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Abstract: The integration of ecological and atmospheric characteristics for biodiversity management
is fundamental for long-term ecosystem conservation and drafting forest management strategies,
especially in the current era of climate change. The explicit modelling of regional ecological responses
and their impact on individual species is a significant prerequisite for any adaptation strategy. The
present study focuses on predicting the regional distribution of Rhododendron arboreum, a medicinal
plant species found in the Himalayan region. Advanced Species Distribution Models (SDM) based
on the principle of predefined hypothesis, namely BIOCLIM, was used to model the potential
distribution of Rhododendron arboreum. This hypothesis tends to vary with the change in locations,
and thus, robust models are required to establish nonlinear complex relations between the input
parameters. To address this nonlinear relation, a class of deep neural networks, Convolutional Neural
Network (CNN) architecture is proposed, designed, and tested, which eventually gave much better
accuracy than the BIOCLIM model. Both of the models were given 16 input parameters, including
ecological and atmospheric variables, which were statistically resampled and were then utilized
in establishing the linear and nonlinear relationship to better fit the occurrence scenarios of the
species. The input parameters were mostly acquired from the recent satellite missions, including
MODIS, Sentinel-2, Sentinel-5p, the Shuttle Radar Topography Mission (SRTM), and ECOSTRESS.
The performance across all the thresholds was evaluated using the value of the Area Under Curve
(AUC) evaluation metrics. The AUC value was found to be 0.917 with CNN, whereas it was 0.68
with BIOCLIM, respectively. The performance evaluation metrics indicate the superiority of CNN for
species distribution over BIOCLIM.

Keywords: spatial distribution modelling; convolutional neural network; Rhododendron arboreum;
biodiversity management; ecological responses

1. Introduction

The Himalayan ecosystem is experiencing a continuous temperature rise, and the
impact of climate change can be seen very clearly in the Himalayas, which demonstrates
the need to monitor the Himalayan ecosystem even more [1,2]. The Himalayas are home
to several medicinally and economically important plant species, Rhododendron species
with botanical name Rhododendron arboreum Sm. from the family Ericaceae is among one
of them [3–5]. It is widely spread in Himalayas, South India, and Sri Lanka [4]. With
tremendous biological significance, it can sustain itself in the fragile ecotone between
the alpine and subalpine biomes. Despite being identified as a medicinally important
plant species, the geographical distribution and geospatial modelling of Rhododendron
arboreum have not been explored to its fullest and needs to be deciphered, which will
further benefit the formulation of conservation strategies [6]. The literature review of past
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studies offered isolated information on the distribution pattern, frequency of the species,
genetic diversity, and net productivity of Rhododendron arboreum, particularly in Himalayan
regions. The studies primarily focus on the areas that are found over the Mussoorie hills
of the Uttarakhand [7], Himachal Pradesh [8], and Garhwal division of Himalayas [9]
and mainly showcased the threat of habitat fragmentation and frequency degradation
of Rhododendron arboreum over the Himalayan region. Therefore, a holistic and cohesive
research approach is needed to track the distribution of these species so as to generate
baseline data for future research programmes, management practices, and conservation
policies.

Throughout the centuries, researchers have observed and documented the linear
relationship between species distribution and their local physical ecosystem and the role of
climate and altitudinal variation in their occurrence, which can be found in the available
scientific writings of the early 19th century [10–12]. Identifying the parameters for establish-
ing the relationship between species and the environment is the core step for simulating the
geographical distribution of any species [13,14]. Species Distribution Modelling (SDM) or
Ecological Niche Modelling (ENM) is widely used in biogeography [15], macroecology [16],
and biodiversity [17] research to model the geographical distribution of species. It is a
statistical tool that performs habitat suitability analysis using high-dimensional digital data
through regression or machine learning algorithms. Distribution modelling is achieved
by establishing a linear or nonlinear relationship between regional climatic and ecological
conditions. As each species is adapted to specific tolerance zones (also known as niches),
SDM helps to identify the environmental constraints and simulates the n-dimensional
input data to produce habitat suitability [18].

Generally, the SDM techniques take in geocoded input data of species distribution and
establish a relationship with the regional environmental and climatic conditions to map
its distribution throughout an area of interest [14,19,20]. One of the most commonly used
SDM is BIOCLIM, which is also used in the present study. BIOCLIM is one of the earliest
developed SDM algorithms, and it is mainly used by ecologists due to its easy-to-use
algorithm, which is more accessible than other models. BIOCLIM was first introduced
by reporting bioclimatic profiles and distribution maps of 73 species. After introducing
BIOCLIM, several researchers applied the model in different bioclimatic conditions and
received better results [21–24]. They found BIOCLIM to be quite consistent. The reason
behind BIOCLIM’s popularity is credited to its predefined assumptions and less complex
training algorithm.

