary residual transformation
of g. On this basis, this algorithm employs the Siamese neural network DetNet to learn
the invariant feature geometric transformations. Moreover, it uses image control points
as anchor points and treats potential feature points as certain transformation forms of
these anchor points. In the training phase, the images with anchor points are input to the
regression neural network, and the optimal transformation is learned iteratively. Then, the
weights of the regression neural network are adjusted according to the loss function and
finally interpolated to obtain more feature positions, directions, and shapes. This method
created a precedent for deep-learning invariant feature detection, and the detected features
are equipped with good scale and rotation invariance.

Zhang et al. [52] used the illumination-invariant feature TILDE [30] of deep learning
as an anchor point, which solved the problem of image matching under strong illumination
changes; on this basis, Doiphode et al. [53] used a triple network [54] and introduced an
affine invariant constraint to learn stable and reliable affine invariant features. The above
methods give the target features a certain geometric and radiation invariance, but the
geometric relationship between the image blocks must be roughly known before training
the model; this invisibly increases the workload of the training dataset production.

Yi et al. [55] further studied the Edge Foci (EF) [56] and SIFT [14] features to detect
the location of key points and learned the neighborhood direction of features based on
a CNN; Mishkin et al. [57] used a multi-scale Hessian to detect the initial feature points
and estimate the affine invariant region based on the triplet network AffNet. This method
combines traditional feature extraction algorithms with deep-learning invariant features,
which substantially improves the efficiency and reliability of feature detection.

In addition to the above-mentioned features for supervised learning, Savinov et al. [58]
also proposed a classic feature-learning strategy with unsupervised idea. This method
transforms the learning problem of feature detection into a learning problem of response-
value sorting of image interest points. The response function of the image point is denoted
by H(p |w ), where p represents the image point, and H and w represent the CNN to be
trained and the weight vector of the network, respectively. The image point response-value
sorting model is then expressed as follows:

H(pi
d |w ) > H(pj

d |w ) & H(pi
t(d) |w ) > H(pj

t(d) |w )

or
H(pi

d |w ) < H(pj
d |w ) & H(pi

t(d) |w ) < H(pj
t(d) |w )

(2)

where d represents one scene target in the image and p is located on d; i and j are the indexes
of p, and i 6= j; pi

t(d) and pj
t(d) are generated respectively by transformation t of pi

d and pj
d.

Therefore, all points p on target d are sorted according to the response-value function and
Equation (2), and the image points with the response-values in the top or bottom ranks
are retained as feature points. The key purpose of this method is to learn the invariant
response function of the image point using the neural network. The feature points maintain
good invariance to the perspective transformation of the images; additional experiments
in Reference [58] demonstrate that the proposed method may outperform the Difference
of Gaussian (DoG) strategy [14] regarding feature repeatability for view-change images.
However, the existing methods still have many shortcomings with respect to feature point
detection repeatability and stability for wide-baseline images with large view changes.

As mentioned above, the most learning-based methods for feature detection are
categorized as supervised learning achievements. Such mainstream methods can handily
surpass the unsupervised strategies in invariant feature learning because the supervised
methods may directly and separately produce the geometric covariant frames for wide-
baseline images, while the unsupervised methods need to simultaneously cope with the
locations of interest points and their invariance during learning process.
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2.2. Deep-Learning Feature Description

Deep-learning feature description [59] has been widely applied in professional tasks [60]
such as image retrieval, 3D reconstruction, face recognition, interest point detection, and
target positioning and tracking. Specific research on this topic mainly focuses on network
structure construction and loss function design, as shown in Figure 3. Among them, the
network structure of deep learning directly determines the discrimination and reliability of
the feature descriptors, while the loss function affects the training performance of the model
by controlling the iterative update frequency of the model parameters and optimizing the
quantity and quality of the sample input.
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The key to high-quality feature description is to consider both similarity and discrimi-
nation. “Similarity” refers to the ability of corresponding feature descriptors to maintain
good invariance to signal noise, geometric distortion, and radiation distortion, thereby
retaining a high degree of similarity. In contrast, “discrimination” refers to the idea that
there should be a large difference between any non-matching feature descriptors. To gen-
erate high-quality descriptors, the learning-based method departs from the paradigm of
traditional algorithms and builds Siamese network or triplet network, which emulates
the cognitive structure of human visual nerves. The Siamese network, also known as
the dual-channel network, is a coupled architecture based on a binary branch network,
whereas the triple network has one more branch than the Siamese network, and thus it can
be adapted to a scenario in which three samples are input simultaneously.

Figure 4 shows the evolution of several typical feature-description networks. Among
them, a representative approach is MatchNet [20], which uses the original Siamese network
and is composed of two main parts: A feature coding network and a similarity measure-
ment network. The two branches of the feature network maintain dynamic weight sharing
and extract the feature patches from stereo images through a convolution layer [58], a
maximum pooling layer [61], and other layers. Furthermore, it calculates the similarity
between image blocks though a series connecting to the top fully connected network [62],
and then determines the matching blocks based on the similarity score. Subsequently,
Zagoruyko et al. [63] further explored the role of the central-surround two-stream network
(CSTSNet) [64] and the spatial pyramid pooling net (SPPNet) [65] in the feature description.
CSTSNet combines a low-resolution surround stream with a high-resolution center stream,
which not only use the multi-resolution information of the image, but also emphasize the
information of the center pixels, thus substantially improving the matching performance. In
contrast, SPPNet inherits the good characteristics of the Siamese network, then it enhances
the adaption to image block data of different sizes by introducing a spatial pyramid pool-
ing layer. To apply SPPNetto the description of features in satellite images, Fan et al. [66]
designed a dual-channel description network based on a spatial-scale convolutional layer
to improve the accuracy of satellite image matching.



Remote Sens. 2021, 13, 3247 6 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 22 
 

 

scription network based on a spatial-scale convolutional layer to improve the accuracy of 
satellite image matching. 

 

Figure 4. Evolution of representativefeature description networks. 

These descriptor measurement networks belong to the fully connected category of 
networks, which consume a large amount of computing resources during training and 
testing, and hence have low matching efficiency. To address this, Tian et al. proposed a 
feature description model called L2-Net [67] with a full convolutional network repre-
sentation. This method inherits the idea of SIFT descriptors, namely, it adjusts the di-
mension of network output to 128 and uses the L2 norm measure of Euclidean distance 
instead of a metric network to evaluate the similarity of the feature descriptors. The basic 
structure of the L2-Net network is shown in Figure 5. This network consists of seven 
convolutional layers and a local response normalization layer (LRN). In the figure, the 
term “3 × 3 Conv” in the convolutional layer refers to convolution, batch normalization, 
and linear activation operations in the series, and “8 × 8 Conv” represents the convolu-
tion and batch normalization processing operations. Moreover, “32” represents a 
32-dimensional convolution with a step size of 1 and “64/2”refers to a 64-dimensional 
convolution operation with a step size of 2. The final output layer LRN is used to gener-
ate unit descriptor vectors while accelerating network convergence and enhancing model 
generalization. 

 
Figure 5. Basic architecture of L2-Net. 

The results on the open-source dataset Brown [68], Oxford [10], and HPatches [69] 
training and testing datasets show that L2-Net has good generalization ability, and its 
performance is better than the existing traditional descriptors. Moreover, L2-Net per-
forms well with respect to image feature classification as well as wide-baseline stereo 
image feature description and matching, and thus many researchers regard it as a classic 
feature description network and have extended it with improvements in network struc-
ture. Balntas et al. [34] found that one disadvantage of L2-Net is that it ignores the con-
tribution of negative samples to the loss function value. Hence, they proposed the tri-
plets and shallow CNN (TSCNN). This method simplifies the L2-Net network layer and 
the number of channels, then incorporates negative samples into the network training, 
and hence that the modified model can reduce the distance between matching feature 
descriptors while increasing the distance between non-matching feature descriptors. 

Figure 4. Evolution of representativefeature description networks.

These descriptor measurement networks belong to the fully connected category of
networks, which consume a large amount of computing resources during training and
testing, and hence have low matching efficiency. To address this, Tian et al. proposed a
feature description model called L2-Net [67] with a full convolutional network representa-
tion. This method inherits the idea of SIFT descriptors, namely, it adjusts the dimension of
network output to 128 and uses the L2 norm measure of Euclidean distance instead of a
metric network to evaluate the similarity of the feature descriptors. The basic structure of
the L2-Net network is shown in Figure 5. This network consists of seven convolutional
layers and a local response normalization layer (LRN). In the figure, the term “3 × 3 Conv”
in the convolutional layer refers to convolution, batch normalization, and linear activation
operations in the series, and “8 × 8 Conv” represents the convolution and batch normal-
ization processing operations. Moreover, “32” represents a 32-dimensional convolution
with a step size of 1 and “64/2” refers to a 64-dimensional convolution operation with a
step size of 2. The final output layer LRN is used to generate unit descriptor vectors while
accelerating network convergence and enhancing model generalization.
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The results on the open-source dataset Brown [68], Oxford [10], and HPatches [69]
training and testing datasets show that L2-Net has good generalization ability, and its
performance is better than the existing traditional descriptors. Moreover, L2-Net performs
well with respect to image feature classification as well as wide-baseline stereo image
feature description and matching, and thus many researchers regard it as a classic fea-
ture description network and have extended it with improvements in network structure.
Balntas et al. [34] found that one disadvantage of L2-Net is that it ignores the contribution
of negative samples to the loss function value. Hence, they proposed the triplets and
shallow CNN (TSCNN). This method simplifies the L2-Net network layer and the number
of channels, then incorporates negative samples into the network training, and hence that
the modified model can reduce the distance between matching feature descriptors while
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increasing the distance between non-matching feature descriptors. However, the negative
samples are input into TSCNNs using random sampling strategy, and as a result, most
negative samples do not sufficiently contribute to the model training, which limits the
improvements in descriptor discrimination. In view of this, HardNet [70] incorporates
the most difficult negative sample, namely the nearest non-matching descriptor, into the
training of the model, which substantially enhances the training efficiency and matching
performance. The triplet margin loss (TML) function used by this model is as follows:

L =
1
m

m

∑
i=1

max(0.1 + d(ai, pi)−min(d(ai, njmin

)
, d(nkmin , pi

)
)) (3)

where m is the batch size, d() is the Euclidean distance between two descriptors, ai and
pi are an arbitrary pair of matching descriptors, and njmin and nkmin represent the closest
non-matching descriptors to ai and pi, respectively.