The theoretical aspect of SDM considers that a given species is likely to be found in a
single privileged ecological niche under an ecosystem of unimodal distribution [25]. Still,
an actual scenario is more complex and diverse than a hypothetical niche. To overcome
this limitation, deep neural networks would be a good option, as their architecture favours
high order multi-dimensional feature interactions without constraining their functional
form [26]. Deep neural networks have shown significantly better results in image classifica-
tion, and there are several cases where single-layered neural networks have been used for
SDM [27,28]. Recently, a study by [29] has shown a better deep neural network prediction
ability in SDM that has been found to be even better performing than the conventional
ecological SDM models. A detailed discussion of convolution neural networks in handling
and learning non-linear features are given in later sections.

In this paper, a study was conducted to map the distribution of Rhododendron arboreum
using linear models, namely BIOCLIM, and Convolutional Neural Network (CNN) archi-
tecture has been proposed to a establish nonlinear relationship between input parameters.
A total of 16 environmental and climatic parameters acquired from different satellites are
used as input parameters, which influence the distribution of a particular species to a
greater extent in the given study area.
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2. Materials and Methods
2.1. Study Area

The current study was conducted within four districts of Uttarakhand, India, namely
Chamoli, Almora, Bagheshwar, and Pithoragarh, which is situated at the foothills of the
Himalayas. Geographically, the study area lies between 28◦43′22.42” to 31◦27′22.06”N
latitude and 77◦34′20.28” to 81◦2′34.35”E longitude with an area of around 20,736.99 km2.
The study area is shown in Figure 1. Being situated in the Himalayan Mountain range, the
variation in ground elevation is very sharp, varying from 416 to 7801 m from mean sea level
for the present study area. Due to the variation in elevation and unique climatic settings,
this region is immensely rich with thousands of different plant species and has a remarkable
diversity in flora and fauna [30,31]. This region experiences evenly distributed rainfall
throughout the year and has an average temperature of 23.4 ◦C [32]. According to terrestrial
ecoregion classifications that have been previously performed, the ecoregions found in the
present study area are tropical and subtropical moist broadleaf forest, coniferous forest,
temperate broadleaf and mixed forest, temperate conifer forest, and montane grassland
and shrublands, and approximately 20% of the area is covered with snow throughout the
year.

Figure 1. Location of the study area in the Western Himalayan region.

2.2. Target Species and Occurrence Data

Rhododendron species are found in the Himalayan range, which exhibits vast bio-
logical significance in the fragile ecotone of the alpine and subalpine zones [33]. Among
the variety of Rhododendrons, Rhododendron arboreum is also a common species in the
Western Himalayan region and can be found at an elevation range of 1200–4000 m above
mean sea level. It shows some characteristics of invasive species and has a high medicinal
value that makes the study of its distribution and the impact of climatic and ecological
parameters on its growth very important [34]. Not only does this species carry medicinal
value, but it is also very highly valued economically [35]. Medicinally, it is found to possess
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anti-cancer, immunomodulatory, anti-inflammatory, hepatoprotective, antidiabetic, antiox-
idant, antidiarrheal, adaptogens, antimicrobial, and antinociceptive properties, among
others [35]. Economically, it has found its usage in squash, local brew, jellies, jams, and
sherbet (rhodojuice). The juice from the leaves is used to encounter bed bugs bites. The
wood from Rhododendron can be used to make tools used in agriculture such as ‘Khukri’
handles, etc. [36]. The leaves are used for decoration purposes in houses as well as in
temples [37]. The wood is also used for the preparation of charcoal and can be used as a
fuel. Some studies reported that consuming the squash made from the flowers can serve
as a treatment for mental retardation [38,39], and flowers along with the roots and bark
were found to be effective in treating digestive, heart, and respiratory complications [40].
The leaves of the plant burnt with juniper leaves are used to cleanse the air [41]. Menstrual
cramps and heartaches are treated with the juice and squash made out of these flowers [42].
The extracts of the plants have also been utilized in curing nasal bleeding [43], headache,
fever, rheumatism, wounds, dysentery [44], cough, skin diseases, liver malfunction, piles,
worms, and jaundice as well as for preliminary cancer treatment [45].