On the basis of the L2-Net network structure, the HardNet descriptor model employs
the nearest neighbor negative sample sampling strategy and the TML loss function, which
is another important advance in the descriptor network model. Inspired by HardNet,
some notable deep-learning models for feature description have been further explored.
For example, LogPolarDesc [71] uses a polar transform network to extract corresponding
image blocks with higher similarity to improve the quality and efficiency of model training;
SOSNet [72] introduces the second-order similarity regularization into the loss function to
prevent over-fitting of the model and substantially improve the utilization of the descriptors.
To generate a descriptor with both global and local geometric invariance, some researchers
have proposed making full use of the geometry or the visual context information of an
image. The representative approach GeoDesc [73] employs cosine similarity to measure
the matching degree of descriptors. It also sets self-adaptive distance thresholds to handle
different training image blocks and then introduces a geometric loss function to enhance
the geometric invariance of the descriptor, which is expressed by the following equation:

Egeometric = ∑
i

max(0, β− si,i), β =


0.7 spatch ≥ 0.5
0.5 0.2 ≤ spatch < 0.5
0.2 otherwise

(4)

where β represents the adaptive threshold; si,i represents the cosine similarity between cor-
responding features descriptors; and spatch represents the similarity of the correspondingim-
age blocks. On this basis, ContextDesc [74] integrates geometry and visual context per-
ception into the process of network model construction, thus improving the utilization of
image geometry and visual context information. Finally, many data tests show that the
ContextDesc adapts well to the geometric and radiation distortions of different scenes.

In short, feature description plays a vital role in image matching, as the high-quality
descriptor can absorb the local and global information from the feature neighborhoods,
which may provide adequate knowledge for recognizing the unique feature from extensive
false candidates. Based on the aforementioned, the triple networks can perform better than
the Siamese or sole model, because multi-branch networks can be efficient in learning the
uniqueness of features and make full use of context information.

2.3. Deep-Learning End-to-End Matching

The end-to-end matching strategy integrates three different stages of image feature
extraction, description, and matching into one system for training, which is beneficial for
learning the globally optimal model parameters, and adaptively improves the performance
of each stage [75]. Figure 6 summarizes the development of end-to-end deep-learning
matching. Most end-to-end methods focus on the design of training modes and the
automatic acquisition of training data [76]. The design of training modes is intended to
obtain high-quality image features and descriptors in a more concise and efficient way; the
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aim of automatic acquisition of data is to achieve fully automatic training by means of a
classical feature detection algorithm and spatial multi-scale sampling strategy.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

and the automatic acquisition of training data [76]. The design of training modes is in-
tended to obtain high-quality image features and descriptors in a more concise and effi-
cient way; the aim of automatic acquisition of data is to achieve fully automatic training 
by means of a classical feature detection algorithm and spatial multi-scale sampling 
strategy. 

 
Figure 6. Development of end-to-end matching with learning-based methods. 

Yi et al. proposed the learned invariant feature transform (LIFT) network structure 
[77]. This network first integrates feature detection, direction estimation, and feature de-
scription into one pipeline based on the Transformer (ST) [78] and softargmax algorithm 
[79]. The end-to-end training is carried out by back propagation. The complete training 
and testing process of this method is shown in Figure 7. 

 
Figure 7. Training and testing of the LIFT pipeline. 

The back propagation-based training process of LIFT can be briefly described as 
follows. First, the feature location and principal direction can be extracted using the 
structure from motion (SFM) algorithm [80], and then the feature descriptor is trained. 
Second, guided by the feature descriptor, the direction estimator is trained based on the 
feature location and its neighborhood ST. Finally, the feature descriptor and direction 
estimator are united to train the feature detector based on the training dataset. After the 
LIFT has been trained, the corresponding test process proceeds as follows. First, the fea-
ture score map of a multi-scale image is obtained based on the feature detector. Second, 
scale-space non-maximum suppression is performed using the softargmax function and 
then the scale invariant feature region is extracted. Finally, the feature region is further 
normalized and then the description vectors are extracted by the feature descriptor. 

Although LIFT belongs to the category of end-to-end network models, a back 
propagation-based multi-stage training mode is adopted in the network training, which 
reduces the training efficiency and practicality of the model; additionally, LIFT employs 
an SFM strategy and random spatial transformation to provide matching image blocks 
for training, which limits the discrimination of descriptors. In view of this, DeTone et al. 
[81] proposed a self-supervised network model called MagicPoint instead of SFM to label 
training data. They then use the SuperPoint model to learn feature points and extract 
their descriptors for end-to-end training. 

SuperPoint realizes the joint training of feature detection and description through 
the encoding structure [82] and decoding structure [83]. The encoding structure is used 
for image feature extraction, whereas the decoding structure can not only output the po-
sition of the feature point, but also output the descriptor vector. Similarly, Revaud et al. 

Figure 6. Development of end-to-end matching with learning-based methods.

Yi et al. proposed the learned invariant feature transform (LIFT) network structure [77].
This network first integrates feature detection, direction estimation, and feature description
into one pipeline based on the Transformer (ST) [78] and softargmax algorithm [79]. The
end-to-end training is carried out by back propagation. The complete training and testing
process of this method is shown in Figure 7.
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The back propagation-based training process of LIFT can be briefly described as
follows. First, the feature location and principal direction can be extracted using the
structure from motion (SFM) algorithm [80], and then the feature descriptor is trained.
Second, guided by the feature descriptor, the direction estimator is trained based on the
feature location and its neighborhood ST. Finally, the feature descriptor and direction
estimator are united to train the feature detector based on the training dataset. After
the LIFT has been trained, the corresponding test process proceeds as follows. First, the
feature score map of a multi-scale image is obtained based on the feature detector. Second,
scale-space non-maximum suppression is performed using the softargmax function and
then the scale invariant feature region is extracted. Finally, the feature region is further
normalized and then the description vectors are extracted by the feature descriptor.

Although LIFT belongs to the category of end-to-end network models, a back propagation-
based multi-stage training mode is adopted in the network training, which reduces the
training efficiency and practicality of the model; additionally, LIFT employs an SFM
strategy and random spatial transformation to provide matching image blocks for training,
which limits the discrimination of descriptors. In view of this, DeTone et al. [81] proposed
a self-supervised network model called MagicPoint instead of SFM to label training data.
They then use the SuperPoint model to learn feature points and extract their descriptors
for end-to-end training.

SuperPoint realizes the joint training of feature detection and description through the
encoding structure [82] and decoding structure [83]. The encoding structure is used for
image feature extraction, whereas the decoding structure can not only output the position
of the feature point, but also output the descriptor vector. Similarly, Revaud et al. [84]
proposed the Siamese decoding structure R2D2, which focuses more on the repetitive and
discriminative expression of training features than SuperPoint.

The learning-based method of MagicPoint can replace the handcrafted labeling of
feature points, but a small amount of handcrafted labeling data is still required when
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obtaining the pre-trained model. Ono et al. [85] proposed LF-Net, which is an end-to-
end model that uses unsupervised training. This method directly uses the stereo images
obtained by a metric camera, an image depth map, the camera position, and orientation
data, and other prior information to complete the end-to-end model training, which
greatly reduces the need for manual intervention and promotes the automated process of
deep-learning matching. In addition, Dusmanu et al. proposed a combination of feature
detection and descriptor extraction that can make more effective use of high-level semantic
information. They then proposed a simplified end-to-end model D2Net [86]. The difference
between this model and the traditional model is depicted in Figure 8. Figure 8a shows the
traditional “detect-then-describe” model, that is, SuperPoint [81], which is a representative
model of this type, and Figure 8b shows the D2Net “describe-and-detect” model. In
contrast to a Siamese or multi-branch network structure [87], D2Net adopts a single-branch
network architecture, and the feature location and descriptor information of the image are
stored in high-dimensional feature channels, which is thus more conducive to obtaining
stable and efficient matches. However, D2Net must extract dense descriptors in the process
of using high-level semantic information, which reduces the accuracy and efficiency of
feature detection.
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All in all, the end-to-end strategy is prone to train the optimal parameters for image
matching. Multi-networks with complex architecture need to input more training samples
than a single network. Considering the available scale of training data [76], the self-
supervised learning mode is the best choice for current practical applications.

3. Results and Discussion
3.1. Representative Algorithms and Experimental Data

To evaluate the performance, advantages, and disadvantages of deep-learning stereo
matching algorithms, we selected a total five categories of 10 well-performed algorithms
for the experiments, including deep-learning end-to-end matching, deep-learning feature
detection and description, deep-learning feature detection and handcrafted feature descrip-
tion, handcrafted feature detection and deep-learning feature description, and handcrafted
image matching, as shown in Table 1. In addition, the key source code of each algorithm
can be obtained from the corresponding link in this table. The above methods were selected
due to the following reasons. First, as the representatives of deep-learning end-to-end
matching, SuperPoint [81] and D2Net [86] were published recently, and they have been
widely applied [88–90] in the fields of photogrammetry and computer vision. Second, the
deep-learning feature detectors AffNet [57] andDetNet [51], deep-learning feature descrip-
tors HardNet [70], SOSNet [72], and ContextDesc [74], were all proposed for wide-baseline
image matching, and were often used as benchmarks [12]. Third, the classical handcrafted
methods are used here to verify the strength of deep-learning methods. Finally, all selected
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methods are effective and well-performed in previous reports, and the source codes are
open to public.

Table 1. Representative algorithms and their references.

Categories Algorithms Code links

Deep learning end-to-end matching
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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           (6)

where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

SuperPoint [81] https://github.com/rpautrat/SuperPoint
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based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

ASIFT [18] https://github.com/search?q=ASIFT

The datasets used to train each deep-learning algorithm are as follows: SuperPoint
using MSCOCO [91]; D2Net using MegaDepth [92]; AffNet using UBC Phototour [68];
both HardNet and SOSNet using HPatches [69]; ContextDesc using GL3D [93]; DetNet
using DTU-Robots [94]. According to their corresponding literatures [68,69,91–94], the
characters of each dataset would be discussed and summarized as follows. MSCOCO was
proposed with the goal of advancing the state-of-the-art in scene understanding and object
detection. In contrast to the popular datasets, MSCOCO involves fewer common object
categories but more instances per category, which would be useful for learning complex
scenes. MegaDepth was created to exploit multi-view internet images and produce a large
amount of training data by the SFM method. It performs well for challenging environments
such as offices and close-ups, but MegaDepth is biased towards outdoor scenes. UBC
Phototour initially proposed patch verification as an evaluation protocol. There is large
number of patches available in this dataset, which is particularity suited for deep-learning-
based detectors. The images in this dataset have notable variations in illumination and
view changes, but most of these images only focus on three scenes: Liberty, Notre-Dame,
and Yosemite. HPatches presented a new large-scale dataset special for training local
descriptors, aiming to eliminate the ambiguities and inconsistencies in scene understanding.
It has the superiorities of diverse scenes and notable viewpoint changes. GL3D designed a
large-scale database for 3D surface reconstruction and geometry-related learning issues.
This dataset covered many different scenes, including rural area, urban, and scenic spots
taken from multiple scales and viewpoints. The DTU-Robots dataset involves real images
of 3D scenes, shot using a robotic arm in rigorous laboratory conditions, which is suitable
for certain application but of limited size and variety in the data.