Since phonological responses are better observed during the flowering season, the
ground data sampling was done in September 2019, March 2020, and March 2021 at
different elevation ranges [46]. The amount of ground data available for certain species,
and particularly for Rhododendron arboreum, are limited, which makes it crucial to undertake
the possibility of bias based on the sample size. As per the study by [47], they found
that the SDM models with a smaller size consistently performed poorly and suggested
that for reliable accuracy, the sample size must be greater than 30. In purview of the
studies conducted by several researchers and considering the local geography, a total
65 homogenous patches of Rhododendron arboreum were identified and geotagged within the
study area using the handheld Garmin GPS (Global Positioning System) with a horizontal
accuracy of 95%± 9.3 m. According to Wisz et al. [47], a small sample size (>30) is generally
useful in exploratory modelling, and considering that the present study is conducted at
a regional scale for a single target species, 65 sample points are enough for regional
distribution modelling. The observed multiple species occurrence within the pixels were
removed by applying spatial rarefication, which gave a single occurrence point per pixel.
The photographs of the Rhododendron arboreum captured during field sampling are given in
Figure 2.

Figure 2. Field photographs of Rhododendron arboreum.

2.3. Environmental Variables

The environmental variables used in this study include different bioclimatic variables
acquired from various active satellites. Recent developments in satellite sensors have
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enabled access to several ecological and climatic information derived from satellite observa-
tions at higher spatial and temporal resolutions. Current studies have used MODIS (https:
//modis.gsfc.nasa.gov/data accessed on 5 June 2021), Sentinel-2 (https://sentinel.esa.int/
web/sentinel/missions/sentinel-2/data-products accessed on 5 June 2021), Sentinel-5P
(https://sentinel.esa.int/web/sentinel/missions/sentinel-5/data-products accessed on
5 June 2021), ECOSTRESS (https://ecostress.jpl.nasa.gov/data accessed on 5 June 2021),
and SRTM (https://www2.jpl.nasa.gov/srtm accessed on 5 June 2021) satellite observa-
tions as an input parameter for the SDM algorithms. The satellite products are acquired
during the sampling period (September 2019, March 2020, and March 2021) and then
averaged, so that it can be used as a single product for each parameter. The Leaf Area Index
(LAI) [48] and a fraction of Photosynthetically Active Radiation (fPAR) were retrieved from
the MODIS data product. The motive behind using both LAI and fPAR establishes their
direct relationship with the surface photosynthesis, evapotranspiration, and net primary
productivity of the plants that is further utilized to estimate the water cycle processes, ter-
restrial energy, biophysical, and biochemical properties of the regional vegetation. Sentinel
2 optical data were used to estimate NDVI and EVI values at a fine scale of 10 m, which
helped in understanding the vegetation status throughout the study area and were also
used to mask the non-vegetative lands. Although there are a number of vegetation indices,
which can play a crucial part in identifying the species distribution including Modified
Soil Adjusted Vegetation Index (MSAVI) as well as other soil and ground surface adjusted
indices, the target specie Rhododendron Arboreum is found in the dense forest cover of
Himalayas and is independent of any soil and surface distortion; therefore, only NDVI and
EVI were considered for SDM. Sentinel-5P is one of the most recent satellite missions from
the European Space Agency (ESA), which is a combined mission of the European Union. It
can take atmospheric measurements with the high spatial and temporal resolution and is
utilized to retrieve several atmospheric parameters. Presently, eight different Sentinel-5P
parameters have been used to establish a relationship between the existence of target
species and to model species distribution which includes, the Aerosol Absorption Index
(AAI), CO density, water vapor column, columnar NO2, columnar O3 level, SO2 density,
surface albedo, and tropospheric Formaldehyde (HCHO) density [49]. Evapotranspiration
(ET) and Land Surface Temperature (LST) are also included to study the response of the
target species with regional land processes. It was retrieved from the ECOSTRESS satellite.
Elevation is an important parameter when studying the species distribution. It has a huge
role in species growth and distribution due to the changing conditions at varying altitudes;
therefore, SRTM Digital Elevation Model (DEM) data are used to retrieve the elevation
factor at a spatial resolution of 30 m. A significant factor that is also included is terrestrial
ecoregions to acquire the regional biome information to understand the diversity of the
Himalayan ranges that coexist with each other. The ecoregion the vector data provided
by [50] was used, which was attributed into 14 classes, 5 of which are used in the current
study area that is found in the foothills of the Himalayas, namely tropical and subtropical
moist broadleaf forests, tropical and subtropical coniferous forests, temperate broadleaf
and mixed forests, temperate coniferous forests, and montane grassland/shrubland. The
input parameters and their source mission are listed in Table 1.