The representative wide-baseline test data are presented in Figure 9, and the corre-
sponding data descriptions are listed in Table 2. Algorithms

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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Figure 9. (a–m) Wide-baseline test data. These data are carefully selected from different platforms of
ground close-range, UAV, and satellite, respectively. They cover various terrains and have significant
viewpoint changes.

3.2. Experimental Results

For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the
results are as follows: Table 3 presents the number of image matches obtained by each
algorithm, and the bold number is the maximum number of matches in each group of test
data; Figure 10 shows the matching errors of each algorithm, where the matching error ε is
estimated by the following equations [95]:
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2
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where N is the number of matches, xj and x′ j are an arbitrary pair of matching point
coordinates, and H and F are the known true perspective transformation matrix and true
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist
of planar or approximately planar scenes, are evaluated by εH (pixel), and the matching
errors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel).
Figure 11 shows the image-matching results of each algorithm. Because of the limited
space, this figure only exhibits the matching results of algorithms
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red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

,

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 

=1 =1 =1

1( )-1 ( 1) ( -1) ( 1) , , 3 max( )
n n n

i i i i i
i i i

Dis A A n S n A A S J
n

           (6)
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
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based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
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where n represents the total number of Delaunay triangles generated by the matching
points, Ai denotes the area of the i-th triangle, max(Ji) represents the radian value of the
maximum internal angle, and A represents the average area of the triangle. The value of Dis
can reveal the consistency and uniformity of the spatial distribution of the triangle network,
and a smaller Dis value indicates that the matches have a higher spatial distribution quality.

Table 2. Description of the wide-baseline test data.

Testdata Left Image
(Pixels)

Right Image
(Pixels) Description for Image Pair

True Perspective Transform
Matrix H

or True Fundamental Matrix F

G
ro

un
d

cl
os

e-
ra

ng
es

da
ta a 800 × 640 800 × 640

Close-range stereo images
with 60 deg viewpoint

change
H is provided by Reference [10]

b 1000 × 700 880 × 680
Close-range stereo images

with repetitive patterns and
60 deg viewpoint change

H is provided by Reference [10]

c 850 × 680 850 × 680

Close-range stereo images
with about 45 deg rotation

and 2.5 times scale
transform

H is provided by Reference [10]

Lo
w

at
ti

tu
de

da
ta

d 900 × 700 900 × 700
UAV stereo images with 90
deg rotation and significant
oblique viewpoint change

H is estimated by manual work

e 800 × 600 800 × 600

UAV stereo images with 90
deg rotation, large oblique

view change, and
radiometric distortion

H is estimated by manual work

f 900 × 700 900 × 700
UAV stereo images with rare
texture, large view change,
and radiometric distortion

H is estimated by manual work

g 800 × 600 800 × 600

UAV stereo images with
significant scale

deformation, oblique view
change, radiometric

distortion, and numerous
3D scenes

F is estimated by manual work

h 800 × 600 800 × 600
UAV stereo images with

large oblique view change,
and numerous 3D scenes

F is estimated by manual work

i 1084 × 814 1084 × 814

UAV stereo images with
significant oblique view

change, radiometric
distortion, and complex 3D

scenes

F is estimated by manual work

j 5472 × 3468 5472 × 3468

UAV stereo images with
significant view change,

surface discontinuity, object
occlusion, and rare texture

F is estimated by manual work

k 4200 × 3154 4200 × 3154

UAV stereo images with
about 90 deg rotation,

significant oblique view
change, single texture, and

large area of water

F is estimated by manual work
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Table 2. Cont.

Testdata Left Image
(Pixels)

Right Image
(Pixels) Description for Image Pair

True Perspective Transform
Matrix H

or True Fundamental Matrix F

Sa
lli

te
da

ta

l 2316 × 2043 2316 × 2043

Satellite optical stereo image
with notable rotation,

significant topography
variation, and rare texture

F is estimated by manual work

m 2872 × 2180 2872 × 2180

Satellite optical stereo
images with significant
surface discontinuity,

radiometric distortion,
dense 3D buildings, and

single texture

F is estimated by manual work

Table 3. The contrast of ten algorithms in the aspect of number of matches. Bold font denotes the best results.

Algorithms a b c d e f g h i j k l m
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
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space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
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based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
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red dots and joined by yellow lines, and the most matches in each row of the figure are 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
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based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
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red dots and joined by yellow lines, and the most matches in each row of the figure are 
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3.3. Analysis and Discussion

First, we discuss the test results of compared methods as a whole. The results in Table 3
and Figures 11 and 12 show that no single algorithm always obtains the best performance
on stereo images with different platform types, different viewpoint changes, and various
texture structures. As a typical representative of handcrafted algorithms, ASIFT can achieve
affine invariant stereo matching through a multi-level sampling strategy in 3D space;
however, compared with the deep-learning algorithms, the test results of ASIFT show that
its advantageis in the number of matches in close-range images with planar scene or satellite
images. In contrast, the deep-learning algorithms DetNet + Contexdesc, AffNet + SOSNet,
and SuperPointcan perform better on close-range stereo images with large rotations and
scale changes, low-altitude stereo images with approximately planar scenes, and high-
altitude stereo images with complex 3D scenes. This is because handcrafted algorithms
tend to adopt the global spatial geometry rectification or a single segmentation model,
which is more suitable for simple stereo images with planar scenes; whereas deep-learning
algorithms build deep convolutional layers or fully connected neural network models
from the perspective of emulating human visual cognition, and they iteratively learn the
optimal network model parameters based on a large number of training samples, which
can theoretically approximate any complex geometric or radiometric transform model,
and hence this type of algorithm is more suitable for matching wide-baseline images with
complex scenes. For test data (a), (b), (h), and (j), ASIFT yields better matching distribution
quality; the algorithms DetNet + Contexdesc and AffNet + HardNet respectively perform
well on data (c) and (d) with respect to matching distribution, whereas SuperPoint performs
well on data (g) and (m) with respect to matching distribution. All compared algorithms
consistently achieve poor matching distribution quality for data (c), (j), (k), and (l). This is
mainly because the traditional problems of digital photogrammetry, such as large-scale
deformation of images, lack of texture, terrain occlusion, and surface discontinuity, are still
difficult for the available algorithms to handle. On this topic, we suggest that handcrafted
algorithms may expand the search range of geometric transform parameters to enhance
adaptability to large-scale deformation data, whereas deep-learning algorithms may also
improve the matching compatibility of complex terrain by increasing the number of samples
in such areas.

Second, we discuss the CNN architectures combining the used training datasets.
Deep-learning wide-baseline image matching is mainly limited by the structure of the
neural network model and the size of the training dataset. Table 3 and Figure 11 show
that the SuperPoint algorithm can obtain the most matches from the complex 3D scene
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(data (g)–(j) and (m)) for UAV oblique stereo images (data (d)–(i), (j), and (k)) or satellite
wide-baseline images (data (l) and (m)), but it almost fails on simple ground scenes (data
(d)–(f)). Although the MSCOCO training dataset used by SuperPoint contains large-scale
independent structural objects, it lacks ground scene annotation instances with a single tex-
ture, and hence this training dataset limits the matching performance of SuperPoint on the
ground scenes. The AffNet+SOSNet algorithm can obtain a sufficient number of matches
from wide-baseline images (data (d)–(f)) with ground scenes and poor texture, where the
spatial distribution of the matches is relatively uniform, as presented in Figures 11 and 12.
The reason is that the UBC Phototour and HPatches datasets cover a large number of
homogeneous structures such as ground, wall, and sculpture structures, which enables the
algorithm to enhance its perception of some scenes with a single texture. A comparison
of the matching results of algorithms 3 and 4 shows that, even with the same training
dataset, the feature description performance of SOSNet is substantially better than that
of HardNet. Reviewing the structures of the two networks shows that on the basis of the
HardNet, SOSNet embeds a second-order similarity regularization term in the loss function
to avoid over-fitting problems in the model training and further improve the similarity
and discrimination of the descriptors. The ContextDesc algorithm integrates visual and
geometric context encoding structures into the network model to improve the use of image
context information. The test results show that it is particularly suitable for image matching
in scenes with cluttered background (data (c)) or large radiometric distortion (data (e)).

Third, we further discuss the strengths and weaknesses of integrating methods for
the difficult test data. Although algorithms
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where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
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based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 
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where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 
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the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

, and

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 22 
 

 

improve the use of image context information. The test results show that it is particular-
ly suitable for image matching in scenes with cluttered background (data (c)) or large 
radiometric distortion (data (e)). 

Third, we further discuss the strengths and weaknesses of integrating methods for 
the difficult test data. Although algorithms ③, ④, and ⑦ all adopt AffNet to extract 
affine invariant features, the test results of algorithms ③ and ④ are substantially bet-
ter. We speculate the reason is that the deep-learning descriptors of algorithms ③ and 
④ perform better than the handcrafted descriptor SIFT of algorithm 7. Figure 10 shows 
that the matching of both the deep learning and handcrafted algorithms is not able to 
achieve sub-pixel accuracy. The main reason is that the two stages of feature detection 
and feature matching are relatively independent, which makes it difficult for the corre-
sponding points to be accurately aligned. The complete UAV dataset, which is larger in 
size and resolution (data (j) and (k)) was also used for testing. It should theoretically be 
beneficial for each algorithm to obtain more matches; however, Table 3 shows that the 
number of matches did not increase substantially as a result. We believe that a high res-
olution will exacerbate the lack of local texture in the image, and larger images tend to 
introduce more occluded regions. Specifically, data (j) contain more occluded scenes and 
homogenous textures, whereas data (k) involve a large area of water and scenes with 
viewpoint changes. Additionally, the ratio of the corresponding regions in the larger 
images is lower. Thus, it would become more difficult to obtain the corresponding fea-
tures in the absence of prior knowledge or initial matches. For satellite wide-baseline 
images with various mountainous and urban areas, both the deep-learning approach 
SuperPoint and the handcrafted ASIFT method can obtain a significant number of 
matches. 

4. Summary and Outlook 
For wide-baseline image-matching problems, this paper systematically organized, 

analyzed, and summarized the existing deep-learning image invariant feature detection, 
description, and end-to-end matching models. In addition, the matching performances 
of the representative algorithms were evaluated and compared through comprehensive 
experiments on wide-baseline images. According to the above test results and discus-
sion, future research and challenges can be summarized as follows. 