All of the input parameters were used based on their linear and non-linear correlation
with the occurrence data. The parameters are the yearly average for year 2020, considering
the cloud free pixels only. Additionally, a correlation matrix was plotted to interpret the
relationship between each parameter.

https://modis.gsfc.nasa.gov/data
https://modis.gsfc.nasa.gov/data
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-5/data-products
https://ecostress.jpl.nasa.gov/data
https://www2.jpl.nasa.gov/srtm
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Table 1. Input parameters.

Satellite/Vector
Data Parameter Unit Spatial

Resolution Description

MODIS
LAI Unitless 500 m Defined as the projected area of leaves per unit of ground

surface area.

fPAR Unitless 500 m The fraction of photosynthetically active radiation
(400–700 nm) absorbed by an integrated plant canopy.

Sentinel-5P

Aerosol
Absorption Index Unitless 0.01 arc

degree
Indicates the elevated absorbed aerosols in the

atmosphere.

Vertically
integrated CO

column density
mol/m2 0.01 arc

degree

CO is an important atmospheric trace gas and a major
atmospheric pollutant. A major source of CO is biomass

burning and the oxidation of hydrocarbons.

Water vapour
column mol/m2 0.01 arc

degree
A major greenhouse gas that directly impacts plant

growth as well as photosynthesis.

The total vertical
column of NO2

mol/m2 0.01 arc
degree

A trace gas mostly found in the troposphere and
stratosphere that can harm plant growth with an increase

in its concentration

The total
atmospheric
column of O3

mol/m2 0.01 arc
degree

Acts as a shield for the biosphere from solar ultraviolet
radiation. It is an important greenhouse gas, and its high

concentration can be harmful to the vegetation.

SO2 vertical
column density mol/m2 0.01 arc

degree

Has a major impact on local and global climate change
and is directly and indirectly related to plant growth and

distribution.

Surface Albedo Unitless 0.01 arc
degree

The flux per unit area received at the surface, and it
shows low values in dense forest sue to its high

absorption.

Tropospheric
HCHO column
number density

mol/m2 0.01 arc
degree

An intermediate gas in most of the oxidation chains of
non-methane organic compounds. The inter-annual

variations of HCHO distribution result from the
oxidation in organic hydrocarbons from vegetation, fires,

industrial sources, and temperature changes.

Sentinel-2

NDVI Unitless 10 m A simple indicator to assess whether or not the observed
target contains green vegetation.

EVI Unitless 10 m
An optimized vegetation index to enhance the vegetation
signal by decoupling the canopy background signal and

reduction in atmospheric noises.

ECOSTRESS
Evapotranspiration W/m2 70 m The latent heat flux coming from the earth’s surface in

the form of evaporation and plant transpiration.

Land Surface
Temperature Kelvin 70 m The radiative skin temperature of the earth’s surface

derived from solar radiation.

SRTM DEM Meters 30 m An array of equally spaced elevation values referenced
horizontally by a geographical coordinate system.

Terrestrial
Ecoregions Biome Vector data

The classification of different types of forest present
worldwide. The biome classification used for the present

study has 14 different types of forest classes.

2.4. Ecological Niche Modelling

Broadly, there are two methods to model the ecological niche: a mechanistic approach
and a correlative approach [47]. The mechanistic approach deals with the physiological
limiting mechanisms of species intolerance in ecological conditions. In this approach, the
growth parameters are taken into consideration, such as soil pH, nitrogen content in the
soil, incoming solar radiation, carbon dioxide intake by plants, etc. [51]. The correlative
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approach, also known as an empirical approach, uses the environmental variables that
are reasonably expected to affect the growth of a particular species. The basis of the
correlative approach is the interrelation between the observed parameters within the
identified species location, which is used to establish a relationship between the parameters
to model the species distribution for an entire area [52]. Having run the algorithm, a
species distribution map can be generated using the established relationship. At this stage,
the model’s ability can also be tested using a set of species occurrence data that was not
used in model development via suitable statistical parameters [53]. The SDM used in the
present study only includes the presence of the BIOCLIM model and CNN based SDM.
The representation of the conventional methodology is given in Figure 3.

Figure 3. Flow diagram of the conventional approaches for species distribution modelling.

2.4.1. BIOCLIM

BIOCLIM is one of the first SDM algorithms to be introduced by [54]. The BIOCLIM
is a widely used SDM due to its easy-to-use graphical user interface and wide application
area. After the introduction of BIOCLIM, many researchers published their work using this
algorithm, including the work of [55], in which they discussed the application of BIOCLIM
in building ecographic regions and ways to improve the estimation of the ecological
distance between patches in meta-population landscape dynamics. The study by [55]
also pointed out some pros and cons, which include the error associated with the climatic
parameters, defining the ranking of factors, and taxonomic uncertainty. Early BIOCLIM
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applications occurred between 1984–1991 in terms of ecology and conservational biology
and were addressed by [56].

BIOCLIM is based on a bioclimatic envelope model, which is widely used to predict the
potential species distribution, which does not account for any possible interrelation between
variables. Being an intuitively simple model, it assigns equal weight to each variable
and produces binary predictions [57,58]. To predict the probability species distribution,
BIOCLIM compares the values of input variables of known locations to the values of
unknown pixels. The closer the value of an unknown pixel to the available pixel, the more
suitable the location is for a particular species to be found. BIOCLIM is simple and intuitive.
It is susceptible to over prediction and as specified, does not account for the interactions
between input variables [59].

2.4.2. CNN

A deep neural network is a multi-layered model that can learn complex nonlinear
relationships between the input parameters. The current study is an attempt that has been
made to use the Convolutional Neural Network (CNN) architecture for SDM. During the
last two decades, there has been a huge increase in deep learning and advanced machine
learning algorithms in a variety of research fields [60,61]. Deep learning conducts high-level
data abstraction using a hierarchical architecture consisting of multiple interconnected
layers with multiple artificial neurons. The neurons receive the input values and multiply
them with the specific weight obtained through optimization. Thereafter, the weighted sum
is transformed through the nonlinear activation function to further pass it to the neurons
of the next layer. The CNN architecture is represented in Figure 4 and the pseudocode is
given in Table S1. Through this procedure, the network will learn through the optimal set
of weights between the neurons in the adjoining layers and will maximize the network
performance, which would help the neurons focus on specific patterns in the data. In the
final layer, the parameters are passed through the SoftMax function, which transforms
them into probabilities that sum to 1, as shown in Equation (1).

p̂k = σ(s(x))k =
exp(sk(x))

∑K
j=1 exp

(
sj(x)

) (1)

where K is the total number of classes, s(x) is a vector with the weight of each class for
instance x, and σ(s(x))k is the calculated probability of x belonging to class k as per the
assigned weight. Although there have been several works that have been conducted with
SDM using shallow networks containing a single hidden layer, their performance is not
as good as that of the multi-layer networks [62]. The authors of [63], used a multi-layered
network for distribution modelling and achieved a better performance compared to the
single-layered networks.

Figure 4. CNN architecture.



Remote Sens. 2021, 13, 3284 9 of 17

A Convolutional Neural Network (CNN) is a type of deep learning-based model for
processing multidimensional data that follows a grid pattern [60]. The model is developed
in such a way that the algorithm learns and adapts to the spatial hierarchies of features by
itself from the lower to the higher levels of the pattern. Mathematically, it is composed of
three layers or building blocks: convolution, pooling, and fully connected layers. Feature
extraction is conducted using the first two layers and mapping the extracted features to the
output is conducted by the third layer.

Convolution is used for feature extraction, in which a kernel is applied to an input
tensor. A feature map is thus obtained through the product of kernel elements and tensor
input. The procedure is then repeated on multiple kernels to obtain random feature maps
that represent different feature extractors. The hyperparameters involved in convolution
operations are the size and number of kernels. The size could be anything from 3 × 3 to
5 × 5 to 7 × 7, and the kernel could be chosen randomly.

A pooling layer offers downsampling functionality that decreases the dimensionality
of the feature maps to achieve translation invariance to the alterations and the biases
incorporated and thus helps in reducing the number of learnable parameters. There are
two types of pooling operations, namely Max Pooling and Global Average Pooling [64].
The first one extracts speckles from the input feature maps and offers maximum values
in each of the speckles and leaves the remaining values unattended. The second one
downsamples a feature map with a size equaling product of height and width into an array
of a one cross one by averaging the elements of each feature map by retaining the depth of
the feature map. The advantage of Global Average Pooling lies in reducing the number of
learnable parameters along with offering the CNN with variable sized input.