(1) The current deep-learning invariant feature detection approach continues to re-
veal its potential, and the research on invariant features and their applications has in-
creasingly developed, from the scale invariant feature learning of Reference [52] to the 
affine invariant feature training of Reference [53]. Experiments have shown that learn-
ing-based methods have better potential than handcrafted detection algorithms such as 
DoG [14] and pixel watershed [17]. In addition, the strategy of combining handcrafted 
methods with learning-based methods [55] to extract invariant features has become a 
good option, but this type of method obviously depends on the accurate extraction of 
the image features by the handcrafted algorithms. In short, although the feature detec-
tion methods based on deep learning tend to show abilities beyond the traditional 
methods, this approach is not yet fully mature, especially for the matching problem of 
wide-baseline images with complex scenes and various textures, and it still faces great 
challenges. Therefore, extracting invariant features with high repeatability and stability 
needs further study. 

(2) Deep-learning feature description is essentially metric learning; this kind of 
method is mainly focused on network model construction and loss function design. 
From the MatchNet Siamese network [20] to the SOSNet triplet structure [72], the model 
parameters are gradually simplified, and the performance is correspondingly improved. 
However, most network backbones still inherit the structure of the classic L2-Net [67]. 
Especially for the affine invariant feature description network structure, we suggest in-
troducing a viewpoint transform module, which could enhance the transparency, per-
ception, and generalization capabilities of existing models for wide-baseline images. 

all adopt AffNet to extract
affine invariant features, the test results of algorithms

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 

=1 =1 =1

1( )-1 ( 1) ( -1) ( 1) , , 3 max( )
n n n

i i i i i
i i i

Dis A A n S n A A S J
n

           (6)

where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

and

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 

=1 =1 =1

1( )-1 ( 1) ( -1) ( 1) , , 3 max( )
n n n

i i i i i
i i i

Dis A A n S n A A S J
n

           (6)

where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

are substantially better.
We speculate the reason is that the deep-learning descriptors of algorithms

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 

=1 =1 =1

1( )-1 ( 1) ( -1) ( 1) , , 3 max( )
n n n

i i i i i
i i i

Dis A A n S n A A S J
n

           (6)

where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

and

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

i 1084 × 814 1084 × 814 
UAV stereo images with significant oblique view 
change, radiometric distortion, and complex 3D 

scenes 

F is estimated by 
manual work 

j 5472 × 3468 5472 × 3468 
UAV stereo images with significant view change, 
surface discontinuity, object occlusion, and rare 

texture 

F is estimated by 
manual work 

k 4200 × 3154 4200 × 3154 
UAV stereo images with about 90 deg rotation, 
significant oblique view change, single texture, 

and large area of water 

F is estimated by 
manual work 

Sa
lli

te
 d

at
a l 2316 × 2043 2316 × 2043 

Satellite optical stereo image with notable rotation, 
significant topography variation, and rare texture 

F is estimated by 
manual work 

m 2872 × 2180 2872 × 2180 
Satellite optical stereo images with significant 

surface discontinuity, radiometric distortion, dense 
3D buildings, and single texture 

F is estimated by 
manual work 

3.2. Experimental Results 
For the 13 sets of wide-baseline stereo images and 10 representative algorithms, the 

results are as follows: Table 3 presents the number of image matches obtained by each 
algorithm, and the bold number is the maximum number of matches in each group of test 
data; Figure 10 shows the matching errors of each algorithm, where the matching error 
 is estimated by the following equations[95]: 

2

1

T 2 2 2
1 21

1

1 ( ) ( ) ( )

N
H j jj

N
F j j j jj

N

N










  


  





x Hx

x Fx Fx Fx

 (5)

where N is the number of matches, jx  and jx  are an arbitrary pair of matching point 
coordinates, and H and F are the known true perspective transformation matrix and true 
fundamental matrix, respectively. The matching errors of test data (a)–(f),which consist of 
planar or approximately planar scenes, are evaluated by εH (pixel), and the matching er-
rors of test data (g)–(m), which consist of non-planar scenes, are evaluated by εF (pixel). 
Figure 11 shows the image-matching results of each algorithm. Because of the limited 
space, this figure only exhibits the matching results of algorithms ①, ③, ④, ⑤, and ⑩ 
based on test data (a), (f), (g), (i), (j), and (m), where the matching points are indicated by 
red dots and joined by yellow lines, and the most matches in each row of the figure are 
marked by a green frame. For each algorithm, Figure 12 shows the matching distribution 
quality Dis, which is estimated by the following equation [96]: 

=1 =1 =1

1( )-1 ( 1) ( -1) ( 1) , , 3 max( )
n n n

i i i i i
i i i

Dis A A n S n A A S J
n

           (6)

where n represents the total number of Delaunay triangles generated by the matching 
points, iA  denotes the area of the i-th triangle, max( )iJ  represents the radian value of 
the maximum internal angle, and A  represents the average area of the triangle. The 
value of Dis can reveal the consistency and uniformity of the spatial distribution of the 
triangle network, and a smaller Dis value indicates that the matches have a higher spa-
tial distribution quality. 

  

perform better than the handcrafted descriptor SIFT of algorithm 7. Figure 10 shows
that the matching of both the deep learning and handcrafted algorithms is not able to
achieve sub-pixel accuracy. The main reason is that the two stages of feature detection and
feature matching are relatively independent, which makes it difficult for the corresponding
points to be accurately aligned. The complete UAV dataset, which is larger in size and
resolution (data (j) and (k)) was also used for testing. It should theoretically be beneficial
for each algorithm to obtain more matches; however, Table 3 shows that the number of
matches did not increase substantially as a result. We believe that a high resolution will
exacerbate the lack of local texture in the image, and larger images tend to introduce more
occluded regions. Specifically, data (j) contain more occluded scenes and homogenous
textures, whereas data (k) involve a large area of water and scenes with viewpoint changes.
Additionally, the ratio of the corresponding regions in the larger images is lower. Thus, it
would become more difficult to obtain the corresponding features in the absence of prior
knowledge or initial matches. For satellite wide-baseline images with various mountainous
and urban areas, both the deep-learning approach SuperPoint and the handcrafted ASIFT
method can obtain a significant number of matches.