The features extracted by the convolution layers followed by downsampling by the
pooling layers are mapped using a subset of fully connected layers to the final output
of the network. The fully connected layer is executed with the ReLU function [65,66].
Mathematically, the Rectifier can be described as:

f (x) = x+= max(0, x) (2)

where x is the input to the neuron. A unit employing the Rectifier is known as the Rectifier
linear unit (ReLU).

The performance evaluation of the model is conducted by tuning the learnable param-
eters, kernels, and weight by a loss function through the forward propagation followed by
updating these parameter values through an optimization algorithm either by backpropa-
gation or gradient descent.

2.5. Model Validation

All of the input parameters are resampled in a single grid size of 100 m and are
converted into the same file format. Out of the in-situ occurrences of Rhododendron arboreum
at ground locations, only 70% of the data were used in calibrating the model, whereas
the remaining 30% of the data were used to test the model. In any type of modelling,
performance evaluation is an essential task. In terms of validation of species probability
distribution, the AUC (Area Under ROC (Receiver Operating Characteristics) Curve) is
one of the most used performance evaluation metrics [67]. The primary application of the
ROC curve is in the threshold independent assessment that characterizes the model perfor-
mance at various discrimination thresholds. This application was found in raster-based
studies focusing on predicting land use and land cover, species distribution modelling, risk
assessment, and other probability mappings.

The AUC is generated by plotting the True Positive Rate (TPR) versus the False
Positive Rate (FPR) at varied thresholds. The TPR is also known as sensitivity, probability
of detection, or recall, and the FPR is also known as the probability of false alarm. Therefore,
an accurate model will generate a ROC curve away from the 1:1 line, and a less accurate
model will have a ROC curve towards the 1:1 line. The range of the AUC varies from 0
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to 1. The closer the value is to 1, the better the prediction is. The plots can be described
mathematically as:

TPR or Sensitivity or Recall or Probability of Detection =
TP

TP + FN
× 100 (3)

Specificity =
TN

TN + FP
× 100 (4)

FPR or Probability of false alarm = 1− Specificity (5)

Here, TP stands for true positive, and FP is false positive, where specificity is also
termed the true negative rate. The TPR provides the percentage of correctly predicted
instances of species other than rhododendron, whereas specificity provides the percentage
of correctly predicted instances of rhododendron distribution.

Thereafter, Cohen’s kappa is also calculated to support the AUC value. Being one of
the most popular performance evaluation indices, it is considered to be less complex and
dependent on prevalence. The kappa value ranges from −1 to +1, where +1 indicates the
perfect agreement. Other than kappa, the True Skill Statistic (TSS) is also incorporated, as it
corrects the unimodel dependency of kappa. TSS is widely used in ecology, and it can be
explained as

TSS = Sensitivity− Specificity− 1 (6)

3. Results

The spatial species distribution is highly associated with regional environmental con-
ditions, climatic variability, and land use [68,69]. The species distribution is simulated
using the correlation models between the dependent as well as independent parameters.
These models were generated through the presence-only data, presence/absence data, and
pseudo-presence locations of the species. A total of 16 input parameters were taken from
different satellite observations to model the potential distribution of Rhododendron ar-
boreum confined to the current study area. The in situ species locations were recorded to be
used as training and testing data and to retrieve the corresponding ecological and climatic
satellite observations [70,71]. To understand the overall objective of the work, analysis was
conducted on the distribution of the input parameters followed by the intercorrelation
between them.

3.1. Assessing the Distribution of Input Parameters

As several input parameters were used from different satellite observations, a statisti-
cal downscaling was first performed to achieve a common spatial resolution of 100 m to be
given as the model input. The statistically resampled images of different input parameters
are shown in Figure 5. The yearly average was taken for each parameter to incorporate the
overall variation throughout the year. AAI was found to range between −2.196 to 0.071,
in which the higher values were distributed where the higher altitudes have an upper
limit of 7771 m and a lower limit of 379 m from mean sea level. This drastic variation in
elevation permits rare species to grow in an extraordinary ecosystem, and it is the main
reason for the higher species heterogeneity in this region. The EVI and NDVI derived from
the Sentinel-2 optical data varies from −0.19 to 0.77 and −0.28 to 0.83, respectively. The
lower and lower-middle altitude locations tend to have higher NDVI/EVI values than the
higher altitudes. As the LST has a linear relationship with altitude, a drastic variation in
the upper and lower limits of LST can be found to be in the range of 242.2 to 306.1 Kelvin,
respectively, which reflects the presence of glaciers on top of the Himalayan mountains.
Due to the presence of dense vegetation at the lower altitudes, the values of water vapour,
fPAR, LAI, and ET are also higher in the foothills and lower in the upper Himalayas. At the
same time, atmospheric constituents like ozone, nitrogen dioxide, and carbon monoxide
also show high values at the lower altitude, where the vegetation density and the presence
of anthropogenic factors contributing to their concentration are relatively higher. However,
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the concentration of SO2 and HCHO are very low and are evenly distributed throughout,
which directly relates to industrial and transportation activities, which is very low in these
areas. The SO2 varied from −0.0002 to 0.0004 mol/m2, and HCHO varied from −0.00005
to 0.00025 mol/m2.

Figure 5. Spatial Distribution of various input parameters.

3.2. Understanding Parameter Intercorrelation

A correlation matrix plot was drawn as depicted in Figure 6 to understand the rela-
tionship between the input parameters. Total fifteen parameters except for the biome layer,
which is in the vector form, were used in the correlation matrix. A highly linear or nonlinear
relationship shows a relation/dependency or non-relation/non-dependency between the
parameters. The representation can be explained in terms of the values varying from −1 to
+1. The −ve value represents the negative relationship, and the +ve value describes the
positive relationship. The depiction of the negative relationship is in orange, where the
higher correlation value is visualized through the steeper circular shape, and vice versa for
the positive relationship. No relationship is represented by the correlation value of zero
that is represented by a perfect circular shape, and the colour becomes whitish. It can be
observed that many parameters are related to each other. A highly linear relationship exists
between Sentinel-5p based ozone and carbon monoxide as well as with ozone and water
vapour with a correlation value of 0.99. It can also be observed that the linear relationship
of DEM with NDVI, LST, and water vapour is very high, which shows the variation in the
local geometry and the influence of regional ecological and climatic parameters. A lower
correlation value is observed between the atmospheric parameters and the vegetation
indices, especially for EVI, LAI, and ET.
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Figure 6. Square correlation matrix between input parameters.

3.3. Spatial Distribution of Rhododendron arboreum

To simulate the potential distribution of Rhododendron arboreum, linear and a nonlin-
ear SDM were used in the current study using 16 a priori input parameters. The input
parameters were taken from different satellite observations followed by data resampling to
match their spatial resolution to achieve a standard resolution of 100 m. The probability
distribution is classified into four classes, namely very low, low, high, and very high,
according to their distribution. The presence, based only on the BIOCLIM model, predicts
the probability distribution of species using a linear correlation, as shown in Figure 7a.
Apart from a well-established presence only algorithm, a deep learning-based convolution
neural network model was used to establish a nonlinear relationship between the input
parameters to predict the probability of species distribution. A CNN based architecture
was used to train the model according to the known locations and was fitted on different
layers. The perfect combination of layers and activation functions was then used to predict
the species distribution Figure 7b.

3.4. Model Validation and Comparison

The accuracy or performance of the probability distribution of the incorporated models
was compared using the AUC, TSS, and kappa coefficient that characterize the performance
of the models with an in situ validation dataset. Table 2 shows the statistical performance
for BIOCLIM and CNN based the probability distribution of Rhododendron arboreum. A
lower AUC value was obtained by the BIOCLIM models, which is 0.639, based on the in situ
points reserved for the validation purpose. The AUC values for the CNN-based probability
distribution was found to be 0.917, which is considered to be very good compared to
the BIOCLIM that was given an AUC of 0.68. In addition to the AUC value, TSS and
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kappa, with values 0.652 and 0.94, respectively, also gave support to the applicability of
CNN in comparison to conventional SDM’s such as BIOCLIM. These values showcase the
superiority of deep learning models for species probability distribution using the given set
of ecological and bioclimatic parameters.

Figure 7. Probability distribution of Rhododendron arboreum using (a) BIOCLIM and (b) CNN Models.

Table 2. Statistical performance analysis of BIOCLIM and CNN.

BIOCLIM CNN

AUC 0.68 0.917

Kappa 0.76 0.94

TSS 0.44 0.652

4. Discussion

Understanding the dynamics and distribution of the forest ecosystem is a crucial step
towards biodiversity conservation. The recent advancements in statistical machine learning
models and the availability of reliable datasets help researchers build policies towards
conservation and sustainable solutions to achieve this conservation. The SDMs came into
existence in the mid-1980s with very limited ecological and climatic datasets, and from
there, they have evolved with the regular integration of newer and more reliable datasets.