4. Summary and Outlook

For wide-baseline image-matching problems, this paper systematically organized,
analyzed, and summarized the existing deep-learning image invariant feature detection,
description, and end-to-end matching models. In addition, the matching performances
of the representative algorithms were evaluated and compared through comprehensive
experiments on wide-baseline images. According to the above test results and discussion,
future research and challenges can be summarized as follows.

(1) The current deep-learning invariant feature detection approach continues to reveal
its potential, and the research on invariant features and their applications has increasingly
developed, from the scale invariant feature learning of Reference [52] to the affine invariant
feature training of Reference [53]. Experiments have shown that learning-based methods
have better potential than handcrafted detection algorithms such as DoG [14] and pixel
watershed [17]. In addition, the strategy of combining handcrafted methods with learning-
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based methods [55] to extract invariant features has become a good option, but this type
of method obviously depends on the accurate extraction of the image features by the
handcrafted algorithms. In short, although the feature detection methods based on deep
learning tend to show abilities beyond the traditional methods, this approach is not yet fully
mature, especially for the matching problem of wide-baseline images with complex scenes
and various textures, and it still faces great challenges. Therefore, extracting invariant
features with high repeatability and stability needs further study.

(2) Deep-learning feature description is essentially metric learning; this kind of method
is mainly focused on network model construction and loss function design. From the
MatchNet Siamese network [20] to the SOSNet triplet structure [72], the model parameters
are gradually simplified, and the performance is correspondingly improved. However,
most network backbones still inherit the structure of the classic L2-Net [67]. Especially
for the affine invariant feature description network structure, we suggest introducing
a viewpoint transform module, which could enhance the transparency, perception, and
generalization capabilities of existing models for wide-baseline images. Moreover, the
loss function design is mainly used to select reasonable training samples. Although the
existing functions focus on traditional problems such as the selection of positive and
negative samples, they do not consider the inherent characteristics of wide-baseline images.
Therefore, to improve the performance of the descriptors, future work could involve
the construction of novel wide-baseline network structures or the design of universal
loss functions.

(3) Recently, end-to-end learning-based methods such as back propagation-trained
LIFT [77] and feature description-and-detection D2Net [86] have received increasing at-
tention. This type of method has led to numerous innovations in terms of training mode
and the automatic acquisition of training data. The research shows that the end-to-end
method has a faster computation speed than other learning-based methods and can meet
the performance requirements for simultaneous localization and mapping (SLAM) [68],
SFM [80], and other real-time vision tasks. However, for wide-baseline image-matching
tasks, it is difficult for this type of method to extract sufficient feature points. Therefore,
in the field of wide-baseline image matching, we should further explore the end-to-end
learning of unconventional and complex distortions as well as the image features of various
textures and structures.

(4) Image matching based on deep learning is a data-driven image-matching method
that must automatically learn the deep expression mechanism of ground surface features
from a large amount of image data. Therefore, the key for deep-learning image matching is
to build a diverse and massive training dataset. At present, the main training datasets for
deep-learning wide-baseline image matching are UBC Phototour [68] and HPatches [69].
The UBC Phototour dataset contains a large number of artificial statues, whereas the
HPatches dataset mainly consists of simple facade configurations. These available train-
ing datasets are very different from the data captured by aerial photography or satellite
remote sensing, which stop the affine invariant network models, such as AffNet [57],
HardNet [70], and SOSNet [72], from achieving the optimal matches in wide-baseline
remote sensing images. Therefore, it is an urgent task to establish a large wide-baseline
dataset of multi-source, multi-platform, and multi-spectrum data through crowd sourcing
or sharing mechanisms.

(5) The existing studies have shown that the comprehensive performance of a model
can be substantially improved through transfer learning, which has been widely applied in
the fields of target recognition, image classification, and change detection. However, there
are few published reports on transfer learning in the field of deep-learning wide-baseline
image matching, specifically for feature detection, feature description, and end-to-end
methods. Therefore, on the basis of establishing a wide-baseline image dataset, further work
should focus on training a network for wide-baseline matching using a transfer learning
strategy to achieve high-quality matching for wide-baseline images. In addition, for the
original observation of matching points, the positioning errors must be fully considered



Remote Sens. 2021, 13, 3247 18 of 22

in the field of digital photogrammetry. However, the corresponding points across wide-
baseline images cannot be registered precisely by learning-based methods. Hence, the
matching accuracy could be improved by some optimization strategies, such as least-
squares image matching or the Newton iteration method, which remains as future work.

5. Conclusions

In this paper, based on a review of the image-matching stages, we organized and
summarized the development status and trends of existing learning-based methods. More-
over, the matching performance, advantages, and disadvantages of typical algorithms were
evaluated through comprehensive experiments on the representative wide-baseline images.
The results reveal that there is no algorithm that can adapt to all types of wide-baseline
images with various viewpoint changes and texture structures. Therefore, the currently
urgent task is to enhance the generalization ability of the models by combining a mixed
model with more extensive training datasets. Moreover, it was suggested that a critical
task is to construct deep network models with elastic receptive field and self-adaptive
loss functions based on wide-baseline imaging properties and typical problems in image
matching. It is our hope that the review work of this paper will act as a reference for
future research.
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