Recently, a great variety of SDMs have been used to model the distribution of species,
in which the most popular are the ones that are based on the non-linear modelling approach
followed by statistical and rule-based methods. Among machine learning models, Maxent
is widely used due to its user-friendly interface and simple background algorithm. Maxent
accuracy, as per [72], has provided robust predictions with an AUC of 0.75 and for BIOCLIM,
an AUC of 0.65, whereas a similar result is achieved by [73] with an AUC of 0.73 and 0.66
for Maxent and BIOCLIM, respectively. Another well performing algorithm is the Boosted
Regression Tree (BRT), which performs slightly better than Maxent. As per [74], they
archived an overall AUC of 0.81 using BRT. Statistical and rule-based methods are among
the conventional approaches that are not consistent with the changes in regional ecology.

The BIOCLIM model is one of the oldest yet most used SDMs due to its simple
algorithm and easy parameterization [75]. It is based on a linear bioclimatic envelop model
that assigns equal weight to each variable and offers a binary prediction. A pervious
study indicated the use of BIOCLIM to predict species distribution, and similar studies
were conducted in the past. The introduction of machine learning and its integration
in SDM revolutionized the probability distribution modelling approach. The variety in
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modelling approaches and the increased number of datasets has made this model one of
the most globally accepted SDMs. There is a growing concern for the establishment of the
nonlinear relationship between the bioclimatic parameters through innovative approaches
such as deep learning-based models. It has been observed that the BIOCLIM model is
overestimates the species distribution and the higher probability of species occurrence at
the higher altitude. Moreover, it has been observed that the distribution pattern of the
predicted Rhododendron arboreum distribution using CNN architecture is quite different at
some places than from conventional BIOCLIM models. The current work proposed deep
learning-based CNN architecture for probability distribution modelling and proved to
perform better than the traditional BIOCLIM model. There was an underestimation of
species distribution observed in CNN than BIOCLIM. The distribution probability in CNN
was precise, and it was found that the majority of Rhododendron arboreum is distributed
in the southern part of the study area where the vegetation density is high. Some high
probability patches at the higher altitudes are commonly predicted by both the models.

However, the scalability of the current outcome needs to be tested on a global scale.
Apart from this, some limitations, namely uncertainties associated with the input data, the
assigned weights, and some important biotic parameters, need to be handled for future
work. An ensemble of all of these available methods needs to be explored in the future to
establish the linear and nonlinear relationship between the dependent parameters to predict
any one species out of the multiple species that are available in a location. Additionally,
there is a need to perform sensitivity analysis to understand variable impact on the target
variable, instead of forcing all of the variables into the model. This would reduce the
algorithm complexity and computational demand.

In spite of achieving significant accuracy and popularity in the field of correlation
modelling, there is still not a single algorithm that can be recommended. Deep neural
networks are showing more promising results, but they are still to be tested in different
ecological settings.

5. Conclusions

This study is a novel approach towards establishing a CNN architecture and testing
the performance of CNN in SDM and its comparison with other well established SDMs
namely, BIOCLIM. This study was conducted on the foothills of the Himalayas, where the
altitudinal variation is very drastic and varies from 416 to 7801 m above mean sea level.
This high-altitude Himalayan ranges constitutes a heterogeneous ecosystem and is home to
many rare/endangered, medicinally, and economically important plant species. One of the
major economically and medicinally important plant species, Rhododendron arboreum,
was tracked and mapped in this study using different SDMs. Based on its occurrence and
several ecological and bioclimatic satellite-based observations, the probability distribution
of the Rhododendron arboreum was established. The CNN based probability distribution
model outperformed the presence only based BIOCLIM model with an AUC score of
0.917. The CNN based prediction was also found to be more precise and accurate and with
significantly less overestimation, whereas the AUC values of the BIOCLIM model were
found to be 0.68 with a high overestimation. The superiority of CNN implies the role of
nonlinear parameters in predicting the probability of species distribution. The scalability of
the current solution on a global scale, the addition of some other important parameters, and
an ensemble of all of the available SDMs need to be explored in future work. An increase in
the presence of the Rhododendron species is an indication of strong soil retention, which,
in turn, is fruitful for other vegetation to grow and flourish. Apart from this, an increase in
the green vegetation fraction and a decrease in shade fraction was found to be associated
with a higher likelihood of Rhododendron. This increased likelihood using the models
would offer researchers an opportunity to understand the vegetation distribution and to
contribute to the restoration of the ecology and biodiversity conservation in the protected
areas so that a provision could be established for sustainable ecosystem services.
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